1
|
Temur N, Dadi S, Nisari M, Ucuncuoglu N, Avan I, Ocsoy I. UV light promoted dihydrolipoic acid and its alanine derivative directed rapid synthesis of stable gold nanoparticles and their catalytic activity. Sci Rep 2024; 14:24697. [PMID: 39433872 PMCID: PMC11494073 DOI: 10.1038/s41598-024-76772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
In general, colloidal gold nanoparticles (AuNPs) have been synthesized in heated or boiling water containing HAuCl4 precursor with sodium citrate as reducing stabilizing reagent. Although temperature plays a driving for synthesis of AuNPs, elevated temperature in thermal reduction method causes aggregation of the AuNPs. The preferential, rapid and strong binding of dihydro-lipoic acid and its derivatives on surface of AuNPs via thiol - Au chemistry promote the production of very stable AuNPs. In this study, we have developed citric acid (CA), dihydrolipoic acid (DHLA) and DHLA-Alanine (DHLA-Ala) directed rapid synthesis of ultra-stable AuNPs, DHLA@AuNPs and DHLA-Ala@AuNPs, under the UV (311 nm) irradiation at room temperature (RT: 25 °C) in around 10 min (min). CA is used as a potential reducing agent to expedite both reduction of Au3+ ion and AuNP formation, DHLA and DHLA-Ala act as stabilizing agents by replacing CA molecules on surface of AuNPs in order to produce quite stable AuNP. It is worthy to mention that reduction of Au3+ ion, formation and surface stabilization of AuNPs are consequently occurred in one step. We also investigated how experimental parameters including reaction time and temperature, pH of reaction solution, affect formation of the AuNPs. The effects of salt concentration and storage temperature were studied to show stability of the AuNPs. The synthesized DHLA@AuNPs and DHLA-Alanine@AuNPs were characterized via UV-Vis spectrophotometer (UV-Vis), scanning transmission electron microscope (STEM), dynamic light scattering (DLS) and Zeta potential (ZT) devices. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was efficiently catalyzed by the AuNPs in the presence of sodium borohydride in aqueous solution.
Collapse
Affiliation(s)
- Nimet Temur
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Seyma Dadi
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, 38080, Turkey
| | - Mustafa Nisari
- Department of Medical Biochemistry, Faculty of Dentistry, University of Nuh Naci Yazgan, Kayseri, 38090, Turkey
| | - Neslihan Ucuncuoglu
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Ilker Avan
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, 26470, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
2
|
Eze FN, Eze RC, Okpara KE, Adekoya AE, Kalu HN. Design and development of locust bean gum-endowed/Phyllanthus reticulatus anthocyanin- functionalized biogenic gold nanosystem for enhanced antioxidative and anticancer chemotherapy. Int J Biol Macromol 2024; 275:133687. [PMID: 38972650 DOI: 10.1016/j.ijbiomac.2024.133687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Herein, the design and fabrication of an anticancer nanoplatform (LBG/PRA-NG) based on locust bean gum-stabilized nanogold and functionalized with Phyllanthus reticulatus anthocyanins was described. LBG/PRA-NG was prepared in an eco-friendly, one-pot approach at room temperature, mediated by the anthocyanins and gum as bio-reductant and stabilizer, respectively. The nanostructure was elaborately characterized by FESEM, TEM, UV-visible, DLS, Zeta potential, FTIR, XRD, TGA/DTG, and XPS analysis. Its anticancer attributes were examined based on cytotoxicity on MCF-7 and MDA-MB-231 breast cancer cell lines, as well as the generation of intracellular reactive oxygen species. The results revealed the successful formation of a homogenous and highly stable nanocomposite (LBG/PRA-NG), with quasi-spherical shape, small size (14.73 nm), Zeta potential and PDI values of -58.30 mV and 0.237, respectively. The presence of a plasmonic peak at 525 nm was indicative of AuNPs. Compared to the galactomannan and anthocyanin, LBG/PRA-NG exhibited superior antioxidative properties with IC50 values of 35.44 μg/mL against DPPH and 24.55 μg/mL against ABTS+. Notably, LBG/PRA-NG also demonstrated enhanced anticancer properties relative to LBG and anthocyanins, with IC50 values of 16.17 μg/mL and 25.06 μg/mL against MCF-7 and MDA-MB-231 cells. Meanwhile, the normal cells (HEK-293 and L929) resisted the innocuous effects of LBG/PRA-NG. Furthermore, treatment of breast cancer cells with LBG/PRA-NG drastically elevated the intracellular ROS levels. This suggested that the anticancer activity of LBG/PRA-NG may be mediated via amplification of ROS/oxidative stress-induced apoptosis. Altogether, these findings indicate the remarkable potential of LBG/PRA-NC in the development of anticancer therapy.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- College of Agricultural and Natural Sciences, Joseph Ayo Babalola University, Ikeji-Arakeji, Osun State, Nigeria.
