1
|
Tiwari MK, Goslinski T. Searching for the Holy Grail - Highly Potent Bridged Endoperoxides for Targeted Cancer Therapy. Bioorg Chem 2024; 153:107893. [PMID: 39454496 DOI: 10.1016/j.bioorg.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The International Agency for Research on Cancer (IARC) recently estimated the global cancer burden in 2050. The statistics are startling, with a 77% hike and 35 million new cancer cases per year. The present discoveries have recommended plant-derived bridged endoperoxides or artemisinin-based semisynthetic analogues as safe, well-tolerated and powerful substitutes that could be effectively utilized as a warhead to fight against global enemies like cancer. In addition, artemisinin-based drug repositioning crucially can reduce overriding drug development expenditures and establish accessibility of approved drugs with low risk to patients. Hence, the present review article provides a comprehensive account of the recent chemical and synthetic advancement of diverse cytotoxic artemisinin derivatives such as C(10)-O, C, N, S linked artemisinin analogues, artemisinin-derived metal complexes, artemisinin-derived hybrids/conjugates with other pharmaceutically active substances, and artemisinin-derived dimers, trimers and tetramers perceived during the last three decades (1997-2024). Moreover, the current preclinical and clinical anticancer application prospects of artemisinin derivatives with other defined drugs and their utilization in combination therapy and also nanoformulation approaches for targeted drug delivery have been discussed.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland.
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806, Poznań, Poland
| |
Collapse
|
2
|
Das G, Shin HS, Patra JK. The Antiviral and Antimalarial Prodrug Artemisinin from the Artemisia Species: A Review. Curr Issues Mol Biol 2024; 46:12099-12118. [PMID: 39590312 PMCID: PMC11593081 DOI: 10.3390/cimb46110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Artemisinin is a truly fascinating drug in many ways. Since the unrestrained procedure of its detection, as an antimalarial drug, artemisinin has received a great deal of consideration. Recently, application of artemisinin-based combination therapy has been broadly applied for treating numerous ailments. Moreover, as an antimalarial compound, artemisinin and its associated compounds have abundant healing efficacy and can be repurposed for additional symptoms, like autoimmune infections, cancer, and viral contaminations. Recently a number of studies have highlighted the significance of the artemisinin-related compounds in SARS-CoV-2 treatment. The current review purposes to present a concise account of the history of the antiviral and antimalarial prodrugs-Artemisinin, from the Artemisia species. It is followed by its antiviral, antimalarial prospective, chemical nature and extraction procedure, photochemistry, mechanism of action, and its clinical trials and patents, and accentuates the significance of the mechanistic studies concerned for therapeutic results, both in viral and malarial circumstances.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea;
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea;
| |
Collapse
|
3
|
De Marchi E, Filippi S, Cesarini S, Di Maio B, Bizzarri BM, Saladino R, Botta L. Modulation of the Antimelanoma Activity Imparted to Artemisinin Hybrids by the Monoterpene Counterpart. Molecules 2024; 29:3421. [PMID: 39064999 PMCID: PMC11279807 DOI: 10.3390/molecules29143421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Molecular hybridization is a widely used strategy in drug discovery and development processes that consists of the combination of two bioactive compounds toward a novel entity. In the current study, two libraries of hybrid derivatives coming from the linkage of sesquiterpene counterparts dihydroartemisinin and artesunic acid, with a series of monoterpenes, were synthesized and evaluated by cell viability assay on primary and metastatic melanoma cell lines. Almost all the obtained compounds showed micromolar antimelanoma activity and selectivity toward the metastatic form of this cancer. Four hybrid derivatives containing perillyl alcohol, citronellol, and nerol as monoterpene counterpart emerged as the best compounds of the series, with nerol being active in combination with both sesquiterpenes, dihydroartemisinin and artesunic acid. Preliminary studies on the mechanism of action have shown the dependence of the pharmacological activity of newly synthesized hybrids on the formation of carbon- and oxygen-centered radical species. This study demonstrated the positive modulation of the pharmacodynamic effect of artemisinin semisynthetic derivatives dihydroartemisinin and artesunic acid due to the hybridization with monoterpene counterparts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lorenzo Botta
- Department of Biological and Ecological Sciences, University of Viterbo, Via S.C. De Lellis s.n.c., 01100 Viterbo, Italy; (E.D.M.); (S.F.); (S.C.); (B.D.M.); (B.M.B.); (R.S.)
