1
|
Abstract
Expansins comprise an ancient group of cell wall proteins ubiquitous in land plants and their algal ancestors. During cell growth, they facilitate passive yielding of the wall's cellulose networks to turgor-generated tensile stresses, without evidence of enzymatic activity. Expansins are also implicated in fruit softening and other developmental processes and in adaptive responses to environmental stresses and pathogens. The major expansin families in plants include α-expansins (EXPAs), which act on cellulose-cellulose junctions, and β-expansins, which can act on xylans. EXPAs mediate acid growth, which contributes to wall enlargement by auxin and other growth agents. The genomes of diverse microbes, including many plant pathogens, also encode expansins designated expansin-like X. Expansins are proposed to disrupt noncovalent bonding between laterally aligned polysaccharides (notably cellulose), facilitating wall loosening for a variety of biological roles.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
2
|
Luo M, Fu S. Distribution of xylan linked glucuronic acid labelled by molecularly imprinted polymers on pulp fiber surface. Int J Biol Macromol 2024; 278:134519. [PMID: 39111479 DOI: 10.1016/j.ijbiomac.2024.134519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Efficiently utilization of plant resources is heavily restricted by the resistance of lignocellulose in plant cells, which is related to the interlinkages of lignocellulose components. Hemicellulose in plant cell wall is bound to cellulose by hydrogen bond and linked with lignin in lignin-carbohydrate complex (LCC). In the xylan chain of hemicellulose, glucuronic acid (GA) is a typical side-group, which provides clues for us to label and locate hemicellulose. The way to label GA on the surface of pulp fibers obtained from pulping process is benefit to explore the deconstruction of lignocellulose. Herein, a new visualization method, fluorescence modified molecularly imprinted polymers (MIP) were applied to recognize and locate GA on the pulp fiber surface. The method combining fluorescence imaging and integrated 3D fiber structure verified the feasibility of the MIP for specific GA recognition. The results showed that xylan (represented by GA) was closely attached to lignin, distributed along the inner wall of pulp fiber cells, and gradually taken off from the inside edge of fiber cells with the deconstruction of lignocellulose. This research provided a basis to develop visualization bioimaging technology to identify biomass components.
Collapse
Affiliation(s)
- Min Luo
- State Key Lab of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, Guangdong province 510640, China; China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China
| | - Shiyu Fu
- State Key Lab of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, Guangdong province 510640, China.
| |
Collapse
|
3
|
de Sandozequi A, Salazar-Cortés JJ, Tapia-Vázquez I, Martínez-Anaya C. Prevalent association with the bacterial cell envelope of prokaryotic expansins revealed by bioinformatics analysis. Protein Sci 2022; 31:e4315. [PMID: 35481628 PMCID: PMC9045087 DOI: 10.1002/pro.4315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Expansins are a group of proteins from diverse organisms from bacteria to plants. Although expansins show structural conservation, their biological roles seem to differ among kingdoms. In plants, these proteins remodel the cell wall during plant growth and other processes. Contrarily, determination of bacterial expansin activity has proven difficult, although genetic evidence of bacterial mutants indicates that expansins participate in bacteria-plant interactions. Nevertheless, a large proportion of expansin genes are found in the genomes of free-living bacteria, suggesting roles that are independent of the interaction with living plants. Here, we analyzed all available sequences of prokaryotic expansins for correlations between surface electric charge, extra protein modules, and sequence motifs for association with the bacteria exterior after export. Additionally, information on the fate of protein after translocation across the membrane also points to bacterial cell association of expansins through six different mechanisms, such as attachment of a lipid molecule for membrane anchoring in diderm species or covalent linking to the peptidoglycan layer in monoderms such as the Bacilliales. Our results have implications for expansin function in the context of bacteria-plant interactions and also for free-living species in which expansins might affect cell-cell or cell-substrate interaction properties and indicate the need to re-examine the roles currently considered for these proteins.
