1
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Wen C, Li T, Huang Z, Kang QK. Oxidative Dehydrogenation of Alkanes through Homogeneous Base Metal Catalysis. CHEM REC 2023; 23:e202300146. [PMID: 37283443 DOI: 10.1002/tcr.202300146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Preparing valuable olefins from cheap and abundant alkane resources has long been a challenging task in organic synthesis, which mainly suffers from harsh reaction conditions and narrow scopes. Homogeneous transition metals catalyzed dehydrogenation of alkanes has attracted much attention for its excellent catalytic activities under relatively milder conditions. Among them, base metal catalyzed oxidative alkane dehydrogenation has emerged as a viable strategy for olefin synthesis for its usage of cheap catalysts, compatibility with various functional groups, and low reaction temperature. In this review, we discuss recent development of base metal catalyzed alkane dehydrogenation under oxidative conditions and their application in constructing complex molecules.
Collapse
Affiliation(s)
- Chenxi Wen
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ting Li
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Zheng Huang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi-Kai Kang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
3
|
Chen G, Li X, Feng X. Upgrading Organic Compounds through the Coupling of Electrooxidation with Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202209014. [PMID: 35849025 PMCID: PMC9826310 DOI: 10.1002/anie.202209014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/11/2023]
Abstract
The electrocatalytic splitting of water is recognized to be the most sustainable and clean technology for the production of hydrogen (H2 ). Unfortunately, the efficiency is seriously restricted by the sluggish kinetics of the oxygen evolution reaction (OER) at the anode. In contrast to the OER, the electrooxidation of organic compounds (EOO) is more thermodynamically and kinetically favorable. Thus, the coupling of the EOO and hydrogen evolution reaction (HER) has emerged as an alternative route, as it can greatly improve the catalytic efficiency for the production of H2 . Simultaneously, value-added organic compounds can be generated on the anode through electrooxidation upgrading. In this Minireview, we highlight the latest progress and milestones in coupling the EOO with the HER. Emphasis is focused on the design of the anode catalyst, understanding the reaction mechanism, and the construction of the electrolyzer. Moreover, challenges and prospects are offered relating to the future development of this emerging technology.
Collapse
Affiliation(s)
- Guangbo Chen
- Center for Advancing Electronics Dresden (Cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Xiaodong Li
- Center for Advancing Electronics Dresden (Cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (Cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Max Planck Institute of Microstructure Physics06120Halle (Saale)Germany
| |
Collapse
|
4
|
Chen G, Li X, Feng X. Upgrading Organic Compounds through Electrooxidation Coupled with Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guangbo Chen
- Technische Universität Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry Mommsenstr. 4, 01062 Dresden, Germany 01069 Dresden GERMANY
| | - Xiaodong Li
- Technische Universität Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Xinliang Feng
- Technische Universitaet Dresden Chair for Molecular Functional Materials Mommsenstrasse 4 01062 Dresden GERMANY
| |
Collapse
|
5
|
He YG, Huang YK, Fan QQ, Zheng B, Luo YQ, Zhu XL, Shi XX. Copper(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp 3)-H bonds adjacent to 3,4-dihydroisoquinolines using air (O 2) as a clean oxidant. RSC Adv 2021; 11:29702-29710. [PMID: 35479555 PMCID: PMC9040818 DOI: 10.1039/d1ra05671a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
A mild, efficient and eco-friendly method for the oxidation of 1-Bn-DHIQs to 1-Bz-DHIQs without concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs is very important for the syntheses of 1-Bz-DHIQ alkaloids and analogues. In this article, we developed a novel Cu(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp3)-H bonds adjacent to the C-1 positions of various 1-Bn-DHIQs. It was observed that when 0.2 equiv. of Cu(OAc)2·2H2O was used as the catalyst, 3.0 equiv. of AcOH was used as the additive and air (O2) was used as a clean oxidant, various 1-Bn-DHIQs could be efficiently oxidized to corresponding 1-Bz-DHIQs at 25 °C in DMSO. Especially, almost no concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs was observed during the above reaction. In addition, this method was successfully applied in the first total synthesis of the alkaloid canelillinoxine.
