1
|
Hui W, Mu W, Zhao C, Xue D, Zhong Z, Fang Y, Gao M, Li X, Gao S, Liu K, Yan K. Solid-Phase Polymerization Using Anion-Exchange Resin Can Almost Completely Crosslink Hemoglobin to Prepare Hemoglobin-Based Oxygen Carriers. Int J Nanomedicine 2023; 18:1777-1791. [PMID: 37041816 PMCID: PMC10083038 DOI: 10.2147/ijn.s403739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction A limitation of hemoglobin-based oxygen carriers (HBOCs) as oxygen therapeutics is unpolymerized hemoglobin, which induces vasoconstriction leading to hypertension. The removal of unpolymerized hemoglobin from polymerized hemoglobin (PolyHb) is complex, expensive, and time-consuming. Methods Herein, we developed a method to completely polymerize hemoglobin almost without unpolymerized hemoglobin. Hemoglobin was adsorbed on the anion-exchange resin Q Sepharose Fast Flow or DEAE Sepharose Fast Flow, and acetal, a crosslinker prepared from glutaraldehyde and ethylene glycol, was employed to polymerize the hemoglobin. The polymerization conditions, including reaction time, pH, resin type, and molar ratios of glutaraldehyde to ethylene glycol and hemoglobin to acetal, were optimized. The blood pressure and blood gas of mice injected with PolyHb were monitored as well. Results The optimal polymerization condition of PolyHb was when the molar ratio of glutaraldehyde to ethylene glycol was 1:20, and the molar ratio of 10 mg/mL hemoglobin adsorbed on anion-exchange resin to glutaraldehyde was 1:300 for 60 min. Under optimized reactive conditions, hemoglobin was almost completely polymerized, with <1% hemoglobin remaining unpolymerized, and the molecular weight of PolyHb was more centrally distributed. Furthermore, hypertension was not induced in mice by PolyHb, and there were also no pathological changes observed in arterial oxygen, blood gas, electrolytes, and some metabolic indicators. Conclusion The findings of this study indicate that the use of solid-phase polymerization and acetal is a highly effective and innovative approach to HBOCs, resulting in the almost completely polymerized hemoglobin. These results offer promising implications for the development of new methods for preparing HBOCs.
Collapse
Affiliation(s)
- Wenli Hui
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Wenhua Mu
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Cong Zhao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Dan Xue
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Zihua Zhong
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Yani Fang
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Ming Gao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Xiao Li
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Shihao Gao
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Kaiyue Liu
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
| | - Kunping Yan
- College of Life Science, Northwest University, Xi’an City, Shaanxi Province, 710069, People’s Republic of China
- Correspondence: Kunping Yan, Email
| |
Collapse
|
2
|
Dimethylcysteine (DiCys)/ o-Phthalaldehyde Derivatization for Chiral Metabolite Analyses: Cross-Comparison of Six Chiral Thiols. Molecules 2021; 26:molecules26247416. [PMID: 34946495 PMCID: PMC8707109 DOI: 10.3390/molecules26247416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolomics profiling using liquid chromatography-mass spectrometry (LC-MS) has become an important tool in biomedical research. However, resolving enantiomers still represents a significant challenge in the metabolomics study of complex samples. Here, we introduced N,N-dimethyl-l-cysteine (dimethylcysteine, DiCys), a chiral thiol, for the o-phthalaldehyde (OPA) derivatization of enantiomeric amine metabolites. We took interest in DiCys because of its potential for multiplex isotope-tagged quantification. Here, we characterized the usefulness of DiCys in reversed-phase LC-MS analyses of chiral metabolites, compared against five commonly used chiral thiols: N-acetyl-l-cysteine (NAC); N-acetyl-d-penicillamine (NAP); isobutyryl-l-cysteine (IBLC); N-(tert-butoxycarbonyl)-l-cysteine methyl ester (NBC); and N-(tert-butylthiocarbamoyl)-l-cysteine ethyl ester (BTCC). DiCys and IBLC showed the best overall performance in terms of chiral separation, fluorescence intensity, and ionization efficiency. For chiral separation of amino acids, DiCys/OPA also outperformed Marfey’s reagents: 1-fluoro-2-4-dinitrophenyl-5-l-valine amide (FDVA) and 1-fluoro-2-4-dinitrophenyl-5-l-alanine amide (FDAA). As proof of principle, we compared DiCys and IBLC for detecting chiral metabolites in aqueous extracts of rice. By LC–MS analyses, both methods detected twenty proteinogenic l-amino acids and seven d-amino acids (Ala, Arg, Lys, Phe, Ser, Tyr, and Val), but DiCys showed better analyte separation. We conclude that DiCys/OPA is an excellent amine-derivatization method for enantiomeric metabolite detection in LC-MS analyses.