| |
Collapse
|
4
|
RoyMahapatra D, Singh R, Sk UH, Manna PP. Engineered Artesunate-Naphthalimide Hybrid Dual Drug for Synergistic Multimodal Therapy against Experimental Murine Lymphoma. Mol Pharm 2024; 21:1090-1107. [PMID: 38306276 DOI: 10.1021/acs.molpharmaceut.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Lymphoma can effectively be treated with a chemotherapy regimen that is associated with adverse side effects due to increasing drug resistance, so there is an emergent need for alternative small-molecule inhibitors to overcome the resistance that occurs in lymphoma management and overall increase the prognosis rate. A new series of substituted naphthalimide moieties conjugated via ester and amide linkages with artesunate were designed, synthesized, and characterized. In addition to the conjugates, to further achieve a theranostic molecule, FITC was incorporated via a multistep synthesis process. DNA binding studies of these selected derivatives by ultraviolet-visible (UV-vis), fluorescence spectroscopy, intercalating dye (EtBr, acridine orange)-DNA competitive assay, and minor groove binding dye Hoechst 33342-DNA competitive assay suggested that the synthesized novel molecules intercalated between the two strands of DNA due to its naphthalimide moiety and its counterpart artesunate binds with the minor groove of DNA. Napthalimide-artesunate conjugates inhibit the growth of lymphoma and induce apoptosis, including ready incorporation and reduction in cell viability. The remodeled drug has a significant tumoricidal effect against solid DL tumors developed in BALB/c mice in a dose-dependent manner. The novel drug appears to inhibit metastasis and increase the survival of the treated animals compared with untreated littermates.
Collapse
Affiliation(s)
- Debapriya RoyMahapatra
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ugir Hossain Sk
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Marchesi E, Perrone D, Navacchia ML. Molecular Hybridization as a Strategy for Developing Artemisinin-Derived Anticancer Candidates. Pharmaceutics 2023; 15:2185. [PMID: 37765156 PMCID: PMC10536797 DOI: 10.3390/pharmaceutics15092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Artemisinin is a natural compound extracted from Artemisia species belonging to the Asteraceae family. Currently, artemisinin and its derivatives are considered among the most significant small-molecule antimalarial drugs. Artemisinin and its derivatives have also been shown to possess selective anticancer properties, however, there are several limitations and gaps in knowledge that retard their repurposing as effective anticancer agents. Hybridization resulting from a covalent combination of artemisinin with one or more active pharmacophores has emerged as a promising approach to overcome several issues. The variety of hybridization partners allows improvement in artemisinin activity by tuning the ability of conjugated artemisinin to interact with various molecule targets involved in multiple biological pathways. This review highlights the current scenario of artemisinin-derived hybrids with potential anticancer activity. The synthetic approaches to achieve the corresponding hybrids and the structure-activity relationships are discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy
| |
Collapse
|
6
|
Lu J, Yu J, Xie W, Guo Z, Gao X, Li Y, Zhang Z, Jin Z, Fahad A, Che S, Zhao L, Wei Y. Acidity-Triggered Charge-Convertible Conjugated Polymer for Dihydroartemisinin Delivery and Tumor-Specific Chemo-Photothermal Therapy. ACS APPLIED BIO MATERIALS 2023. [PMID: 37190932 DOI: 10.1021/acsabm.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Since the nonspecificity and nonselectivity of traditional treatment models lead to the difficulty of cancer treatment, nanobased strategies are needed to fill in the gaps of current approaches. Herein, a tumor microenvironment (TME)-responsive chemo-photothermal treatment model was developed based on dihydroartemisinin (DHA)-loaded conjugated polymers (DHA@PLGA-PANI). The synthesized DHA@PLGA-PANI exhibited enhanced photothermal properties under mild-acidic conditions and thus triggered local heat at the tumor site. Meanwhile, these iron-doped conjugated polymers of PLGA-PANI were used as the source of Fe, and benefiting from the Fe-dependent cytotoxicity of DHA, the burst of free radicals could be generated in tumors. Therefore, the combination of TME-responsive chemo-photothermal therapy could achieve effective tumor efficacy.