Collapse
Affiliation(s)
- Andrés de Sandozequi
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Juan José Salazar-Cortés
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Irán Tapia-Vázquez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Claudia Martínez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Narváez-Barragán DA, Tovar-Herrera OE, Guevara-García A, Serrano M, Martinez-Anaya C. Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility. FRONTIERS IN PLANT SCIENCE 2022; 13:969343. [PMID: 36082287 PMCID: PMC9445675 DOI: 10.3389/fpls.2022.969343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 05/13/2023]
Abstract
Cell wall integrity is tightly regulated and maintained given that non-physiological modification of cell walls could render plants vulnerable to biotic and/or abiotic stresses. Expansins are plant cell wall-modifying proteins active during many developmental and physiological processes, but they can also be produced by bacteria and fungi during interaction with plant hosts. Cell wall alteration brought about by ectopic expression, overexpression, or exogenous addition of expansins from either eukaryote or prokaryote origin can in some instances provide resistance to pathogens, while in other cases plants become more susceptible to infection. In these circumstances altered cell wall mechanical properties might be directly responsible for pathogen resistance or susceptibility outcomes. Simultaneously, through membrane receptors for enzymatically released cell wall fragments or by sensing modified cell wall barrier properties, plants trigger intracellular signaling cascades inducing defense responses and reinforcement of the cell wall, contributing to various infection phenotypes, in which expansins might also be involved. Here, we review the plant immune response activated by cell wall surveillance mechanisms, cell wall fragments identified as responsible for immune responses, and expansin's roles in resistance and susceptibility of plants to pathogen attack.
Collapse
Affiliation(s)
| | | | | | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | |
Collapse
|
5
|
Pi L, Yin Z, Duan W, Wang N, Zhang Y, Wang J, Dou D. A G-type lectin receptor-like kinase regulates the perception of oomycete apoplastic expansin-like proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:183-201. [PMID: 34825772 DOI: 10.1111/jipb.13194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 05/27/2023]
Abstract
Phytophthora capsici is one of the most harmful pathogens in agriculture, which threatens the safe production of multiple crops and causes serious economic losses worldwide. Here, we identified a P. capsici expansin-like protein, PcEXLX1, by liquid chromatography-tandem mass spectrometry from Nicotiana benthamiana apoplastic fluid infected with P. capsici. Clustered regularly interspaced short palindromic repeats/crispr associated protein 9 (CRISPR/Cas9)-mediated PcEXLX1 knockout mutants exhibited significantly enhanced virulence, while the overexpression of PcEXLX1 impaired the virulence. Prokaryotically expressed PcEXLX1 activated multiple plant immune responses, which were BRI1-associated kinase 1 (BAK1)- and suppressor of BIR1-1 (SOBIR1)-dependent. Furthermore, overexpression of PcEXLX1 homologs in N. benthamiana could also increase plant resistance to P. capsici. A G-type lectin receptor-like kinase from N. benthamiana, expansin-regulating kinase 1 (ERK1), was shown to regulate the perception of PcEXLX1 and positively mediate the plant resistance to P. capsici. These results reveal that the expansin-like protein, PcEXLX1, is a novel apoplastic effector with plant immunity-inducing activity of oomycetes, perception of which is regulated by the receptor-like kinase, ERK1.
Collapse
Affiliation(s)
- Lei Pi
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Yin
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yifan Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
6
|
Gorshkov V, Tsers I, Islamov B, Ageeva M, Gogoleva N, Mikshina P, Parfirova O, Gogoleva O, Petrova O, Gorshkova T, Gogolev Y. The Modification of Plant Cell Wall Polysaccharides in Potato Plants during Pectobacterium atrosepticum-Caused Infection. PLANTS 2021; 10:plants10071407. [PMID: 34371610 PMCID: PMC8309280 DOI: 10.3390/plants10071407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022]
Abstract
Our study is the first to consider the changes in the entire set of matrix plant cell wall (PCW) polysaccharides in the course of a plant infectious disease. We compared the molecular weight distribution, monosaccharide content, and the epitope distribution of pectic compounds and cross-linking glycans in non-infected potato plants and plants infected with Pectobacterium atrosepticum at the initial and advanced stages of plant colonization by the pathogen. To predict the gene products involved in the modification of the PCW polysaccharide skeleton during the infection, the expression profiles of potato and P. atrosepticum PCW-related genes were analyzed by RNA-Seq along with phylogenetic analysis. The assemblage of P. atrosepticum biofilm-like structures—the bacterial emboli—and the accumulation of specific fragments of pectic compounds that prime the formation of these structures were demonstrated within potato plants (a natural host of P. atrosepticum). Collenchyma was shown to be the most “vulnerable” tissue to P. atrosepticum among the potato stem tissues. The infection caused by the representative of the Soft Rot Pectobacteriaceae was shown to affect not only pectic compounds but also cross-linking glycans; the content of the latter was increased in the infected plants compared to the non-infected ones.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (B.I.); (M.A.); (N.G.); (P.M.); (O.P.); (O.P.); (T.G.); (Y.G.)