| | - Roseline Chika Eze
- Faculty of Environment and Resource Studies, Mahidol University, Salaya District, Nakhon Pathom 73170, Thailand.
| | - Kingsley Ezechukwu Okpara
- Institute of Geosciences and Environmental Management, Rivers State University, P.M.B. 5080 Port Harcourt, Nigeria
| | - Ademola Ezekiel Adekoya
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, 612 00 Brno-Královo Pole, Czechia.
| | - Helen Nwaocha Kalu
- College of Agricultural Economics, Rural Sociology and Extension, Michael Okpara University of Agriculture Umudike, P.M.B. 7267 Umuahia, Abia State, Nigeria
| |
Collapse
|
3
|
Neciosup-Puican AA, Pérez-Tulich L, Trujillo W, Parada-Quinayá C. Green Synthesis of Silver Nanoparticles from Anthocyanin Extracts of Peruvian Purple Potato INIA 328- Kulli papa. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1147. [PMID: 38998752 PMCID: PMC11243217 DOI: 10.3390/nano14131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
In this work, AgNPs were synthesized using an anthocyanin extract from Peruvian purple potato INIA 328-Kulli papa. The anthocyanin extract was obtained through a conventional extraction with acidified ethanolic aqueous solvent. This extract acted as both a reducing and stabilizing agent for the reduction of silver ions. Optimization of synthesis parameters, including pH, reaction time, and silver nitrate (AgNO3) concentration, led to the optimal formation of AgNPs at pH 10, with a reaction time of 30 min and an AgNO3 concentration of 5 mM. Characterization techniques such as X-ray diffraction (XRD) and dynamic light scattering (DLS) revealed that the AgNPs had a crystallite size of 9.42 nm and a hydrodynamic diameter of 21.6 nm, with a zeta potential of -42.03 mV, indicating favorable colloidal stability. Fourier Transform Infrared (FTIR) analysis confirmed the presence of anthocyanin functional groups on the surface of the AgNPs, contributing to their stability. Furthermore, the bacterial activity of the AgNPs was evaluated by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). For E. coli, the MIC was 0.5 mM (0.05 mg/mL) and the MBC was 4.5 mM (0.49 mg/mL). Similarly, for S. aureus, the MIC was 0.5 mM (0.05 mg/mL) and the MBC was 4.0 mM (0.43 mg/mL). These results highlight the potential benefits of AgNPs synthesized from Peruvian purple potato anthocyanin extract, both in biomedical and environmental contexts.
Collapse
Affiliation(s)
| | - Luz Pérez-Tulich
- Bioengineering and Chemical Engineering Department, Universidad de Ingenieria y Tecnologia-UTEC, Lima 15063, Peru
- Bioengineering Research Center-BIO, Universidad de Ingenieria y Tecnologia-UTEC, Lima 15063, Peru
| | - Wiliam Trujillo
- Industrial Engineering Department, Universidad Tecnológica del Perú-UTP, Lima 15046, Peru
| | - Carolina Parada-Quinayá
- Bioengineering and Chemical Engineering Department, Universidad de Ingenieria y Tecnologia-UTEC, Lima 15063, Peru
- Bioengineering Research Center-BIO, Universidad de Ingenieria y Tecnologia-UTEC, Lima 15063, Peru
| |
Collapse
|
4
|
Grancharova T, Simeonova S, Pilicheva B, Zagorchev P. Gold Nanoparticles in Parkinson's Disease Therapy: A Focus on Plant-Based Green Synthesis. Cureus 2024; 16:e54671. [PMID: 38524031 PMCID: PMC10960252 DOI: 10.7759/cureus.54671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that affects approximately 1% of people over the age of 60 and 5% of those over the age of 85. Current drugs for Parkinson's disease mainly affect the symptoms and cannot stop its progression. Nanotechnology provides a solution to address some challenges in therapy, such as overcoming the blood-brain barrier (BBB), adverse pharmacokinetics, and the limited bioavailability of therapeutics. The reformulation of drugs into nanoparticles (NPs) can improve their biodistribution, protect them from degradation, reduce the required dose, and ensure target accumulation. Furthermore, appropriately designed nanoparticles enable the combination of diagnosis and therapy with a single nanoagent. In recent years, gold nanoparticles (AuNPs) have been studied with increasing interest due to their intrinsic nanozyme activity. They can mimic the action of superoxide dismutase, catalase, and peroxidase. The use of 13-nm gold nanoparticles (CNM-Au8®) in bicarbonate solution is being studied as a potential treatment for Parkinson's disease and other neurological illnesses. CNM-Au8® improves remyelination and motor functions in experimental animals. Among the many techniques for nanoparticle synthesis, green synthesis is increasingly used due to its simplicity and therapeutic potential. Green synthesis relies on natural and environmentally friendly materials, such as plant extracts, to reduce metal ions and form nanoparticles. Moreover, the presence of bioactive plant compounds on their surface increases the therapeutic potential of these nanoparticles. The present article reviews the possibilities of nanoparticles obtained by green synthesis to combine the therapeutic effects of plant components with gold.
