1
|
Lynch A, Pearson P, Savinov SN, Li AY, Rich SM. Lactate Dehydrogenase Inhibitors Suppress Borrelia burgdorferi Growth In Vitro. Pathogens 2023; 12:962. [PMID: 37513809 PMCID: PMC10384987 DOI: 10.3390/pathogens12070962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has a highly reduced genome and relies heavily on glycolysis for carbon metabolism. As such, established inhibitors of lactate dehydrogenase (LDH) were evaluated in cultures to determine the extent of their impacts on B. burgdorferi growth. Both racemic and enantiopure (AT-101) gossypol, as well as oxamate, galloflavin, and stiripentol, caused the dose-dependent suppression of B. burgdorferi growth in vitro. Racemic gossypol and AT-101 were shown to fully inhibit spirochetal growth at concentrations of 70.5 and 187.5 μM, respectively. Differences between racemic gossypol and AT-101 efficacy may indicate that the dextrorotatory enantiomer of gossypol is a more effective inhibitor of B. burgdorferi growth than the levorotatory enantiomer. As a whole, LDH inhibition appears to be a promising mechanism for suppressing Borrelia growth, particularly with bulky LDH inhibitors like gossypol.
Collapse
Affiliation(s)
- Adam Lynch
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Patrick Pearson
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Sergey N Savinov
- Department of Biochemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Andrew Y Li
- Invasive Insect Biocontrol & Behavior Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Stephen M Rich
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Blacker TS, Duchen MR, Bain AJ. NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption. Biophys J 2023; 122:1240-1253. [PMID: 36793214 PMCID: PMC10111271 DOI: 10.1016/j.bpj.2023.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
NADH and NADPH play key roles in the regulation of metabolism. Their endogenous fluorescence is sensitive to enzyme binding, allowing changes in cellular metabolic state to be determined using fluorescence lifetime imaging microscopy (FLIM). However, to fully uncover the underlying biochemistry, the relationships between their fluorescence and binding dynamics require greater understanding. Here we accomplish this through time- and polarization-resolved fluorescence and polarized two-photon absorption measurements. Two lifetimes result from binding of both NADH to lactate dehydrogenase and NADPH to isocitrate dehydrogenase. The composite fluorescence anisotropy indicates the shorter (1.3-1.6 ns) decay component to be accompanied by local motion of the nicotinamide ring, pointing to attachment solely via the adenine moiety. For the longer lifetime (3.2-4.4 ns), the nicotinamide conformational freedom is found to be fully restricted. As full and partial nicotinamide binding are recognized steps in dehydrogenase catalysis, our results unify photophysical, structural, and functional aspects of NADH and NADPH binding and clarify the biochemical processes that underlie their contrasting intracellular lifetimes.
Collapse
Affiliation(s)
- Thomas S Blacker
- Department of Physics & Astronomy, University College London, London, United Kingdom; Research Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Angus J Bain
- Department of Physics & Astronomy, University College London, London, United Kingdom.
| |
Collapse
|
3
|
Meng X, Liu Y, Yang L, Li R, Wang H, Shen Y, Wei D. Rational identification of a high catalytic efficiency leucine dehydrogenase and process development for efficient synthesis of l-phenylglycine. Biotechnol J 2023; 18:e2200465. [PMID: 36738237 DOI: 10.1002/biot.202200465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/01/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Enzymatic asymmetric synthesis of chiral amino acids has great industrial potential. However, the low catalytic efficiency of high-concentration substrates limits their industrial application. Herein, using a combination of substrate catalytic efficiency prediction based on "open to closed" conformational change and substrate specificity prediction, a novel leucine dehydrogenase (TsLeuDH), with high substrate catalytic efficiency toward benzoylformic acid (BFA) for producing l-phenylglycine (l-Phg), was directly identified from 4695 putative leucine dehydrogenases in a public database. The specific activity of TsLeuDH was determined to be as high as 4253.8 U mg-1 . Through reaction process optimization, a high-concentration substrate (0.7 m) was efficiently and completely converted within 90 min in a single batch, without any external coenzyme addition. Moreover, a continuous flow-feeding approach was designed using gradient control of the feed rate to reduce substrate accumulation. Finally, the highest overall substrate concentration of up to 1.2 m BFA could be aminated to l-Phg with conversion of >99% in 3 h, demonstrating that this new combination of enzyme process development is promising for large-scale application of l-Phg.