Collapse
Affiliation(s)
- Jingsong Lu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Yu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Wensheng Xie
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Zhenhu Guo
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohan Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Ying Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Ziqing Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Zeping Jin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Abdul Fahad
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Shenglei Che
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Zippilli C, Filippi S, Cesarini S, Bizzarri BM, Conigliaro P, De Marchi E, Botta L, Saladino R. Synthesis of Artesunic Acid-Coumarin Hybrids as Potential Antimelanoma Agents. ACS Med Chem Lett 2023; 14:599-605. [PMID: 37197457 PMCID: PMC10184312 DOI: 10.1021/acsmedchemlett.3c00019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Current therapy against melanoma relies on surgical treatment or, in alternative, on conventional drug therapy. Often these therapeutic agents are ineffective due to the development of resistance phenomena. For this purpose, chemical hybridization emerged as an effective strategy to overcome the development of drug resistance. In this study, a series of molecular hybrids were synthesized combining the sesquiterpene artesunic acid with a panel of phytochemical coumarins. Cytotoxicity, antimelanoma effect, and cancer selectivity of the novel compounds were evaluated by MTT assay on primary and metastatic cells and on healthy fibroblasts as a reference. The two most active compounds showed lower cytotoxicity and higher activity against metastatic melanoma than paclitaxel and artesunic acid. Further tests, including cellular proliferation, apoptosis, confocal microscopy, and MTT analyses in the presence of an iron chelating agent, were conducted with the aim of tentatively addressing the mode of action and the pharmacokinetic profile of selected compounds.
Collapse
Affiliation(s)
| | | | - Silvia Cesarini
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Bruno Mattia Bizzarri
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Pauline Conigliaro
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Elisa De Marchi
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Lorenzo Botta
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Raffaele Saladino
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|
8
|
Zeng ZW, Chen D, Chen L, He B, Li Y. A comprehensive overview of Artemisinin and its derivatives as anticancer agents. Eur J Med Chem 2023; 247:115000. [PMID: 36538859 DOI: 10.1016/j.ejmech.2022.115000] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Artemisinin is the crucial ingredient of artemisia annua, a traditional Chinese medicine used for the therapy of malaria in China for hundreds of years. In recent years, the anticancer properties of artemisinin and its derivatives have also been reported. This review has summarized the research and development of artemisinin and its derivatives as anticancer agents, which included both natural and synthetic monomers as well as their dimers. In addition, it highlights the antitumor effects of artemisinin and its derivatives after site-modification or after transformation to a nano-delivery system. Moreover, we have further explored their potential mechanisms of action and also discussed the clinical trials of ARTs used to treat cancer, which will facilitate in further development of novel anticancer drugs based on the scaffold of artemisinin.