Collapse
Affiliation(s)
- Tsenka Grancharova
- Department of Medical Physics and Biophysics, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Stanislava Simeonova
- Department of Pharmaceutical Sciences, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Plamen Zagorchev
- Department of Medical Physics and Biophysics, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| |
Collapse
|
5
|
Ekrikaya S, Yilmaz E, Arslan S, Karaaslan R, Ildiz N, Celik C, Ocsoy I. Dentin bond strength and antimicrobial activities of universal adhesives containing silver nanoparticles synthesized with Rosa canina extract. Clin Oral Investig 2023; 27:6891-6902. [PMID: 37821654 DOI: 10.1007/s00784-023-05306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE The purpose in the study was to evaluate the effect of biogenic silver nanoparticles (Ag NPs) synthesized by the green synthesis method on dentin bond strength in three different universal adhesives and investigate their antibiofilm activity against Streptococcus mutans (S. mutans). MATERIALS AND METHODS Three different universal adhesives (single bond universal, all-bond universal, and clearfil universal) were used in this study. Ag NPs were synthesized using rose hip (Rosa canina) extract as a reducing and stabilizing agent and they were characterized with STEM, UV-vis spectrophotometer, DLS, and zeta potential. Ag NPs were added to the adhesive resins at a rate of 0.05% (w/w), and their homogeneous distribution in the adhesive was determined using EDX spectrometry. Samples in all groups were tested at baseline-after 5000 and 10,000 thermal cycles. Adhesive composite discs were used for the live/dead analysis of S. mutans, MTT metabolic activity test, lactic acid production, and determination of colony-forming unit (CFU) values (n = 3). Ninety extracted caries-free human third molars were used to determine microtensile bond strength (μTBS) (n = 10). After the universal adhesive was applied to the dentin surface, composite resin (Z550 XT, 3 M ESPE, USA) was placed and sections were taken to form a composite-dentin stick of 1 mm × 1 mm wideness and 8-mm length. The sticks were broken at a rate of 1 mm/min under uniaxial tension in a universal testing machine, and the failure modes were determined by SEM. One-way analysis of variance (ANOVA) for antibacterial tests and two-way analysis of variance for μTBS tests were performed (p < 0.05). RESULTS All universal adhesive groups containing Ag NPs showed higher antibacterial activity than control groups without Ag NPs (p < 0.05). There was a statistically significant difference in the live/dead assay analysis, MTT metabolic activity test, lactic acid production, and CFU values in the thermal cycled Ag NPs groups (p < 0.05). Antibacterial activity decreased in groups containing Ag NPs subjected to 10,000 thermal cycles. The highest lactic acid production 11.06 (± 0.629) and CFUs 7.61 (± 0.304), live bacteria 31.13 (± 0.466), and S. mutans MTT metabolic activity 0.29 (± 0.376) at AU (All-Bond Universal-Ag NPs) 10,000 thermal cycles group. There was no difference in μTBS values between the initial and 5000 thermal cycle groups, there was a difference between the 10,000 thermal cycle groups. The CU (Clearfil Universal-Ag NPs) group subjected to 10,000 thermal cycles showed lower μTBS 11.1 (± 3.2). CONCLUSION In conclusion, universal adhesives containing biogenic Ag NPs showed higher antibacterial activity than the control groups and did not reduce the μTBS. CLINICAL RELEVANCE Antibacterial universal adhesives can contribute to restoration success in clinical applications by reducing residual bacteria and preventing secondary caries formation.
Collapse
Affiliation(s)
- Semiha Ekrikaya
- Faculty of Dentistry, Department of Restorative Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey.
