1
|
Hilda L, Mutlaq MS, Waleed I, Althomali RH, Mahdi MH, Abdullaev SS, Singh R, Nasser HA, Mustafa YF, Alawadi AHR. Genosensor on-chip paper for point of care detection: A review of biomedical analysis and food safety application. Talanta 2024; 268:125274. [PMID: 37839324 DOI: 10.1016/j.talanta.2023.125274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Over the last decade, paper-based biosensing has attracted considerable attention in numerous fields due to several advantages of them. To elaborate, using paper as a substrate of sensing approaches can be considered an affordable sensing approach owing to low cost of paper, and alongside that, the ability to operate without requiring external equipment. In many cases, cost-effective fabrication techniques such as screen printed and drop casting can be supposed as other benefits of these platforms. Despite the portability and affordability of paper-based assay, two important limitations including sensitivity and selectivity can decrease the application of these sensing approaches. Initially, decoration of paper substrate with nanomaterials (NMs) can improve the properties of paper due to high surface area and conductivity of them. Secondly, the presence of bioreceptors can provide a selective detection platform. Among different bioreceptors, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) can play a significant role. From this perspective, paper-based biosensors can be used for the detection of various gens which related to biomedical or food safety. In this review, we attempted to summarize recent trends and applications of paper-based genosensor, along with critical arguments in terms of NMs role in signal amplification. Furthermore, the lack of paper-based genosensors in field the of biomedical and food safety will be discussed in the following.
Collapse
Affiliation(s)
- Lelya Hilda
- Department of Chemistry, Universitas Islam Negeri Syekh Ali Hasan Ahmad Addary Padangsidimpuan, Padangsidimpuan, Indonesia.
| | - Maysam Salih Mutlaq
- Department of Radiology & Sonar Techniques, AlNoor University College, Nineveh, Iraq
| | | | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir, 11991, Saudi Arabia
| | | | - Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Department of Chemical Engineering, Central Asian University, Tashkent, Uzbekistan; Scientific and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan
| | - Rajesh Singh
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed H R Alawadi
- Building and Construction Technical Engineering Department, College of Technical Engineering, The Islamic university, Najaf, Iraq
| |
Collapse
|
2
|
Pham MK, Nguyet Nga DT, Mai QD, Tien VM, Hoa NQ, Lam VD, Nguyen HA, Le AT. Ultrasensitive detection of crystal violet using a molybdenum sulfide-silver nanostructure-based sensing platform: roles of the adsorbing semiconductor in SERS signal enhancement. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5239-5249. [PMID: 37782221 DOI: 10.1039/d3ay01374j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Crystal violet (CV) is an organic dye that is stabilized by the extensive resonance delocalization of electrons over three electron-donating amine groups. This prevents the molecule from being linked to a metal surface, and therefore, reduces the sensitivity of surface-enhanced Raman scattering (SERS) sensors for this toxic dye. In this work, we improved the sensing performance of a silver-based SERS sensor for CV detection by modifying the active substrate. Molybdenum sulfide (MoS2) nanosheets were employed as a scaffold for anchoring electrochemically synthesized silver nanoparticles (e-AgNPs) through a single step of ultrasonication, leading to the formation of MoS2/Ag nanocomposites. As an excellent adsorbent, MoS2 promoted the adsorption of CV onto the surface of the substrate, allowing more CV molecules to be able to experience the SERS effect originating from the e-AgNPs. Hence, the SERS signal of CV was significantly enhanced. In addition, the effects of the MoS2 content of the nanocomposites on their SERS performance were also taken into account. Using MoS2/Ag with the most optimal MoS2 content of 10%, the SERS sensor exhibited the best enhancement of the SERS signal of CV with an impressive detection limit of 1.17 × 10-11 M in standard water and 10-9 M in tap water thanks to an enhancement factor of 2.9 × 106, which was 11.2 times higher than that using pure e-AgNPs.
Collapse
Affiliation(s)
- Minh Khanh Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam.
| | - Dao Thi Nguyet Nga
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam.
| | - Quan Doan Mai
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam.
| | - Van Manh Tien
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam.
| | - Nguyen Quang Hoa
- Faculty of Physics, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Vu Dinh Lam
- Institute of Materials Science (IMS), Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Vietnam
| | - Ha Anh Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam.
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam.