Collapse
Affiliation(s)
- Zi-Wei Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Di Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
9
|
Madeddu F, Di Martino J, Pieroni M, Del Buono D, Bottoni P, Botta L, Castrignanò T, Saladino R. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of New Drugs against Human Topoisomerase I Receptor. Int J Mol Sci 2022; 23:ijms232314652. [PMID: 36498979 PMCID: PMC9737192 DOI: 10.3390/ijms232314652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human Topoisomerase I (hTop1p) is a ubiquitous enzyme that relaxes supercoiled DNA through a conserved mechanism involving transient breakage, rotation, and binding. Htop1p is the molecular target of the chemotherapeutic drug camptothecin (CPT). It causes the hTop1p-DNA complex to slow down the binding process and clash with the replicative machinery during the S phase of the cell cycle, forcing cells to activate the apoptotic response. This gives hTop1p a central role in cancer therapy. Recently, two artesunic acid derivatives (compounds c6 and c7) have been proposed as promising inhibitors of hTop1p with possible antitumor activity. We used several computational approaches to obtain in silico confirmations of the experimental data and to form a comprehensive dynamic description of the ligand-receptor system. We performed molecular docking analyses to verify the ability of the two new derivatives to access the enzyme-DNA interface, and a classical molecular dynamics simulation was performed to assess the capacity of the two compounds to maintain a stable binding pose over time. Finally, we calculated the noncovalent interactions between the two new derivatives and the hTop1p receptor in order to propose a possible inhibitory mechanism like that adopted by CPT.
Collapse
Affiliation(s)
- Francesco Madeddu
- Department of Computer Science, “Sapienza” University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Jessica Di Martino
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Michele Pieroni
- Department of Computer Science, “Sapienza” University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Davide Del Buono
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Paolo Bottoni
- Department of Computer Science, “Sapienza” University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
- Correspondence:
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
10
|
Zhang S, Yi C, Li WW, Luo Y, Wu YZ, Ling HB. The current scenario on anticancer activity of artemisinin metal complexes, hybrids, and dimers. Arch Pharm (Weinheim) 2022; 355:e2200086. [PMID: 35484335 DOI: 10.1002/ardp.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer, the most significant cause of morbidity and mortality, has already posed a heavy burden on health care systems globally. In recent years, cancer treatment has made a significant breakthrough, but cancer cells inevitably acquire resistance, and the efficacy of the treatment is greatly reduced as the tumor progresses. To overcome the above issues, novel chemotherapeutics are needed urgently. Artemisinin and its derivatives-sesquiterpene lactone compounds possessing a unique peroxy bridge moiety-exhibit excellent safety and tolerability profiles. Mechanistically, artemisinin derivatives can promote cancer cell apoptosis, induce cell cycle arrest and autophagy, and inhibit cancer cell invasion and migration. Accordingly, artemisinin derivatives demonstrate promising anticancer efficacy both in vitro and in vivo, and even in clinical Phase I/II trials. The purpose of the present review article is to provide an emphasis on the current scenario (January 2017-January 2022) of artemisinin derivatives with potential anticancer activity, inclusive of artemisinin metal complexes, hybrids, and dimers. The structure-activity relationships and mechanisms of action are also discussed to facilitate the further rational design of more effective candidates.
Collapse
Affiliation(s)
- Shu Zhang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Chuan Yi
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Wei-Wei Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yang Luo
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yi-Zhe Wu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Hai-Bo Ling
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
11
|
von Bredow L, Schäfer TM, Hogenkamp J, Tretbar M, Stopper D, Kraft FB, Schliehe-Diecks J, Schöler A, Borkhardt A, Bhatia S, Held J, Hansen FK. Synthesis, Antiplasmodial, and Antileukemia Activity of Dihydroartemisinin–HDAC Inhibitor Hybrids as Multitarget Drugs. Pharmaceuticals (Basel) 2022; 15:ph15030333. [PMID: 35337131 PMCID: PMC8952208 DOI: 10.3390/ph15030333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin-based combination therapies (ACTs) are the gold standard for the treatment of malaria, but the efficacy is threatened by the development of parasite resistance. Histone deacetylase inhibitors (HDACis) are an emerging new class of potential antiplasmodial drugs. In this work, we present the design, synthesis, and biological evaluation of a mini library of dihydroartemisinin–HDACi hybrid molecules. The screening of the hybrid molecules for their activity against selected human HDAC isoforms, asexual blood stage P. falciparum parasites, and a panel of leukemia cell lines delivered important structure–activity relationships. All synthesized compounds demonstrated potent activity against the 3D7 and Dd2 line of P. falciparum with IC50 values in the single-digit nanomolar range. Furthermore, the hybrid (α)-7c displayed improved activity against artemisinin-resistant parasites compared to dihydroartemisinin. The screening of the compounds against five cell lines from different leukemia entities revealed that all hydroxamate-based hybrids (7a–e) and the ortho-aminoanilide 8 exceeded the antiproliferative activity of dihydroartemisinin in four out of five cell lines. Taken together, this series of hybrid molecules represents an excellent starting point toward the development of antimalarial and antileukemia drug leads.
