1
|
Moradeeya PG, Sharma A, Kumar MA, Basha S. Titanium dioxide based nanocomposites - Current trends and emerging strategies for the photocatalytic degradation of ruinous environmental pollutants. ENVIRONMENTAL RESEARCH 2022; 204:112384. [PMID: 34785207 DOI: 10.1016/j.envres.2021.112384] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Many ruinous pollutants are omnipresent in the environment and among them; pesticides are xenobiotic and pose to be a bio-recalcitrance. Their detrimental ecological and environmental impacts attract attention of environmental excerpts and the surge of stringent regulations have endows the need of a technically feasible treatment. This critical review emphasizes about the occurrence, abundance and fate of structurally distinct pesticides in different environment. The practiced remedial strategies and in particular, the advanced oxidation processes (AOPs) those utilize the photo-catalytic properties of nano-composites for the degradation of pollutants are critically discussed. Photo-catalytic degradation utilizes many composite materials at nano-scale level, wherein synthesis of nano-composites with appropriate precursors and other adjoining functional moieties are of prime importance. Therefore, suitable starter materials along with the reaction conditions are prerequisite for effectively tailoring the nano-composites. The aforementioned aspects and their customized applications are critically discussed. The associated challenges, opportunities and process economics of degradation using photo-catalytic AOP techniques are highlighted and in addition, the review tries to explain how best the photo-degradation can be a stand-alone tool with a societal importance. Conclusively, the future prospects for undertaking new researches in photo-catalytic breakdown of pollutants that can be judiciously sustainable.
Collapse
Affiliation(s)
- Pareshkumar G Moradeeya
- Hyderabad Zonal Laboratory, CSIR-National Environmental Engineering Research Institute, IICT Campus, Tarnaka, Hyderabad, 500 007, Telangana, India; Department of Environmental Science & Engineering, Marwadi Education Foundation, Rajkot, 360 003, Gujarat, India
| | - Archana Sharma
- Department of Environmental Science & Engineering, Marwadi Education Foundation, Rajkot, 360 003, Gujarat, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Shaik Basha
- Hyderabad Zonal Laboratory, CSIR-National Environmental Engineering Research Institute, IICT Campus, Tarnaka, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
2
|
Yu CX, Jiang W, Wang KZ, Liang AP, Song JG, Zhou YL, Sun XQ, Liu LL. Luminescent Two-Dimensional Metal-Organic Framework Nanosheets with Large π-Conjugated System: Design, Synthesis, and Detection of Anti-Inflammatory Drugs and Pesticides. Inorg Chem 2022; 61:982-991. [PMID: 34968039 DOI: 10.1021/acs.inorgchem.1c03040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional (2D) metal-organic framework (MOF) nanosheets, with largely exposed surface area and highly accessible active sites, have emerged as a novel kind of sensing material. Here, a luminescent 2D MOF nanosheet was designed and synthesized by a facile top-down strategy based on a three-dimensional (3D) layered MOF {[Zn(H2L)(H2O)2]·H2O}n (Zn-MOF; H4L = 3,5-bis(3',5'-dicarboxyphenyl)-1H-1,2,4-triazole). With a large π-conjugated system and rigid planar structure, ligand H4L was elaborately selected to construct the bulk Zn-MOF, which can be readily exfoliated into 2D nanosheets, owing to the weak interlayer interactions and easy-to-release H2O molecules in the interspaces of 2D layers. Given the great threat posed to the ecological environment by anti-inflammatory drugs and pesticides, the developed luminescent Zn-MOF nanosheets were utilized to determine these organic pollutants, achieving highly selective and sensitive detection of diclofenac sodium (DCF) and tetramethylthiuram disulfide (TMTD). Compared to the detection limits of 3D Zn-MOF (7.72 ppm for DCF, 6.01 ppm for TMTD), the obviously lower detection limits for 2D Zn-MOF nanosheets toward DCF (0.20 ppm) and TMTD (0.18 ppm) further revealed that the largely exposed surface area with rigid planar structure and ultralarge π-conjugated system greatly accelerated electron transfer, which brought about a vast improvement in response sensitivity. The remarkable quenching performance for DCF and TMTD stems from a combined effect of photoinduced electron transfer and competitive energy absorption. The possible sensing mechanism was systematically investigated by the studies of powder X-ray diffraction, UV-vis, luminescence lifetime, and density functional theory calculations.
Collapse
Affiliation(s)
- Cai-Xia Yu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Wen Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Ke-Zhong Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Ai-Ping Liang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Jian-Guo Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Yan-Li Zhou
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Xue-Qin Sun
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| |
Collapse
|
3
|
Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Li L, Fu Y, Li B, Zhang M, Qin L, Liu S, Yang L. Critical review of advanced oxidation processes in organic wastewater treatment. CHEMOSPHERE 2021; 275:130104. [PMID: 33984911 DOI: 10.1016/j.chemosphere.2021.130104] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 05/19/2023]
Abstract
With the development of industrial society, organic wastewater produced by industrial manufacturing has caused many environmental problems. The vast majority of organic pollutants in water bodies are persistent in the environment, posing a threat to human and animal health. Therefore, efficient treatment methods for highly concentrated organic wastewater are urgently needed. Advanced oxidation processes (AOPs) are widely noticed in the area of treating organic wastewater. Compared with other chemical methods, AOPs have the characteristics of high oxidation efficiency and no secondary pollution. In this paper, the mechanisms, advantages, and limitations of AOPs are comprehensively reviewed. Besides, the basic principles of combining different AOPs to enhance the treatment efficiency are described. Furthermore, the applications of AOPs in various wastewater treatments, such as oily wastewater, dyeing wastewater, pharmaceutical wastewater, and landfill leachate, are also presented. Finally, we conclude that the main direction in the future of AOPs are the modification of catalysts and the optimization of operating parameters, with the challenges focusing on industrial applications.
Collapse
Affiliation(s)
- Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ziwen An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|