Collapse
|
3
|
Gowda D, Ohno M, B Gowda SG, Chiba H, Shingai M, Kida H, Hui SP. Defining the kinetic effects of infection with influenza virus A/PR8/34 (H1N1) on sphingosine-1-phosphate signaling in mice by targeted LC/MS. Sci Rep 2021; 11:20161. [PMID: 34635791 PMCID: PMC8505484 DOI: 10.1038/s41598-021-99765-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Influenza remains a world-wide health concern, causing 290,000-600,000 deaths and up to 5 million cases of severe illnesses annually. Noticing the host factors that control biological responses, such as inflammatory cytokine secretion, to influenza virus infection is important for the development of novel drugs. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite and has essential biological functions in inflammation. However, the kinetic effects of influenza virus infection on physiological S1P levels and their signaling in multiple tissues remain unknown. In this study, we utilized a mouse model intranasally infected with 50 or 500 plaque forming units (PFU) of A/Puerto Rico/8/34 (H1N1; PR8) virus to investigate how S1P levels and expression of its regulating factors are affected by influenza virus infection by the liquid-chromatography/mass spectrometry and real-time PCR, respectively. The S1P level was significantly high in the plasma of mice infected with 500 PFU of the virus than that in control mice at 6 day-post-infection (dpi). Elevated gene expression of sphingosine kinase-1 (Sphk1), an S1P synthase, was observed in the liver, lung, white adipose tissue, heart, and aorta of infected mice. This could be responsible for the increased plasma S1P levels as well as the decrease in the hepatic S1P lyase (Sgpl1) gene in the infected mice. These results indicate modulation of S1P-signaling by influenza virus infection. Since S1P regulates inflammation and leukocyte migration, it must be worth trying to target this signaling to control influenza-associated symptoms.
Collapse
Affiliation(s)
- Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi10, Kita-ku, Sapporo, 001-0020, Japan
| | | | - Hitoshi Chiba
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan.,Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-Ku, Sapporo, 007-0894, Japan
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi10, Kita-ku, Sapporo, 001-0020, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi10, Kita-ku, Sapporo, 001-0020, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
4
|
Karunanithy R, Holland T, Sivakumar P. Influence of Glutaraldehyde's Molecular Transformations on Spectroscopic Investigations of Its Conjugation with Amine-Modified Fe 3O 4 Microparticles in the Reaction Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5242-5251. [PMID: 33876943 DOI: 10.1021/acs.langmuir.1c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glutaraldehyde (GA) is a widely used cross-linking agent in biological research due to its superior characteristics, such as high reactivity toward proteins, high stability, and cost-effectiveness. In this regard, analyzing spectral changes initiated by various molecular forms and transformations of GA in a reaction medium and its reaction with surface functional-modified solid spheres is vital for a successful bioconjugation process targeting the biomolecules of interest. In this work, we present Fourier transform-infrared (FT-IR), Raman, and UV-visible spectroscopic analyses of glutaraldehyde-modified Fe3O4 microparticles (magnetic beads) to confirm the conjugation between GA and magnetic beads. We also studied the molecular transformations of glutaraldehyde during the reaction with amine-modified magnetic beads via investigating the reaction medium of the glutaraldehyde solution. Our FT-IR and Raman studies confirmed that glutaraldehyde was successfully coupled on the magnetic beads. Furthermore, FT-IR and UV-vis studies on the glutaraldehyde solution revealed the multiple molecular forms of GA in an aqueous medium, and they also confirmed that glutaraldehyde transforms into other molecular forms while the reaction occurs with the magnetic beads.