Collapse
Affiliation(s)
- Lukas von Bredow
- Medical Faculty, Institute for Drug Discovery, Leipzig University, 04103 Leipzig, Germany; (L.v.B.); (M.T.); (A.S.)
| | - Thomas Martin Schäfer
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany; (T.M.S.); (J.H.)
| | - Julian Hogenkamp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (J.H.); (J.S.-D.); (A.B.); (S.B.)
| | - Maik Tretbar
- Medical Faculty, Institute for Drug Discovery, Leipzig University, 04103 Leipzig, Germany; (L.v.B.); (M.T.); (A.S.)
| | - Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (D.S.); (F.B.K.)
| | - Fabian B. Kraft
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (D.S.); (F.B.K.)
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (J.H.); (J.S.-D.); (A.B.); (S.B.)
| | - Andrea Schöler
- Medical Faculty, Institute for Drug Discovery, Leipzig University, 04103 Leipzig, Germany; (L.v.B.); (M.T.); (A.S.)
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (J.H.); (J.S.-D.); (A.B.); (S.B.)
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (J.H.); (J.S.-D.); (A.B.); (S.B.)
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany; (T.M.S.); (J.H.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72074 Tübingen, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (D.S.); (F.B.K.)
- Correspondence:
| |
Collapse
|
12
|
Gabellone S, Piccinino D, Filippi S, Castrignanò T, Zippilli C, Del Buono D, Saladino R. Lignin Nanoparticles Deliver Novel Thymine Biomimetic Photo-Adducts with Antimelanoma Activity. Int J Mol Sci 2022; 23:ijms23020915. [PMID: 35055101 PMCID: PMC8777952 DOI: 10.3390/ijms23020915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
We report here the synthesis of novel thymine biomimetic photo-adducts bearing an alkane spacer between nucleobases and characterized by antimelanoma activity against two mutated cancer cell lines overexpressing human Topoisomerase 1 (TOP1), namely SKMEL28 and RPMI7951. Among them, Dewar Valence photo-adducts showed a selectivity index higher than the corresponding pyrimidine-(6-4)-pyrimidone and cyclobutane counterpart and were characterized by the highest affinity towards TOP1/DNA complex as evaluated by molecular docking analysis. The antimelanoma activity of novel photo-adducts was retained after loading into UV photo-protective lignin nanoparticles as stabilizing agent and efficient drug delivery system. Overall, these results support a combined antimelanoma and UV sunscreen strategy involving the use of photo-protective lignin nanoparticles for the controlled release of thymine dimers on the skin followed by their sacrificial transformation into photo-adducts and successive inhibition of melanoma and alert of cellular UV machinery repair pathways.
Collapse
|
13
|
Artemisinin and Derivatives-Based Hybrid Compounds: Promising Therapeutics for the Treatment of Cancer and Malaria. Molecules 2021; 26:molecules26247521. [PMID: 34946603 PMCID: PMC8707619 DOI: 10.3390/molecules26247521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023] Open
Abstract
Cancer and malaria are major health conditions around the world despite many strategies and therapeutics available for their treatment. The most used strategy for the treatment of these diseases is the administration of therapeutic drugs, which suffer from several shortcomings. Some of the pharmacological limitations associated with these drugs are multi-drug resistance, drug toxicity, poor biocompatibility and bioavailability, and poor water solubility. The currently ongoing preclinical studies have demonstrated that combination therapy is a potent approach that can overcome some of the aforementioned limitations. Artemisinin and its derivatives have been reported to exhibit potent efficacy as anticancer and antimalarial agents. This review reports hybrid compounds containing artemisinin scaffolds and their derivatives with promising therapeutic effects for the treatment of cancer and malaria.