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (O.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420111 Kazan, Russia
- Correspondence:
| | - Ivan Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (O.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420111 Kazan, Russia
| | - Bakhtiyar Islamov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (B.I.); (M.A.); (N.G.); (P.M.); (O.P.); (O.P.); (T.G.); (Y.G.)
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (O.G.)
| | - Marina Ageeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (B.I.); (M.A.); (N.G.); (P.M.); (O.P.); (O.P.); (T.G.); (Y.G.)
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (B.I.); (M.A.); (N.G.); (P.M.); (O.P.); (O.P.); (T.G.); (Y.G.)
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (O.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420111 Kazan, Russia
| | - Polina Mikshina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (B.I.); (M.A.); (N.G.); (P.M.); (O.P.); (O.P.); (T.G.); (Y.G.)
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (B.I.); (M.A.); (N.G.); (P.M.); (O.P.); (O.P.); (T.G.); (Y.G.)
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (O.G.)
| | - Olga Gogoleva
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (O.G.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (B.I.); (M.A.); (N.G.); (P.M.); (O.P.); (O.P.); (T.G.); (Y.G.)
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (O.G.)
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (B.I.); (M.A.); (N.G.); (P.M.); (O.P.); (O.P.); (T.G.); (Y.G.)
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (B.I.); (M.A.); (N.G.); (P.M.); (O.P.); (O.P.); (T.G.); (Y.G.)
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia; (I.T.); (O.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420111 Kazan, Russia
| |
Collapse
|
7
|
Peritore-Galve FC, Tancos MA, Smart CD. Bacterial Canker of Tomato: Revisiting a Global and Economically Damaging Seedborne Pathogen. PLANT DISEASE 2021; 105:1581-1595. [PMID: 33107795 DOI: 10.1094/pdis-08-20-1732-fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird's-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review, we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD 21702
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
8
|
Narváez-Barragán DA, Tovar-Herrera OE, Segovia L, Serrano M, Martinez-Anaya C. Expansin-related proteins: biology, microbe-plant interactions and associated plant-defense responses. MICROBIOLOGY-SGM 2020; 166:1007-1018. [PMID: 33141007 DOI: 10.1099/mic.0.000984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expansins, cerato-platanins and swollenins (which we will henceforth refer to as expansin-related proteins) are a group of microbial proteins involved in microbe-plant interactions. Although they share very low sequence similarity, some of their composing domains are near-identical at the structural level. Expansin-related proteins have their target in the plant cell wall, in which they act through a non-enzymatic, but still uncharacterized, mechanism. In most cases, mutagenesis of expansin-related genes affects plant colonization or plant pathogenesis of different bacterial and fungal species, and thus, in many cases they are considered virulence factors. Additionally, plant treatment with expansin-related proteins activate several plant defenses resulting in the priming and protection towards subsequent pathogen encounters. Plant-defence responses induced by these proteins are reminiscent of pattern-triggered immunity or hypersensitive response in some cases. Plant immunity to expansin-related proteins could be caused by the following: (i) protein detection by specific host-cell receptors, (ii) alterations to the cell-wall-barrier properties sensed by the host, (iii) displacement of cell-wall polysaccharides detected by the host. Expansin-related proteins may also target polysaccharides on the wall of the microbes that produced them under certain physiological instances. Here, we review biochemical, evolutionary and biological aspects of these relatively understudied proteins and different immune responses they induce in plant hosts.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Omar E Tovar-Herrera
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, BeerSheva, Israel
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Claudia Martinez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| |
Collapse
|
9
|