Collapse
Affiliation(s)
- Robinson Karunanithy
- Department of Physics, Southern Illinois University, 1245 Lincoln Dr., Neckers 483-A, Carbondale, Illinois 62901, United States
| | - Torrey Holland
- Department of Physics, Southern Illinois University, 1245 Lincoln Dr., Neckers 483-A, Carbondale, Illinois 62901, United States
| | - Poopalasingam Sivakumar
- Department of Physics, Southern Illinois University, 1245 Lincoln Dr., Neckers 483-A, Carbondale, Illinois 62901, United States
| |
Collapse
|
5
|
Gu Y, Chen X, Wang Y, Liu Y, Zheng L, Li X, Wang R, Wang S, Li S, Chai Y, Su J, Yuan Y, Chen X. Development of 3-mercaptopropyltrimethoxysilane (MPTS)-modified bone marrow mononuclear cell membrane chromatography for screening anti-osteoporosis components from Scutellariae Radix. Acta Pharm Sin B 2020; 10:1856-1865. [PMID: 33163340 PMCID: PMC7606177 DOI: 10.1016/j.apsb.2020.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis is a bone metabolic disease caused by the imbalance between osteoblasts and osteoclasts due to excess osteoclastogenesis, manifesting in the decrease of bone density and bone strength. Scutellariae Radix shows good anti-osteoporosis activity, but the effective component is still unclear. Cell membrane chromatography (CMC) is a biological affinity chromatography with membrane immobilized on a silica carrier as the stationary phase. It can realize a dynamical simulation of interactions between drugs and receptors on cell membrane, which is suitable for screening active compounds from complex systems. In this study, the components of Scutellariae Radix with potential anti-osteoporosis activity through inhibiting the differentiation from bone marrow mononuclear cells (BMMCs) to osteoclast were screened by a BMMC/CMC analytical system. Firstly, a new 3-mercaptopropyltrimethoxysilane (MPTS)-modified BMMC/CMC stationary phase was developed to realize covalent binding with cell membrane fractions. By investigating the retention time (tR) of the positive drug, the life span of the MPTS-modified CMC columns was significantly improved from 3 to 12 days. Secondly, 6 components of Scutellariae Radix were screened to show affinity to membrane receptors on BMMCs by a two-dimensional BMMC/CMC–TOFMS analytical system. Among them, tectochrysin demonstrated the best anti-osteoporosis effect in vitro, which has never been reported. We found that tectochrysin could inhibit the differentiation of BMMCs into osteoclasts induced by receptor activator of nuclear factor-κΒ ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) in a concentration-dependent manner in vitro. In vivo, it significantly reduced the loss of bone trabeculae in ovariectomized mice, and decreased the level of C-terminal cross-linking telopeptides of type 1 collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRAP-5b), interleukin 6 (IL-6) in serum. In conclusion, tectochrysin serves as a potential candidate in the treatment of osteoporosis. The proposed two-dimensional MPTS-modified BMMC/CMC-TOFMS analytical system shows the advantages of long-life span and fast recognition ability, which is very suitable for infrequent cell lines.