| | - Ebubekir Yilmaz
- Faculty of Dentistry, Department of Restorative Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Soley Arslan
- Faculty of Dentistry, Department of Restorative Dentistry, Erciyes University, Kayseri, Turkey
| | - Rabia Karaaslan
- Faculty of Dentistry, Department of Periodontology, Ankara University, Ankara, Turkey
| | - Nilay Ildiz
- Medical Imaging Department, Vocational School of Health Services, Bandirma Onyedi Eylul University, Bandirma, Turkey
| | - Cagla Celik
- Pharmacy Services Program, Vocational School of Health Services, Hitit University, Corum, Turkey
- Faculty of Pharmacy, Department of Analytical Chemistry, Erciyes University, Kayseri, Turkey
| | - Ismail Ocsoy
- Faculty of Pharmacy, Department of Analytical Chemistry, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Ngungeni Y, A. Aboyewa J, Moabelo KL, Sibuyi NRS, Meyer S, Onani MO, Meyer M, Madiehe AM. Anticancer, Antioxidant, and Catalytic Activities of Green Synthesized Gold Nanoparticles Using Avocado Seed Aqueous Extract. ACS OMEGA 2023; 8:26088-26101. [PMID: 37521675 PMCID: PMC10373464 DOI: 10.1021/acsomega.3c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
Disposal of agricultural waste has a negative impact on the environment and human health and may contribute to the greenhouse effect. The field of nanotechnology could provide alternative solutions to upcycle agricultural wastes in a safer manner into high-end value products. Organic waste from plants contain biomaterials that could serve as reducing and capping agents in the synthesis of nanomaterials with enhanced activities for use in biomedical and environmental applications. Persea americana (avocado) is a fruit with a high nutritional value; however, despite its rich phytochemical profile, its seed is often discarded as waste. Therefore, this study aimed to upcycle avocado seeds through the synthesis of gold nanoparticles (AuNPs) and evaluate their anticancer, antioxidant, and catalytic activities. The biosynthesis of avocado seed extract (AvoSE)-mediated AuNPs (AvoSE-AuNPs) was achieved following the optimization of various reaction parameters, including pH, temperature, extract, and gold salt concentrations. The AvoSE-AuNPs were poly-dispersed and anisotropic, with average core and hydrodynamic sizes of 14 ± 3.7 and 101.39 ± 1.4 nm, respectively. The AvoSE-AuNPs showed excellent antioxidant potential in terms of ferric reducing antioxidant power (343.88 ± 0.001 μmolAAE/L), 2,2-diphenyl-1-picrylhydrazyl (128.80 ± 0.0159 μmolTE/L), and oxygen radical absorbance capacity (1822.02 ± 12.6338 μmolTE/L); significantly reduced the viability of Caco-2 and PC-3 cells in a dose-dependent manner; and efficiently reduced 4-nitrophenol (4-NP) to 4-aminophenol. This study demonstrated how avocado seeds, an agricultural waste, can be used as sources of new bioactive materials for the synthesis of AuNPs, which have excellent antioxidant, anticancer, and catalytic activities, showing AvoSE-AuNPs' versatility in various applications. In addition, the AvoSE-AuNPs exhibited good stability and recyclability during the catalytic activity, which is significant because some of the primary issues with the use of metallic NPs as catalysts are around the cost-effectiveness, recovery, and reusability of the catalyst.
Collapse
Affiliation(s)
- Yonela Ngungeni
- Nanobiotechnology
Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Jumoke A. Aboyewa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Koena L. Moabelo
- Nanobiotechnology
Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Nicole R. S. Sibuyi
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Samantha Meyer
- Department
of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Martin O. Onani
- Organometallics
and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Abram M. Madiehe
- Nanobiotechnology
Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
7
|
Sezgin GC, Ocsoy I. Anthocyanin-rich black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) and red cabbage (Brassica oleracea) extracts incorporated biosensor for colorimetric detection of Helicobacter pylori with color image processing. Braz J Microbiol 2023; 54:897-905. [PMID: 37155087 PMCID: PMC10235353 DOI: 10.1007/s42770-023-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/23/2023] [Indexed: 05/10/2023] Open
Abstract
In this work, we developed novel colorimetric biosensors consisting of anthocyanin-rich either black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) or red cabbage (Brassica oleracea) extracts for rapid, sensitive, and economic detection of Helicobacter pylori (H. pylori). We comparatively prepared two test solutions as biosensors including anthocyanin-rich black carrot extract (Anth@BCE) and red cabbage extract (Anth@RCE), both of which fixed to pH 2.5 and investigated their colorimetric responses based on electronic structure and electron density of anthocyanins. We successfully used anthocyanin-rich BCE and RCE as natural pH indicators in detection of H. pylori and introduced their advantages like non-toxicity, easy accessibility, and high stability compared to synthetic indicators. The BCE and RCE tests gave the best color change in the presence of 103 CFU/mL (at 60 min) and 104 CFU/mL (at 75 min) H. pylori suspensions prepared in an artificial gastric fluid. The limit of detection was down to 10 CFU/mL for RCE and BCE tests by increasing incubation time (≥ 5 h). We further made an additional study that color differences in the colorimetric responses observed by naked eyes were supported by digital image processing with RGB (Red Green Blue) and Delta-E (ΔE) analysis. It is confirmed that results evaluated by naked eyes and digital image processing are well consistent with each other. These findings proposed that these colorimetric tests can be implemented to pH dependent detection of various microorganisms and can be effectively transferred from laboratory work to clinics in the near future.