Lohoff C, Buchholz PCF, Le Roes-Hill M, Pleiss J. Expansin Engineering Database: A navigation and classification tool for expansins and homologues. Proteins 2020; 89:149-162. [PMID: 32862462 DOI: 10.1002/prot.26001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022]
Abstract
Expansins have the remarkable ability to loosen plant cell walls and cellulose material without showing catalytic activity and therefore have potential applications in biomass degradation. To support the study of sequence-structure-function relationships and the search for novel expansins, the Expansin Engineering Database (ExED, https://exed.biocatnet.de) collected sequence and structure data on expansins from Bacteria, Fungi, and Viridiplantae, and expansin-like homologues such as carbohydrate binding modules, glycoside hydrolases, loosenins, swollenins, cerato-platanins, and EXPNs. Based on global sequence alignment and protein sequence network analysis, the sequences are highly diverse. However, many similarities were found between the expansin domains. Newly created profile hidden Markov models of the two expansin domains enable standard numbering schemes, comprehensive conservation analyses, and genome annotation. Conserved key amino acids in the expansin domains were identified, a refined classification of expansins and carbohydrate binding modules was proposed, and new sequence motifs facilitate the search of novel candidate genes and the engineering of expansins.
Collapse
Affiliation(s)
- Caroline Lohoff
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Patrick C F Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Narváez-Barragán DA, Tovar-Herrera OE, Torres M, Rodríguez M, Humphris S, Toth IK, Segovia L, Serrano M, Martínez-Anaya C. Expansin-like Exl1 from Pectobacterium is a virulence factor required for host infection, and induces a defence plant response involving ROS, and jasmonate, ethylene and salicylic acid signalling pathways in Arabidopsis thaliana. Sci Rep 2020; 10:7747. [PMID: 32385404 PMCID: PMC7210985 DOI: 10.1038/s41598-020-64529-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/17/2020] [Indexed: 01/09/2023] Open
Abstract
Expansins are encoded by some phytopathogenic bacteria and evidence indicates that they act as virulence factors for host infection. Here we analysed the expression of exl1 by Pectobacterium brasiliense and Pectobacterium atrosepticum. In both, exl1 gene appears to be under quorum sensing control, and protein Exl1 can be observed in culture medium and during plant infection. Expression of exl1 correlates with pathogen virulence, where symptoms are reduced in a Δexl1 mutant strain of P. atrosepticum. As well as Δexl1 exhibiting less maceration of potato plants, fewer bacteria are observed at distance from the inoculation site. However, bacteria infiltrated into the plant tissue are as virulent as the wild type, suggesting that this is due to alterations in the initial invasion of the tissue. Additionally, swarming from colonies grown on MacConkey soft agar was delayed in the mutant in comparison to the wild type. We found that Exl1 acts on the plant tissue, probably by remodelling of a cell wall component or altering the barrier properties of the cell wall inducing a plant defence response, which results in the production of ROS and the induction of marker genes of the JA, ET and SA signalling pathways in Arabidopsis thaliana. Exl1 inactive mutants fail to trigger such responses. This defence response is protective against Pectobacterium brasiliense and Botrytis cinerea in more than one plant species.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Omar E Tovar-Herrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Martha Torres
- Centro de Ciencias Genómicas. Universidad Nacional Autónoma de México, 62110, Cuernavaca, Morelos, Mexico
| | - Mabel Rodríguez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Sonia Humphris
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Ian K Toth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas. Universidad Nacional Autónoma de México, 62110, Cuernavaca, Morelos, Mexico
| | - Claudia Martínez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
11
|