Collapse
|
14
|
Micale N, Molonia MS, Citarella A, Cimino F, Saija A, Cristani M, Speciale A. Natural Product-Based Hybrids as Potential Candidates for the Treatment of Cancer: Focus on Curcumin and Resveratrol. Molecules 2021; 26:4665. [PMID: 34361819 PMCID: PMC8348089 DOI: 10.3390/molecules26154665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the "hybrid strategy", namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term "hybrid" has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.M.); (M.S.M.); (A.C.); (F.C.); (M.C.); (A.S.)
| | | | | |
Collapse
|
15
|
Botta L, Cesarini S, Zippilli C, Filippi S, Bizzarri BM, Baratto MC, Pogni R, Saladino R. Stereoselective Access to Antimelanoma Agents by Hybridization and Dimerization of Dihydroartemisinin and Artesunic acid. ChemMedChem 2021; 16:2270-2277. [PMID: 33792170 PMCID: PMC8360007 DOI: 10.1002/cmdc.202100196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 01/21/2023]
Abstract
A library of five hybrids and six dimers of dihydroartemisinin and artesunic acid has been synthetized in a stereo-controlled manner and evaluated for the anticancer activity against metastatic melanoma cell line (RPMI7951). Among novel derivatives, three artesunic acid dimers showed antimelanoma activity and cancer selectivity, being not toxic on normal human fibroblast (C3PV) cell line. Among the three dimers, the one bearing 4-hydroxybenzyl alcohol as a spacer showed no cytotoxic effect (CC50 >300 μM) and high antimelanoma activity (IC50 =0.05 μM), which was two orders of magnitude higher than that of parent artesunic acid, and of the same order of commercial drug paclitaxel. In addition, this dimer showed cancer-type selectivity towards melanoma compared to prostate (PC3) and breast (MDA-MB-231) tumors. The occurrence of a radical mechanism was hypothesized by DFO and EPR analyses. Qualitative structure activity relationships highlighted the role of artesunic acid scaffold in the control of toxicity and antimelanoma activity.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Silvia Cesarini
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Claudio Zippilli
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Silvia Filippi
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Bruno Mattia Bizzarri
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences, Univeristy of Viterbo, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
16
|
Khanal P. Antimalarial and anticancer properties of artesunate and other artemisinins: current development. MONATSHEFTE FUR CHEMIE 2021; 152:387-400. [PMID: 33814617 PMCID: PMC8008344 DOI: 10.1007/s00706-021-02759-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
This review provides a recent perspective of artesunate and other artemisinins as antimalarial drugs and their uses in cancer therapy. Artesunate is an artemisinin derivative. Artemisinin is extracted from the plant Artemisia annua. Artemisinin and its derivatives have been the most useful drug for malarial treatment in human history. The artesunate has an advantage of a hydrophilic group over other artemisinins which makes it a more potent drug. On the industrial scale, artemisinins are synthesized in semisynthetic ways. The 1,2,4-endoperoxide bridge of artemisinins is responsible for the drug's antimalarial activity. There is the emergence of artemisinin resistance on Plasmodium falciparum and pieces of evidence suggest that it is mainly due to the mutation at Kelch13 protein of P. falciparum. Clinical trial data show that the artesunate is more favorable than quinine and other artemisinins to treat patients with severe malaria. Pieces of evidence indicate that artemisinins can be developed as anticancer drugs. The mechanism of actions on how artemisinins act as an anticancer drug involves oxidative stress, DNA damage and repair, and various types of cell deaths. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Pitambar Khanal
- Nagarik College, Tribhuvan University, Gaidakot-2, Nawalparasi Purva, Gandaki, Nepal
| |
Collapse
|
17
|