Collapse
Affiliation(s)
- Gulten Can Sezgin
- Department of Gastroenterology, Facultyof Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
8
|
Kim YH, Lee JS. Acrylamide: New Organic Solvent with Chemically Tunable Viscosity for Rapid Gram-Scale Synthesis of Gold Nanoparticles. ACS OMEGA 2022; 7:45277-45286. [PMID: 36530288 PMCID: PMC9753545 DOI: 10.1021/acsomega.2c05813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Noble metal nanoparticles have demonstrated various biomedical, optical, and electronic applications owing to their unique chemical and physical properties. However, their gram-scale synthesis remains a challenge. We have developed a method for the gram-scale synthesis of gold nanoparticles (AuNPs) using acrylamide (AAm) as a solvent. AAm possesses unique properties such as low melting temperature, high solvating power, and high solubility of its polymer (polyacrylamide(pAAm)) in water. The viscosity of the AAm solvent can be chemically tuned by the polymerization of AAm and addition of a low-volatile diluent, which can stabilize highly concentrated as-synthesized AuNPs in gram quantities. The synthesized AuNPs are substantially stable and catalytically active under high ionic strength conditions owing to the pAAm protection on the particle surface. Further, the synthesis mechanism of the AuNPs has been thoroughly investigated. The versatility of the synthesis method is proved by synthesizing other mono-(Ag and Pd) and bimetallic (Au + Pd and Ag + Pd) nanoparticles using the AAm solvent with controlled viscosity. Importantly, the productivity of this synthetic strategy is the highest among the previously reported gram-scale synthesis methods of AuNPs. To the best of our knowledge, our study presents the use of acrylic monomer as a solvent for the gram-scale synthesis of noble metal nanoparticles for the first time. This study significantly extends the list of solvents with chemically tunable viscosity by including other acrylic reagents for nanomaterial synthesis, functionalization, and catalytic, optical, and electrical reactions under highly localized reaction conditions.
Collapse
|
9
|
Demırbas A, Karslı B, Dadi S, Koca FD, Halıcı MG, Ocsoy I. Usnea antarctica (James Ross Island, Antarctica) and Usnea subfloridana (Uludağ, Turkey) Incorporated Hybrid Nanoflowers with Their Intrinsic Catalytic and Antimicrobial Activities. ChemistrySelect 2022. [DOI: 10.1002/slct.202202715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ayse Demırbas
- Recep Tayyip Erdogan University Faculty of Fisheries Department of Seafood Processing and Technology Rize Turkey
| | - Baris Karslı
- Recep Tayyip Erdogan University Faculty of Fisheries Department of Seafood Processing and Technology Rize Turkey
| | - Seyma Dadi
- Erciyes University Faculty of Pharmacy Department of Analytical Chemistry Kayseri 38039 Turkey
| | - Fatih Dogan Koca
- Erciyes University Faculty of Veterinary Medicine Department of Aquatic Animal and Diseases 38039 Kayseri Turkey
| | - M. Gokhan Halıcı
- Erciyes University Faculty of Science Department of Biology Kayseri 38039 Turkey
| | - Ismail Ocsoy
- Erciyes University Faculty of Pharmacy Department of Analytical Chemistry Kayseri 38039 Turkey
| |
Collapse
|
10
|
Tabasum H, Bhat BA, Sheikh BA, Mehta VN, Rohit JV. Emerging perspectives of plant-derived nanoparticles as effective antimicrobial agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Thakur N, Ghosh J, Kumar Pandey S, Pabbathi A, Das J. A comprehensive review on biosynthesis of magnesium oxide nanoparticles, and their antimicrobial, anticancer, antioxidant activities as well as toxicity study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Qu CC, Liang YT, Wang XQ, Gao S, He ZZ, Sun XY. Gallium-Based Liquid Metal Materials for Antimicrobial Applications. Bioengineering (Basel) 2022; 9:416. [PMID: 36134962 PMCID: PMC9495447 DOI: 10.3390/bioengineering9090416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The hazards caused by drug-resistant bacteria are rocketing along with the indiscriminate use of antibiotics. The development of new non-antibiotic antibacterial drugs is urgent. The excellent biocompatibility and diverse multifunctionalities of liquid metal have stimulated the studies of antibacterial application. Several gallium-based antimicrobial agents have been developed based on the mechanism that gallium (a type of liquid metal) ions disorder the normal metabolism of iron ions. Other emerging strategies, such as physical sterilization by directly using LM microparticles to destroy the biofilm of bacteria or thermal destruction via infrared laser irradiation, are gaining increasing attention. Different from traditional antibacterial agents of gallium compounds, the pronounced property of gallium-based liquid metal materials would bring innovation to the antibacterial field. Here, LM-based antimicrobial mechanisms, including iron metabolism disorder, production of reactive oxygen species, thermal injury, and mechanical destruction, are highlighted. Antimicrobial applications of LM-based materials are summarized and divided into five categories, including liquid metal motors, antibacterial fabrics, magnetic field-responsive microparticles, liquid metal films, and liquid metal polymer composites. In addition, future opportunities and challenges towards the development and application of LM-based antimicrobial materials are presented.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