Collapse
Affiliation(s)
- Yun-Gang He
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yong-Kang Huang
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Qi-Qi Fan
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Bo Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yong-Qiang Luo
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Xing-Liang Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Xiao-Xin Shi
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| |
Collapse
|
6
|
Niu X, Yang L. Manganese(III) Acetate Catalyzed Aerobic Dehydrogenation of Tertiary Indolines, Tetrahydroquinolines and an
N
‐Unsubstituted Indoline. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaokang Niu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials Hangzhou Normal University 311121 Hangzhou People's Republic of China
| | - Lei Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials Hangzhou Normal University 311121 Hangzhou People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou People's Republic of China
| |
Collapse
|
7
|
Ramu S, Baskar B. A simple and efficient metal free, additive, or base free dehydrogenation of tetrahydroisoquinolines using oxygen as a clean oxidant. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal free dehydrogenation of various substituted tetrahydroisoquinolines via a simple and convenient metal free, atom economical route for the synthesis of corresponding isoquinolines under oxygen atmosphere in N-methyl-2-pyrollidone (NMP) is described. Metal free dehydrogenation was carried out without the use of additive or base. A scope of the methodology was demonstrated for a number of aryl and heteroaryl substitutions present at C1 position and ester moiety at C3 position and was found to be good substrates. Substituted isoquinolines (3a–3h) and their esters (3i–3m) were synthesized in very good to excellent yields.
Collapse
Affiliation(s)
- Shanmugam Ramu
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
| | - Baburaj Baskar
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
| |
Collapse
|
8
|
Liu J, Dang X, Chen D, Zhang X, Yang Z, Lin L, Jiang H, Li J. Hydrolysis of dihydroisoquinoline derivatives activated by sulfonyl or acyl chloride. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new, efficient, and mild strategy for hydrolysis of 3,4-dihydroisoquinoline imines activated by sulfonyl chloride or acyl chloride has been developed, by which method ketosulfonamides and ketoamides have been synthesized. This process tolerates broad scope with respect to both the sulfonyl chloride and acyl chloride with moderate to excellent yields. This protocol features a broad substrate scope for various kinds of 3,4-dihydroisoquinoline and mild reaction conditions without using strong acidic or basic conditions. These features show that this user-friendly and simple system could be applied in the future to the synthesis of a broader range of amino benzophenones.
Collapse
Affiliation(s)
- Jianchen Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Xinxin Dang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Dan Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Xinyuan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Zhonglie Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Li Lin
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| |
Collapse
|
9
|
Sviripa VM, Fiandalo MV, Begley KL, Wyrebek P, Kril LM, Balia AG, Parkin SR, Subramanian V, Chen X, Williams AH, Zhan CG, Liu C, Mohler JL, Watt DS. Pictet-Spengler condensations using 4-(2-aminoethyl)coumarins. NEW J CHEM 2020; 44:13415-13429. [PMID: 33795928 DOI: 10.1039/d0nj02664f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Androgen-deprivation therapy (ADT) is only a palliative measure, and prostate cancer invariably recurs in a lethal, castration-resistant form (CRPC). Prostate cancer resists ADT by metabolizing weak, adrenal androgens to growth-promoting 5α-dihydrotestosterone (DHT), the preferred ligand for the androgen receptor (AR). Developing small-molecule inhibitors for the final steps in androgen metabolic pathways that utilize 17-oxidoreductases required probes that possess fluorescent groups at C-3 and intact, naturally occurring functionality at C-17. Application of the Pictet-Spengler condensation to substituted 4-(2-aminoethyl)coumarins and 5α-androstane-3-ones furnished spirocyclic, fluorescent androgens at the desired C-3 position. Condensations required the presence of activating C-7 amino or N,N-dialkylamino groups in the 4-(2-aminoethyl)coumarin component of these condensation reactions. Successful Pictet-Spengler condensation, for example, of DHT with 9-(2-aminoethyl)-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-11-one led to a spirocyclic androgen, (3R,5S,10S,13S,17S)-17-hydroxy-10,13-dimethyl-1,2,2',3',4,5,6,7,8,8',9,9',10,11,12,12',13,13',14,15,16,17-docosahydro-7'H,11'H-spiro-[cyclopenta[a]phenanthrene-3,4'-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin]-5'(1'H)-one. Computational modeling supported the surrogacy of the C-3 fluorescent DHT analog as a tool to study 17-oxidoreductases for intracrine, androgen metabolism.