Lu J, Guo Z, Che S, Gao F, Gu Z, Xu J, Chi Y, Xu W, Zhang J, Takuya N, Yu J, Zhao L. Dihydroartemisinin loaded layered double hydroxide nanocomposites for tumor specific photothermal-chemodynamic therapy. J Mater Chem B 2021; 8:11082-11089. [PMID: 33206112 DOI: 10.1039/d0tb01964j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the inspiration to develop new cancer nanotherapeutics by repurposing old drugs, in the current study, a novel two dimensional nanomedicine namely Mn doped, dihydroartemisinin (DHA) loaded layered double hydroxide (MnMgFe-LDH/DHA) with peroxide self-supplying properties for enhanced photothermal-chemodynamic therapy was proposed. Such nanostructures could be synthesized by a simple coprecipitation method, and the as-prepared MnMgFe-LDH/DHA exhibits excellent photothermal properties with a photothermal conversion efficiency up to 10.7%. Besides, the in situ reaction between the released DHA and Fe2+/Mn2+ produced by the degradation of LDH can lead to a burst of intracellular reactive oxygen species (ROS) by Fenton-like reactions. Furthermore, the in vivo experiments demonstrate that MnMgFe-LDH/DHA exhibits a remarkable chemodynamic/photothermal therapy (CDT/PTT) synergistic effect on tumor treatment with negligible damage to normal tissues. Finally, this research provides a smart strategy to construct a DHA repurposing nanomedicine for tumor specific treatment.
Collapse
Affiliation(s)
- Jingsong Lu
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China and State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Shenglei Che
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Fei Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Australia
| | - Jianzhong Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjie Chi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China and School of Earth Science and Resources, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Wanling Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junxin Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Nonaka Takuya
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Yu
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Nqoro X, Jama S, Morifi E, Aderibigbe BA. 4-Aminosalicylic Acid-based Hybrid Compounds: Synthesis and In vitro Antiplasmodial Evaluation. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200802031547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background:
Malaria is a deadly and infectious disease responsible for millions of death
worldwide, mostly in the African region. The malaria parasite has developed resistance to the currently
used antimalarial drugs, and it has urged researchers to develop new strategies to overcome
this challenge by designing different classes of antimalarials.
Objectives:
A class of hybrid compounds containing 4-aminosalicylic acid moiety was prepared via
esterification and amidation reactions and characterized using FTIR, NMR and LC-MS. In vitro antiplasmodial
evaluation was performed against the asexual NF54 strain of P. falciparum parasites.
Methods:
In this research, known 4-aminoquinoline derivatives were hybridized with 4-
aminosalicylic acid to afford hybrid compounds via esterification and amidation reactions. 4-
aminosalicylic acid, a dihydrofolate compound inhibits DNA synthesis in the folate pathway and is
a potential pharmacophore for the development of antimalarials.
Results:
The LC-MS, FTIR, and NMR analysis confirmed the successful synthesis of the compounds.
The compounds were obtained in yields in the range of 63-80%. The hybrid compounds
displayed significant antimalarial activity when compared to 4-aminosalicylic acid, which exhibited
poor antimalarial activity. The IC50 value of the most potent hybrid compound, 9 was 9.54±0.57 nm.
Conclusion:
4-aminosalicylic has different functionalities, which can be used for hybridization with
a wide range of compounds. It is a potential pharmacophore that can be utilized for the design of
potent antimalarial drugs. It was found to be a good potentiating agent when hybridized with 4-
aminoquinoline derivatives suggesting that they can be utilized for the synthesis of a new class of
antimalarials.