- Hainan Institute of China Agricultural University, China Agricultural University, Sanya 572000, China
| | - Yu-Tong Liang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xi-Qing Wang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
| | - Shang Gao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xu-Yang Sun
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
13
|
Biogenic Gold Nanoparticles: Current Applications and Future Prospects. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Zhuang X, Hu Y, Wang J, Hu J, Wang Q, Yu X. A colorimetric and SERS dual-readout sensor for sensitive detection of tyrosinase activity based on 4-mercaptophenyl boronic acid modified AuNPs. Anal Chim Acta 2021; 1188:339172. [PMID: 34794563 DOI: 10.1016/j.aca.2021.339172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Tyrosinase (TYR) is as a well-known polyphenol oxidase and important biomarker of melanocytic lesions. Thus, developing powerful methods to determine TYR activity is of great value in the early diagnosis of skin disease. Direct surface-enhanced Raman scattering (SERS) detection of biomolecules is usually affected by non-specific interference and complicate structure of the analytes. It is a challenge to develop Raman-active molecules with specific recognition to analytes in complex media. Here, we report a novel colorimetric and surface-enhanced Raman scattering (SERS) dual-readout assay for the determination of TYR using commercially available and economical 4-mercaptophenyl boronic acid (4-MPBA) as a Raman-active and recognition molecule. 4-MPBA provides a unique interactive boronic acid group to the diol group of TYR substrate and exhibits good SERS signal. Also, the introduction of magnetic beads could promptly improve the anti-interference ability of dual-mode sensor. The TYR-incubated tyramine-modified magnetic beads could obviously change the concentration of 4-MPBA-AuNPs in the presence of O2 and ascorbic acid, where the ultraviolet visible (UV-vis) absorption and SERS intensity were directly related to the concentration of TYR added. The dual-mode sensor had a rapid response to TYR within 1 min under optimized conditions and had high selectivity for TYR with a limit of detection at 0.001 U/mL. In addition, the dual-mode strategy showed promising prospects in the determination of TYR activity in serum samples and could be used to screen TYR inhibitors.
Collapse
Affiliation(s)
- Xiumei Zhuang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Junjie Wang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jieyu Hu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qi Wang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xingxing Yu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
15
|
Mahmood Ansari S, Saquib Q, De Matteis V, Awad Alwathnani H, Ali Alharbi S, Ali Al-Khedhairy A. Marine Macroalgae Display Bioreductant Efficacy for Fabricating Metallic Nanoparticles: Intra/Extracellular Mechanism and Potential Biomedical Applications. Bioinorg Chem Appl 2021; 2021:5985377. [PMID: 34873399 PMCID: PMC8643268 DOI: 10.1155/2021/5985377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
The application of hazardous chemicals during nanoparticle (NP) synthesis has raised alarming concerns pertaining to their biocompatibility and equally to the environmental harmlessness. In the recent decade, nanotechnological research has made a gigantic shift in order to include the natural resources to produce biogenic NPs. Within this approach, researchers have utilized marine resources such as macroalgae and microalgae, land plants, bacteria, fungi, yeast, actinomycetes, and viruses to synthesize NPs. Marine macroalgae (brown, red, and green) are rich in polysaccharides including alginates, fucose-containing sulfated polysaccharides (FCSPs), galactans, agars or carrageenans, semicrystalline cellulose, ulvans, and hemicelluloses. Phytochemicals are abundant in phenols, tannins, alkaloids, terpenoids, and vitamins. However, microorganisms have an abundance of active compounds ranging from sugar molecules, enzymes, canonical membrane proteins, reductase enzymes (NADH and NADPH), membrane proteins to many more. The prime reason for using the aforesaid entities in the metallic NPs synthesis is based on their intrinsic properties to act as bioreductants, having the capability to reduce and cap the metal ions into stabilized NPs. Several green NPs have been verified for their biocompatibility in human cells. Bioactive constituents from the above resources have been found on the green metallic NPs, which has demonstrated their efficacies as prospective antibiotics and anti-cancer agents against a range of human pathogens and cancer cells. Moreover, these NPs can be characterized for the size, shapes, functional groups, surface properties, porosity, hydrodynamic stability, and surface charge using different characterization techniques. The novelty and originality of this review is that we provide recent research compilations on green synthesis of NPs by marine macroalgae and other biological sources (plant, bacteria, fungi, actinomycetes, yeast, and virus). Besides, we elaborated on the detailed intra- and extracellular mechanisms of NPs synthesis by marine macroalgae. The application of green NPs as anti-bacterial, anti-cancer, and popular methods of NPs characterization techniques has also been critically reviewed.