Collapse
Affiliation(s)
- Vitaliy M Sviripa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093 USA
| | - Michael V Fiandalo
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Kristin L Begley
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| | - Przemyslaw Wyrebek
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| | - Liliia M Kril
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| | - Andrii G Balia
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| | - Sean R Parkin
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506 USA
| | | | - Xi Chen
- College of Chemistry and Material Science, South Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Alexander H Williams
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| | - James L Mohler
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA.,Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - David S Watt
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| |
Collapse
|
10
|
Asymmetric Hydrogenation of 1-aryl substituted-3,4-Dihydroisoquinolines with Iridium Catalysts Bearing Different Phosphorus-Based Ligands. Catalysts 2020. [DOI: 10.3390/catal10080914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Starting from the chiral 5,6,7,8-tetrahydroquinolin-8-ol core, a series of amino-phosphorus-based ligands was realized. The so-obtained amino-phosphine ligand (L1), amino-phosphinite (L2) and amino-phosphite (L3) were evaluated in iridium complexes together with the heterobiaryl diphosphines tetraMe-BITIOP (L4), Diophep (L5) and L6 and L7 ligands, characterized by mixed chirality. Their catalytic performance in the asymmetric hydrogenation (AH) of the model substrate 6,7-dimethoxy-1-phenyl-3,4-dihydroisoquinoline 1a led us to identify Ir-L4 and Ir-L5 catalysts as the most effective. The application of these catalytic systems to a library of differently substituted 1-aryl-3,4-dihydroisoquinolines afforded the corresponding products with variable enantioselective levels. The 4-nitrophenyl derivative 3b was obtained in a complete conversion and with an excellent 94% e.e. using Ir-L4, and a good 76% e.e. was achieved in the reduction of 2-nitrophenyl derivative 6a using Ir-L5.
Collapse
|
11
|
Yang R, Yue S, Tan W, Xie Y, Cai H. DMSO/ t-BuONa/O 2-Mediated Aerobic Dehydrogenation of Saturated N-Heterocycles. J Org Chem 2020; 85:7501-7509. [PMID: 32368910 DOI: 10.1021/acs.joc.9b03447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aromatic N-heterocycles such as quinolines, isoquinolines, and indolines are synthesized via sodium tert-butoxide-promoted oxidative dehydrogenation of the saturated heterocycles in DMSO solution. This reaction proceeds under mild reaction conditions and has a good functional group tolerance. Mechanistic studies suggest a radical pathway involving hydrogen abstraction of dimsyl radicals from the N-H bond or α-C-H of the substrates and subsequent oxidation of the nitrogen or α-aminoalkyl radicals.
Collapse
Affiliation(s)
- Ruchun Yang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China.,Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Shusheng Yue
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wei Tan
- Clinic Laboratory, People's Hospital of Yichun City, Yichun, Jiangxi 336000, China
| | - Yongfa Xie
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
12
|
Integrating Hydrogen Production with Aqueous Selective Semi‐Dehydrogenation of Tetrahydroisoquinolines over a Ni
2
P Bifunctional Electrode. Angew Chem Int Ed Engl 2019; 58:12014-12017. [DOI: 10.1002/anie.201903327] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 12/21/2022]
|
13
|
Huang C, Huang Y, Liu C, Yu Y, Zhang B. Integrating Hydrogen Production with Aqueous Selective Semi‐Dehydrogenation of Tetrahydroisoquinolines over a Ni2P Bifunctional Electrode. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903327] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenqi Huang
- Department of ChemistryInstitute of Molecular PlusSchool of ScienceTianjin University Tianjin 300072 China
| | - Yi Huang
- Department of ChemistryInstitute of Molecular PlusSchool of ScienceTianjin University Tianjin 300072 China
| | - Cuibo Liu
- Department of ChemistryInstitute of Molecular PlusSchool of ScienceTianjin University Tianjin 300072 China
| | - Yifu Yu
- Department of ChemistryInstitute of Molecular PlusSchool of ScienceTianjin University Tianjin 300072 China
| | - Bin Zhang
- Department of ChemistryInstitute of Molecular PlusSchool of ScienceTianjin University Tianjin 300072 China
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesCollaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
14
|
Min L, Yang W, Weng Y, Zheng W, Wang X, Hu Y. A Method for Bischler-Napieralski-Type Synthesis of 3,4-Dihydroisoquinolines. Org Lett 2019; 21:2574-2577. [PMID: 30958675 DOI: 10.1021/acs.orglett.9b00534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new method for the Bischler-Napieralski-type synthesis of 3,4-dihydroisoquinolines was developed by a Tf2O-promoted tandem annulation from phenylethanols and nitriles. Its success was mainly due to the fact that a phenonium ion was formed in the process and practically functioned as a stable and reactive primary phenylethyl carbocation.
Collapse
Affiliation(s)
- Lin Min
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Weiguang Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yunxiang Weng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Weiping Zheng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Xinyan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yuefei Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| |
Collapse
|