- Faculty of Materials Science and Engineering (MSE), Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
3
|
Saikia N. Probing the adsorption behavior and free energy landscape of single-stranded DNA oligonucleotides on single-layer MoS 2with molecular dynamics. NANOTECHNOLOGY 2021; 33:105602. [PMID: 34823233 DOI: 10.1088/1361-6528/ac3d61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Interfacing single-stranded DNA (ssDNA) with 2D transition metal dichalcogenides are important for numerous technological advancements. However, the molecular mechanism of this process, including the nature of intermolecular association and conformational details of the self-assembled hybrids is still not well understood. Here, atomistic molecular dynamics simulation is employed to study the distinct adsorption behavior of ssDNA on a single-layer MoS2in aqueous environment. The ssDNA sequences [T10, G10, A10, C10, U10, (GT)5, and (AC)5] are chosen on the basis that short ssDNA segments can undergo a spontaneous conformational change upon adsorption and allow efficient sampling of the conformational landscape. Differences in hybridization is attributed to the inherent molecular recognition ability of the bases. While the binding appears to be primarily driven by energetically favorable van der Waalsπ-stacking interactions, equilibrium structures are modulated by the ssDNA conformational changes. The poly-purines demonstrate two concurrently competingπ-stacking interactions: nucleobase-nucleobase (intramolecular) and nucleobase-MoS2(intermolecular). The poly-pyrimidines, on the other hand, reveal enhancedπ-stacking interactions, thereby maximizing the number of contacts. The results provide new molecular-level understanding of ssDNA adsorption on the MoS2surface and facilitate future studies in design of functional DNA/MoS2structure-based platforms for DNA sequencing, biosensing (optical, electrochemical, and electronic), and drug delivery.
Collapse
Affiliation(s)
- Nabanita Saikia
- School of Science, Navajo Technical University, Chinle Site, AZ 86503, United States of America
| |
Collapse
|
4
|
Bobrinetskiy I, Radovic M, Rizzotto F, Vizzini P, Jaric S, Pavlovic Z, Radonic V, Nikolic MV, Vidic J. Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2700. [PMID: 34685143 PMCID: PMC8538910 DOI: 10.3390/nano11102700] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Electrochemical biosensors utilizing nanomaterials have received widespread attention in pathogen detection and monitoring. Here, the potential of different nanomaterials and electrochemical technologies is reviewed for the development of novel diagnostic devices for the detection of foodborne pathogens and their biomarkers. The overview covers basic electrochemical methods and means for electrode functionalization, utilization of nanomaterials that include quantum dots, gold, silver and magnetic nanoparticles, carbon nanomaterials (carbon and graphene quantum dots, carbon nanotubes, graphene and reduced graphene oxide, graphene nanoplatelets, laser-induced graphene), metal oxides (nanoparticles, 2D and 3D nanostructures) and other 2D nanomaterials. Moreover, the current and future landscape of synergic effects of nanocomposites combining different nanomaterials is provided to illustrate how the limitations of traditional technologies can be overcome to design rapid, ultrasensitive, specific and affordable biosensors.
Collapse
Affiliation(s)
- Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Marko Radovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Francesco Rizzotto
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Priya Vizzini
- Department of Agriculture Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Stefan Jaric
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Zoran Pavlovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Vasa Radonic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| |
Collapse
|
5
|
Bai Y, Zhang H, Zhao L, Wang Y, Chen X, Zhai H, Tian M, Zhao R, Wang T, Xu H, Feng F. A novel aptasensor based on HCR and G-quadruplex DNAzyme for fluorescence detection of Carcinoembryonic Antigen. Talanta 2020; 221:121451. [PMID: 33076074 DOI: 10.1016/j.talanta.2020.121451] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
In this paper, a rationally designed aptasensing platform based on Hybridization Chain Reaction (HCR) and G-quadruplex DNAzyme for the fluorescence detection of Carcinoembryonic Antigen (CEA) has been developed. In the presence of target CEA, the aptamer sequence in Aptamer Probe (AP) specifically bound to CEA, resulting in the AP conformation change and thus releasing initiator, which triggered the autonomous cross-opening of Hairpin 1 (H1) and Hairpin 2 (H2) that yielded extended nicked double-stranded DNA via HCR. Upon the addition of hemin, G-rich segments at the end of H1 and H2 self-assembled into the peroxidase-mimicking hemin/G-quadruplex DNAzymes, which catalyzed the hydrogen peroxide-mediated oxidation of thiamine to achieve fluorescence detection of CEA. The HCR product, and the formation and catalytic performance of DNAzyme were characterized by agarose gel electrophoresis, UV-vis spectroscopy and fluorescence spectroscopy, respectively. Under optimal conditions, the fluorescent aptasensor showed a linear relationship ranging from 0.25 to 1.5 nM toward CEA with a detection limit of 0.2 nM. In addition, this aptasensor exhibited high selectivity for CEA without being affected by other interfering proteins, such as IgG, AFP and PSA. Furthermore, this proposed aptasensor was successfully applied to CEA analysis in diluted human serum samples. It is believed that this strategy has a promising potential in biochemical analysis and clinic application.
Collapse
Affiliation(s)
- Yunfeng Bai
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China.
| | - Huilin Zhang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China; College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Lu Zhao
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China
| | - Yuzhen Wang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China
| | - Xiaoliang Chen
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China
| | - Hong Zhai
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China
| | - Maozhong Tian
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China
| | - Ruirui Zhao
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Tao Wang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China
| | - Hui Xu
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China
| | - Feng Feng
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China; College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|