Collapse
Affiliation(s)
- Sabiha Mahmood Ansari
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Quaiser Saquib
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Valeria De Matteis
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Hend Awad Alwathnani
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
16
|
Investigation of ellagic acid rich-berry extracts directed silver nanoparticles synthesis and their antimicrobial properties with potential mechanisms towards Enterococcus faecalis and Candida albicans. J Biotechnol 2021; 341:155-162. [PMID: 34601019 DOI: 10.1016/j.jbiotec.2021.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
The essential goals of this present study are to elucidate the formation mechanism of ellagic acid rich-blackberry, BBE, (Rubus fruticosus L.) and raspberry, RBE, (Rubus idaeus L.) extracts directed silver nanoparticles and to investigate thier antimicrobial properties towards model dental pathogens E. faecalis and C. albicans compared to BBE, RBE, NaOCl, CHX and EDTA. Both %5 w/w of BBE and RBE reacted with 5 mM Ag + ions at room temperature (25 °C) under mild-stirring, the formation of BBE and RBE directed b@Ag NP and r@Ag NP was monitored over time by using an Uv-vis spectrophotometer. Both b@Ag and r@Ag NPs were also complementarily characterized with SEM and FT-IR. In terms of the antimicrobial studies, b@Ag NP, r@Ag NP, %5 BBE and RBE, 5 mM AgNO3, %5 NaOCl, %1,5 CHX and %15 EDTA were separately incubated with E. faecalis and C. albicans suspensions. The results were evaluated with student t-test using GraphPad Prism 8.0.1 statistical software (P < 0.05). While formation of b@Ag NP was confirmed with characteristic absorbance at ~435 nm in 20 min (min) of incubation, r@Ag NP did not give absorbance till 80 min owing to concentration of ellagic acid acted as a reducing and stabilizng agent for formation of the Ag NPs. Intrestingly, 50 ppm r@Ag NP inactivated ∼89% and ∼99% of E. faecalis and C. albicans cell, respectively, ∼25% and ∼40% cell inactivations for E. faecalis and C. albicans were observed respectively with 50 ppm b@Ag NP. We showed that 50 ppm r@Ag NP has effective antimicrobial property as much as mostly used %5 NaOCl and %1,5 CHX solutions.
Collapse
|
17
|
Synthesis and Characterization of Silver Nanoparticles Prepared with Carrasquilla Fruit Extract (Berberis hallii) and Evaluation of Its Photocatalytic Activity. Catalysts 2021. [DOI: 10.3390/catal11101195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, silver nanoparticles (AgNPs) were obtained using a green-chemistry procedure. For this protocol, the Carrasquilla extract (CE) (Berberis hallii) and a AgNO3 solution were used as the reducing agent and the metal precursor, respectively. The as-prepared AgNPs after characterization were then used to evaluate the degradation of the methylene blue (MB), the safranin (SF), and the mixture of both dyes in the aqueous phase under solar light irradiation. The photocatalytic activity of AgNPs for the degradation of the MB (k = 0.0092 min−1) was higher than the SF (k = 0.00016 min−1) due to the susceptibility of the thiazine ring of the MB to photodegradation contrasted to the phenyl phenazine of the SF. However, SF was mostly removed by adsorption with a maximum uptake of 2907 mg/g. Overall, this eco-friendly and green conversion of silver ions to metallic elements avoids the use of toxic chemicals and could be applied for the degradation/adsorption of dyes used in several industrial processes.
Collapse
|
18
|
Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101304] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Lingaraju K, Basavaraj R, Jayanna K, S.Bhavana, Devaraja S, Kumar Swamy H, Nagaraju G, Nagabhushana H, Raja Naika H. Biocompatible fabrication of TiO2 nanoparticles: Antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108505] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Celik C, Can Sezgin G, Kocabas UG, Gursoy S, Ildiz N, Tan W, Ocsoy I. Novel Anthocyanin-Based Colorimetric Assay for the Rapid, Sensitive, and Quantitative Detection of Helicobacter pylori. Anal Chem 2021; 93:6246-6253. [PMID: 33825433 DOI: 10.1021/acs.analchem.1c00663] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several different diagnostic tests have been reported for rapid, sensitive, and economical detection of bacterial pathogens, but most lack widespread and practical use in the clinic. In this study, we used anthocyanins from red cabbage (Brassica oleracea) as a natural pH indicator and, for the first time, incorporated this agent into a simple, rapid, and economical colorimetric strategy for the detection of Helicobacter pylori (H. pylori) (RCE@test). We prepared two sets of RCE@test solutions (test 1 is purple, and test 2 is blue) in different forms, including liquid, adsorbed filter paper, and agar, and investigated the performance of each RCE@test as a function of the test volume, H. pylori concentration, and reaction time. To elucidate the effect of the pathophysiological environment on these RCE@tests, H. pylori in an artificial gastric fluid was also detected. The 10 and 1 CFU/mL H. pylori suspensions were detected in 15 min and 3 h, respectively, and the limit of detection was determined down to 1 CFU/mL. We experimentally demonstrated the advantages of the RCE@test for detection of H. pylori by comparing it to a commercially available rapid urease test, the "CLO test (Campylobacter-like organism test)". In addition to colorimetric detection by the naked eyes, RGB (Red Green Blue) and Delta-E analysis in image-processing software was run to quantitatively monitor changes of color in the RCE@test using a smartphone application. Finally, we propose that this test provides simple, effective, rapid, and inexpensive detection and that it can be easily implemented for clinical use.