Peritore-Galve FC, Miller C, Smart CD. Characterizing Colonization Patterns of Clavibacter michiganensis During Infection of Tolerant Wild Solanum Species. PHYTOPATHOLOGY 2020; 110:574-581. [PMID: 31725349 DOI: 10.1094/phyto-09-19-0329-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clavibacter michiganensis is the Gram-positive causal agent of bacterial canker of tomato, an economically devastating disease with a worldwide distribution. C. michiganensis colonizes the xylem, leading to unilateral wilt, stem canker, and plant death. C. michiganensis can also infect developing tomato fruit through splash dispersal, forming exterior bird's eye lesions. There are no documented sources of qualitative resistance in Solanum spp.; however, quantitative trait loci conferring tolerance in Solanum arcanum and Solanum habrochaites have been identified. Mechanisms of tolerance and C. michiganensis colonization patterns in wild tomato species remain poorly understood. This study describes differences in symptom development and colonization patterns of the wild type (WT) and a hypervirulent bacterial expansin knockout (ΔCmEXLX2) in wild and cultivated tomato genotypes. Overall, WT and ΔCmEXLX2 cause less severe symptoms in wild tomato species and are impeded in spread and colonization of the vascular system. Laser scanning confocal microscopy and scanning electron microscopy were used to observe preferential colonization of protoxylem vessels and reduced intravascular spread in wild tomatoes. Differences in C. michiganensis in vitro growth and aggregation were determined in xylem sap, which may suggest that responses to pathogen colonization are occurring, leading to reduced colonization density in wild tomato species. Finally, wild tomato fruit was determined to be susceptible to C. michiganensis through in vivo inoculations and assessing lesion numbers and size. Fruit symptom severity was in some cases unrelated to severity of symptoms during vascular infection, suggesting different mechanisms for colonization of different tissues.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Christine Miller
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27606
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
12
|
Mohamad Nor N, Hashim NHF, Quay DHX, Mahadi NM, Illias RM, Abu Bakar FD, Murad AMA. Functional and structural analyses of an expansin-like protein from the antarctic yeast Glaciozyma antarctica PI12 reveal strategies of nutrient scavenging in the sea ice environment. Int J Biol Macromol 2020; 144:231-241. [DOI: 10.1016/j.ijbiomac.2019.12.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
|
13
|
Ingel B, Jeske DR, Sun Q, Grosskopf J, Roper MC. Xylella fastidiosa Endoglucanases Mediate the Rate of Pierce's Disease Development in Vitis vinifera in a Cultivar-Dependent Manner. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1402-1414. [PMID: 31216219 DOI: 10.1094/mpmi-04-19-0096-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Xylella fastidiosa is a gram-negative bacterium that causes Pierce's disease (PD) in grapevine. X. fastidiosa is xylem-limited and interfaces primarily with pit membranes (PMs) that separate xylem vessels from one another and from adjacent xylem parenchyma cells. PMs are composed of both pectic and cellulosic substrates, and dissolution of PMs is facilitated by X. fastidiosa cell wall-degrading enzymes. A polygalacturonase, which hydrolyzes the pectin component of PMs, is required for both movement and pathogenicity in grapevines. Here, we demonstrate that two X. fastidiosa β-1,4-endoglucanases (EGases), EngXCA1 and EngXCA2, also play a role in how X. fastidiosa interfaces with grapevine PMs. The loss of EngXCA1 and EngXCA2 in tandem reduces both X. fastidiosa virulence and population size and slows the rate of PD symptom development and progression. Moreover, we demonstrate that single and double EGases mutants alter the rate of PD progression differently in two grapevine cultivars, Cabernet Sauvignon and Chardonnay, and that Chardonnay is significantly more susceptible to PD than Cabernet Sauvignon. Interestingly, we determined that there are quantitative differences in the amount of fucosylated xyloglucans that make up the surface of PMs in these cultivars. Fucosylated xyloglucans are targets of the X. fastidiosa EGases, and xyloglucan abundance could impact PM dissolution and affect PD symptom development. Taken together, these results indicate that X. fastidiosa EGases and the PM carbohydrate composition of different grape cultivars are important factors that influence PD symptom development and progression.
Collapse
Affiliation(s)
- Brian Ingel
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Daniel R Jeske
- Department of Statistics, University of California, Riverside, CA 92521, U.S.A
| | - Qiang Sun
- Department of Biology, University of Wisconsin, Stevens Point, WI 54481, U.S.A
| | - Joseph Grosskopf
- Department of Biology, University of Wisconsin, Stevens Point, WI 54481, U.S.A
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|