Collapse
Affiliation(s)
- Xiangqi Meng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lin Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Rui Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Suzuki K, Maeda S. Multistructural microiteration combined with QM/MM-ONIOM electrostatic embedding. Phys Chem Chem Phys 2022; 24:16762-16773. [PMID: 35775395 DOI: 10.1039/d2cp02270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multistructural microiteration (MSM) is a method to take account of contributions of multiple surrounding structures in a geometrical optimization or reaction path calculation using the quantum mechanics/molecular mechanics (QM/MM) ONIOM method. In this study, we combined MSM with the electrostatic embedding (EE) scheme of the QM/MM-ONIOM method by extending its original formulation for mechanical embedding (ME). MSM-EE takes account of the polarization in the QM region induced by point charges assigned to atoms in the multiple surrounding structures, where the point charges are scaled by the weight factor of each surrounding structure determined through MSM. The performance of MSM-EE was compared with that of the other methods, i.e., ONIOM-ME, ONIOM-EE, and MSM-ME, by applying them to three chemical processes: (1) chorismate-to-prephenate transformation in aqueous solution, (2) the same transformation as (1) in an enzyme, and (3) hydroxylation in p-hydroxybenzoate hydroxylase. These numerical tests of MSM-EE yielded barriers and reaction energies close to experimental values with computational costs comparable to those of the other three methods.
Collapse
Affiliation(s)
- Kimichi Suzuki
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan. .,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Sapporo 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan. .,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Sapporo 060-0810, Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|
5
|
Ye TJ, Huang KF, Ko TP, Wu SH. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. Acta Crystallogr D Struct Biol 2022; 78:633-646. [PMID: 35503211 PMCID: PMC9063844 DOI: 10.1107/s2059798322002601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Most known cellulase-associated carbohydrate-binding modules (CBMs) are attached to the N- or C-terminus of the enzyme or are expressed separately and assembled into multi-enzyme complexes (for example to form cellulosomes), rather than being an insertion into the catalytic domain. Here, by solving the crystal structure, it is shown that MtGlu5 from Meiothermus taiwanensis WR-220, a GH5-family endo-β-1,4-glucanase (EC 3.2.1.4), has a bipartite architecture consisting of a Cel5A-like catalytic domain with a (β/α)8 TIM-barrel fold and an inserted CBM29-like noncatalytic domain with a β-jelly-roll fold. Deletion of the CBM significantly reduced the catalytic efficiency of MtGlu5, as determined by isothermal titration calorimetry using inactive mutants of full-length and CBM-deleted MtGlu5 proteins. Conversely, insertion of the CBM from MtGlu5 into TmCel5A from Thermotoga maritima greatly enhanced the substrate affinity of TmCel5A. Bound sugars observed between two tryptophan side chains in the catalytic domains of active full-length and CBM-deleted MtGlu5 suggest an important stacking force. The synergistic action of the catalytic domain and CBM of MtGlu5 in binding to single-chain polysaccharides was visualized by substrate modeling, in which additional surface tryptophan residues were identified in a cross-domain groove. Subsequent site-specific mutagenesis results confirmed the pivotal role of several other tryptophan residues from both domains of MtGlu5 in substrate binding. These findings reveal a way to incorporate a CBM into the catalytic domain of an existing enzyme to make a robust cellulase.