Collapse
Affiliation(s)
- Cagla Celik
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey.,Pharmacy Services Program, Vocational School of Health Services, Hitit University, Corum 19000, Turkey
| | - Gulten Can Sezgin
- Department of Gastroenterology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Umut Gorkem Kocabas
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Sebnem Gursoy
- Department of Gastroenterology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Nilay Ildiz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
21
|
Zaheer Z, Albukhari SM. Fabrication of zinc/silver binary nanoparticles, their enhanced microbial and adsorbing properties. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
22
|
Comparison of the Micromorphology and Ultrastructure of Pollen Grains of Selected Rubus idaeus L. Cultivars Grown in Commercial Plantation. PLANTS 2020; 9:plants9091194. [PMID: 32932712 PMCID: PMC7570156 DOI: 10.3390/plants9091194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
The genus Rubus is one of the largest taxonomically diverse and complex genera in the family Rosaceae. Morphology of pollen grains (equatorial and polar axes length, shape and size, aperture position, exine sculpture, perforations) is regarded as one of its main diagnostic features for identification of species and varieties. An attempt was made to fill the gap concerning the pollen micromorphology and ultrastructure of R. idaeus L. using light, scanning, and electron transmission microscopy. This study is a comparative analysis of micromorphological and ultrastructural traits of pollen from six raspberry cultivars. The pollen grains were classified as small or medium of shape prolato-spheroids. The parallel striae in the equatorial view in the exine sculpture were sometimes branched dichotomously in ‘Glen Ample’, ‘Polka’, and ‘Polana’, arcuate in ‘Laszka’ and ‘Pokusa’, or irregularly overlapping in ‘Radziejowa’. The width of exine striae of biennial fruiting cultivars was much larger than in repeated fruiting cultivars. In terms of the increasing number of perforations per unit area of the exine surface, the cultivars were ranked as follows: ‘Pokusa’ < ‘Glen Ample’ < ‘Laszka’ < ‘Polka’ < ‘Polana’ < ‘Radziejowa’. The thickest tectum, the highest and thickest columellae with the largest distances between them, and the thicker foot layer were demonstrated in ‘Glen Ample’. The ectoexine constituted on average ca. 78–90% of the exine thickness. The findings may constitute auxiliary traits i.a. for identification of related taxa, interpretation of phylogenetic relationships, and pollination biology.
Collapse
|
23
|
Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213378] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Biogenic synthesis, antioxidant and antimicrobial activity of silver and manganese dioxide nanoparticles using Cussonia zuluensis Strey. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01244-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Rosmarinus officinalis directed palladium nanoparticle synthesis: Investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.01.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Unal IS, Demirbas A, Onal I, Ildiz N, Ocsoy I. One step preparation of stable gold nanoparticle using red cabbage extracts under UV light and its catalytic activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111800. [PMID: 32028188 DOI: 10.1016/j.jphotobiol.2020.111800] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Herein, we have reported the synthesis, characterization and catalytic activity of highly stable gold nanoparticles (Au NPs) using red cabbage extract (RCE) under UV irradiation. The anthocyanin groups predominantly existing in RCE play an essential role for biosynthesis of stable Au NPs. The reasons for using anthocyanins: 1) they act as chelating agents for preferentially reacting with gold ions (Au3+) to form Au3+- anthocyanin complexes, 2) as light-active reductants for reduction of Au3+ to zero valent Au0 under UV irradiation and 3) as stabilizing agent for preventing Au NPs from aggregation in high salt concentration owing to their unique salt tolerance property. We also demonstrate that how reaction time, concentration of RCE, pH value of reaction solutions and using one more reducing agent affected formation of the Au NPs. The stability of RCE Au NPs was comparatively studied with commercial (citrate stabilized) Au NPs against 100 mM salt (NaCl) solution. The RCE-Au NP showed reduction ability for conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). UV-vis spectrometry, transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential (ZT) methods were utilized to characterize the Au NPs. We demonstrated that how whole RCE (anthocyanins molecules are major component) can be used as photo-active reducing and stabilizing agents to form Au NPs in a short time under UV irradiation and strong reducing agent without additional agents.
Collapse
Affiliation(s)
- Ilay Sema Unal
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ayse Demirbas
- Recep Tayyip Erdogan University, Faculty of Fisheries and Aquatic Sciences, 53100 Rize, Turkey
| | - Irem Onal
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Nilay Ildiz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey.
| |
Collapse
|