Collapse
Affiliation(s)
- Xhamla Nqoro
- Department of Chemistry, University of Fort Hare, Alice Campus,South Africa
| | - Siphesihle Jama
- Department of Chemistry, University of Fort Hare, Alice Campus,South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, University of the Witwatersrand, Johannesburg Private Bag X3, WITS, 2050,South Africa
| | | |
Collapse
|
19
|
Patel OPS, Beteck RM, Legoabe LJ. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur J Med Chem 2021; 213:113193. [PMID: 33508479 DOI: 10.1016/j.ejmech.2021.113193] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Malaria is a life-threatening infectious disease caused by protozoal parasites belonging to the genus Plasmodium. It caused an estimated 405,000 deaths and 228 million malaria cases globally in 2018 as per the World Malaria Report released by World Health Organization (WHO) in 2019. Artemisinin (ART), a "Nobel medicine" and its derivatives have proven potential application in antimalarial drug discovery programs. In this review, antimalarial activity of the most active artemisinin derivatives modified at C-10/C-11/C-16/C-6 positions and synthetic peroxides (endoperoxides, 1,2,4-trioxolanes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes) are systematically summarized. The developmental trend of ART derivatives, and cyclic peroxides along with their antimalarial activity and how the activity is affected by structural variations on different sites of the compounds are discussed. This compilation would be very useful towards scaffold hopping aimed at avoiding the unnecessary complexity in cyclic peroxides, and ultimately act as a handy resource for the development of potential chemotherapeutics against Plasmodium species.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
20
|
Zhang J, Li YF, Jia FC, Gao Y, Hu XQ. Strain-release enabled [3 + 2] annulation of 3-aminooxetanes with simple CN bonds: facile synthesis of imidazolidines. Org Chem Front 2021. [DOI: 10.1039/d1qo01164b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An unprecedented [3+2] annulation of readily available 1,3,5-triazinanes and 3-aminooxetanes is accomplished for the first time, enabling the convenient synthesis of a range of structurally diverse 4-hydroxymethyl imidazolidines.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yi-Fei Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Feng-Cheng Jia
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
21
|
Botta L, Filippi S, Zippilli C, Cesarini S, Bizzarri BM, Cirigliano A, Rinaldi T, Paiardini A, Fiorucci D, Saladino R, Negri R, Benedetti P. Artemisinin Derivatives with Antimelanoma Activity Show Inhibitory Effect against Human DNA Topoisomerase 1. ACS Med Chem Lett 2020; 11:1035-1040. [PMID: 32435422 DOI: 10.1021/acsmedchemlett.0c00131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Artesunic acid and artemisinin are natural substances with promiscuous anticancer activity against different types of cancer cell lines. The mechanism of action of these compounds is associated with the formation of reactive radical species by cleavage of the sesquiterpene pharmacophore endoperoxide bridge. Here we suggested topoisomerase 1 as a possible molecular target for the improvement of the anticancer activity of these compounds. In this context, we report that novel hybrid and dimer derivatives of artesunic acid and artemisinin, bearing camptothecin and SN38 as side-chain biological effectors, can inhibit growth of yeast cells overexpressing human topoisomerase 1 and its enzymatic activity in vitro. These derivatives showed also anticancer activity in melanoma cell lines higher than camptothecin and paclitaxel. In silico molecular docking calculations highlighted a common binding mode for the novel derivatives, with the sesquiterpene lactone scaffold being located near the traditional recognition site for camptothecin, while the bioactive side-chain effector laid in the camptothecin cleft.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Silvia Filippi
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Claudio Zippilli
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Silvia Cesarini
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Bruno Mattia Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Angela Cirigliano
- Istituto di Biologia e Patologia Molecolari, CNR Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Teresa Rinaldi
- Sapienza University of Rome, Department of Biology and Biotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Diego Fiorucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Rodolfo Negri
- Sapienza University of Rome, Department of Biology and Biotechnology, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Pietro Benedetti
- Dipartimento di Biologia, Università di Padova Distaccato presso il “Centro Linceo Beniamino Segre” Accademia Nazionale dei Lincei, Palazzo Corsini, Via della Lungara 10, 00165 Rome, Italy
| |
Collapse
|