Collapse
Affiliation(s)
- Ting-Juan Ye
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 115, Taiwan
| |
Collapse
|
6
|
Maeda S, Harabuchi Y. Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD), Hokkaido University Sapporo Hokkaido Japan
- Department of Chemistry, Faculty of Science Hokkaido University Sapporo Hokkaido Japan
- JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Sapporo Hokkaido Japan
- National Institute for Materials Science (NIMS) Research and Services Division of Materials Data and Integrated System (MaDIS) Tsukuba Ibaraki Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD), Hokkaido University Sapporo Hokkaido Japan
- Department of Chemistry, Faculty of Science Hokkaido University Sapporo Hokkaido Japan
- JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Sapporo Hokkaido Japan
| |
Collapse
|
7
|
Tian L, Zhou J, Lv Q, Liu F, Yang T, Zhang X, Xu M, Rao Z. Rational engineering of the Plasmodium falciparuml-lactate dehydrogenase loop involved in catalytic proton transfer to improve chiral 2-hydroxybutyric acid production. Int J Biol Macromol 2021; 179:71-79. [PMID: 33631263 DOI: 10.1016/j.ijbiomac.2021.02.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/29/2022]
Abstract
l-lactate dehydrogenases (LDHs) has been widely studied for their ability to reduce 2-keto acids for the production of 2-hydroxy acids, whereby 2-hydroxybutyric acids (2-HBA) is among the most important fundamental building blocks for synthesizing pharmaceuticals and biodegradable materials. However, LDHs usually show low activity towards 2-keto acids with longer side chain such as 2-oxobutyric acid (2-OBA). Here rational engineering of the Plasmodium falciparum LDH loop with residue involved in the catalytic proton transfer was initially studied. By combining homology alignment and structure-based design approach, we found that changing the charge characteristics or hydrogen bond network interactions of this loop could improve enzymatic catalytic activities and stabilities towards 2-OBA. Compared with wild type, variant N197Dldh showed 1.15 times higher activity and 2.73 times higher Kcat/Km. The half-life of variant N197Dldh at 40 °C increased to 77.9 h compared with 50.4 h of wild type. Furthermore, asymmetric synthesis of (S)-2-HBA with coenzyme regeneration revealed 95.8 g/L production titer within 12 h for variant N197Dldh, 2.05 times higher than using wild type. Our study indicated the importance of loop with residues involved in the catalytic proton transfer process, and the engineered LDH would be more suitable for (S)-2-HBA production.
Collapse
Affiliation(s)
- Lingzhi Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Junping Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Qinglan Lv
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Fei Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
8
|
Auclair J, Gagné F. The influence of polystyrene nanoparticles on the fractal kinetics of lactate dehydrogenase. Biochem Biophys Rep 2020; 23:100793. [PMID: 32775704 PMCID: PMC7396907 DOI: 10.1016/j.bbrep.2020.100793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/11/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
Plastics are ubiquitous in the aquatic environment and their degradation of fragments down to the nanoscale level have raised concerns given their ability to pervade cells. The accumulation of nanoparticles could lead to molecular crowding which can alter the normal functioning of enzymes. The purpose of this study was to examine the influence of polystyrene nanoparticles (NPs) on the fractal kinetics of the lactate dehydrogenase reaction: pyruvate + NADH ↔ lactate + NAD+. The influence of NPs on LDH activity was examined first in vitro to highlight specific effects and secondly in mussels exposed to NPs in vivo for 24h at 15 °C. The reaction rates of LDH were determined with increasing concentrations of pyruvate to reach saturation at circa 1 mM pyruvate. The addition of F-actin, a known binding template for LDH, revealed a characteristic change in reaction rates associated with fractal organization. The addition of 50 and 100 nm transparent NPs also produced these changes. The fractal dimension was determined and revealed that both F-actin and NPs reduced the fractal dimension of the LDH reaction. The addition of viscosity sensor probe in the reaction media revealed viscosity waves during the reaction at low substrate concentrations thought to be associated to synchronized switching between the relaxed and tensed states of LDH. The amplitude and the frequency of viscosity waves were increased by both NPs and F-actin which were associated with increased reaction rates. In mussels exposed to NPs, the isolation of digestive gland subcellular fraction revealed that LDH activity was significantly influenced by the fractal dimension of the LDH reaction where a loss of affinity (high fractal KM) was detected in mussels exposed to the high concentrations of NPs. It is concluded that polystyrene NPs could change the biophysical properties of the cytoplasm such as the fractal organization of the intracellular environment during the LDH reaction. Polystyrene nanoparticles introduce crowding effects. The fractal kinetic of Lactate dehydrogenase in influenced by the plastics nanoparticles. These changes were also observed in mussels exposed to plastic nanoparticles.
Collapse
|