Collapse
|
6
|
Gowda SGB, Liang C, Gowda D, Hou F, Kawakami K, Fukiya S, Yokota A, Chiba H, Hui SP. Identification of short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) in a murine model by nontargeted analysis using ultra-high-performance liquid chromatography/linear ion trap quadrupole-Orbitrap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8831. [PMID: 32415683 DOI: 10.1002/rcm.8831] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 05/26/2023]
Abstract
RATIONALE Fatty acid esters of hydroxy fatty acids (FAHFAs) are recently discovered endogenous lipids with outstanding health benefits. FAHFAs are known to exhibit antioxidant, antidiabetic and anti-inflammatory properties. The number of known long-chain FAHFAs in mammalian tissues and dietary resources increased recently because of the latest developments in high-resolution tandem mass spectrometry techniques. However, there are no reports on the identification of short-chain fatty acid esterified hydroxy fatty acids (SFAHFAs). METHODS Intestinal contents, tissues, and plasma of rats fed with high-fat diet (HFD) and normal diet (ND) were analyzed for fatty acids, hydroxy fatty acids, and FAHFAs using ultra-high-performance liquid chromatography (UHPLC) and linear trap quadrupole-Orbitrap mass spectrometry (LTQ Orbitrap MS) with negative heated electrospray ionization. RESULTS Untargeted analysis of total lipid extracts from murine samples (male 13-week-old WKAH/HKmSlc rats) led to the identification of several new SFAHFAs of acetic acid or propanoic acid esterified long-chain (>C20)-hydroxy fatty acids. Furthermore, MS3 analysis revealed the position of the hydroxyl group in the long-chain fatty acid as C-2. The relative amounts of SFAHFAs were quantified in intestinal contents and their tissues (Cecum, small intestine, and large intestine), liver, and plasma of rats fed with HFD and ND. The large intestine showed the highest abundance of SFAHFAs with a concentration range from 0.84 to 57 pmol/mg followed by the cecum with a range of 0.66 to 28.6 pmol/mg. The SFAHFAs were significantly altered between the HFD and ND groups, with a strong decreasing tendency under HFD conditions. CONCLUSIONS Identification of these novel SFAHFAs can contribute to a better understanding of the chemical and biological properties of individual SFAHFAs and their possible sources in the gut, which in turn helps us tackle the role of these lipids in various metabolic diseases.
Collapse
Affiliation(s)
| | - Chongsheng Liang
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan
| | - Fengjue Hou
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan
| | - Kentaro Kawakami
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Satoru Fukiya
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Atsushi Yokota
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-Ku, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo, 060-0812, Japan
| |
Collapse
|
7
|
B Gowda SG, Ikeda K, Arita M. Facile determination of sphingolipids under alkali condition using metal-free column by LC-MS/MS. Anal Bioanal Chem 2018; 410:4793-4803. [PMID: 29740670 DOI: 10.1007/s00216-018-1116-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022]
Abstract
Extraction and analysis of sphingolipids from biological samples is a critical step in lipidomics, especially for minor species such as sphingoid bases and sphingosine-1-phosphate. Although several liquid chromatography-mass spectrometry methods enabling the determination of sphingolipid molecular species have been reported, they were limited in analytical sensitivity and reproducibility by causing significant peak tailing, especially by the presence of phosphate groups, and most of the extraction techniques are laborious and do not cover a broad range of sphingolipid metabolites. In this study, we developed a rapid single-phase extraction and highly sensitive analytical method for the detection and quantification of sphingolipids (including phosphates) comprehensively using liquid chromatography-triple quadruple mass spectrometry. After validating the reliability of the method, we analyzed the intestinal tissue sphingolipids of germ-free (GF) and specific pathogen-free (SPF) mice and found significantly higher levels of free sphingoid bases and sphingosine-1-phosphate in the GF condition as compared to the SPF condition. This method enables a rapid extraction and highly sensitive determination of sphingolipids comprehensively at low femtomolar ranges. Graphical abstract Diagrammatic comparision of sphingolipid (phosphates) analysis between conventional and this method.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan.,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan. .,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan. .,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-0011, Japan.
| |
Collapse
|