1
|
Chasák J, Oorts L, Dak M, Šlachtová V, Bazgier V, Berka K, De Vooght L, Smiejkowska N, Calster KV, Van Moll L, Cappoen D, Cos P, Brulíková L. Expanding the squaramide library as mycobacterial ATP synthase inhibitors: Innovative synthetic pathway and biological evaluation. Bioorg Med Chem 2023; 95:117504. [PMID: 37871508 DOI: 10.1016/j.bmc.2023.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Mycobacterial ATP synthase is a validated therapeutic target for combating drug-resistant tuberculosis. Inhibition of this enzyme has been featured as an efficient strategy for the development of new antimycobacterial agents against drug-resistant pathogens. In this study, we synthesised and explored two distinct series of squaric acid analogues designed to inhibit mycobacterial ATP synthase. Among the extensive array of compounds investigated, members of the phenyl-substituted sub-library emerged as primary hits. To gain deeper insights into their mechanisms of action, we conducted advanced biological studies, focusing on the compounds displaying a direct binding of a nitrogen heteroatom to the phenyl ring, resulting in the highest potency. Our investigations into spontaneous mutants led to the validation of a single point mutation within the atpB gene (Rv1304), responsible for encoding the ATP synthase subunit a. This genetic alteration sheds light on the molecular basis of resistance to squaramides. Furthermore, we explored the possibility of synergy between squaramides and the reference drug clofazimine using a checkerboard assay, highlighting the promising avenue for enhancing the effectiveness of existing treatments through combined therapeutic approaches. This study contributes to the expansion of investigating squaramides as promising drug candidates in the ongoing battle against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Jan Chasák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Lauren Oorts
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Milan Dak
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Veronika Šlachtová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Václav Bazgier
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Natalia Smiejkowska
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Kevin Van Calster
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucie Brulíková
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Yakkala PA, Khan IA, Dannarm SR, Aboti J, Sonti R, Shafi S, Kamal A. Multicomponent Domino Reaction for Concise Access to 2-Amino-Substituted 1,3,4 Oxadiazoles via Smiles Rearrangement. J Org Chem 2023; 88:12216-12223. [PMID: 37563100 DOI: 10.1021/acs.joc.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A multicomponent domino reaction has been developed for the preparation of N-substituted 2-amino-1,3,4-oxadiazoles directly from various hydrazides (32 examples). The formation of 2-amino-1,3,4-oxadiazole involves the Smiles rearrangement of thiazolidinone, which results in the formation of carbodiimide intermediate that concomitantly undergoes amide-imidic acid tautomerism followed by cyclization. The protocol developed has wide applicability and provides the desired 2-amino-1,3,4-oxadiazole in excellent yields. The GSD studies of NMR spectra of aliphatic substrates (4di, 4dh) revealed the formation of three products, whereas, in the case of allylic and benzylic substrates, thiazolidinones were obtained as the sole products. Furthermore, to elucidate the plausible mechanism, DFT studies were performed affirming carbodiimide as the crucial intermediate for the interconversion of thiazolidinone to oxadiazole.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Imran A Khan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Srinivas Reddy Dannarm
- Department of Pharmaceutical analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Hyderabad, Telangana 500037, India
| | - Jyoti Aboti
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rajesh Sonti
- Department of Pharmaceutical analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Hyderabad, Telangana 500037, India
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
3
|
Soni S, Sahiba N, Teli S, Teli P, Agarwal LK, Agarwal S. Advances in the synthetic strategies of benzoxazoles using 2-aminophenol as a precursor: an up-to-date review. RSC Adv 2023; 13:24093-24111. [PMID: 37577091 PMCID: PMC10416314 DOI: 10.1039/d3ra03871h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
Benzoxazole is a resourceful and important member of the heteroarenes that connects synthetic organic chemistry to medicinal, pharmaceutical, and industrial areas. It is a bicyclic planar molecule and is the most favorable moiety for researchers because it has been extensively used as a starting material for different mechanistic approaches in drug discovery. The motif exhibits a high possibility of broad substrate scope and functionalization to offer several biological activities like anti-microbial, anti-fungal, anti-cancer, anti-oxidant, anti-inflammatory effects, and so on. There has been a large upsurge in the synthesis of benzoxazole via different pathways. The present article presents recent advances in synthetic strategies for benzoxazole derivatives since 2018. A variety of well-organized synthetic methodologies for benzoxazole using 2-aminophenol with aldehydes, ketones, acids, alcohols, isothiocyanates, ortho-esters, and alkynones under different reaction conditions and catalysts, viz. nanocatalysts, metal catalysts, and ionic liquid catalysts, with other miscellaneous techniques has been summarized.
Collapse
Affiliation(s)
- Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Lokesh Kumar Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| |
Collapse
|
4
|
Wang C, Ma Z, Hou X, Yang L, Chen Y. Research and Application of N-Ts Cyanamides in Organic Synthesis. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Hufnagel B, Zhu WF, Franz HM, Proschak E, Hernandez‐Olmos V. Phenolate-Induced N-O Bond Formation versus TiemannType Rearrangement for the Synthesis of 3-Aminobenzisoxazoles and 2-Aminobenzoxazoles. Chemistry 2022; 11:e202200252. [PMID: 36564354 PMCID: PMC9789021 DOI: 10.1002/open.202200252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/30/2022] [Indexed: 12/25/2022]
Abstract
A novel oxadiazolone-based method for the synthesis of 3-aminobenzisoxazoles by N-O bond formation and of 2-aminobenzoxazoles through a Tiemann-type rearrangement has been developed. The synthesis of these two pharmaceutically relevant heterocycles was realized by an unexplored retrosynthetic disconnection using a cyclic nitrenoid precursor-based strategy. The selective formation of the two isomers was significantly influenced by steric and electronic effects of substituents. However, tetrabutylammonium chloride (TBACl) efficiently promoted the Tiemann-type rearrangement over N-O bond formation. Control experiments indicate that deprotonation of the phenol induces both rearrangements.
Collapse
Affiliation(s)
- Benedikt Hufnagel
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - W. Felix Zhu
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - Hanna M. Franz
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - Ewgenij Proschak
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor-Stern-Kai 760596Frankfurt am MainGermany,Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - Victor Hernandez‐Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor-Stern-Kai 760596Frankfurt am MainGermany
| |
Collapse
|
6
|
Kumar Sahoo S, Maddipatla S, Nageswara Rao Gajula S, Naiyaz Ahmad M, Kaul G, Nanduri S, Sonti R, Dasgupta A, Chopra S, Madhavi Yaddanapudi V. Identification of nitrofuranylchalcone tethered benzoxazole-2-amines as potent inhibitors of drug resistant Mycobacterium tuberculosis demonstrating bactericidal efficacy. Bioorg Med Chem 2022; 64:116777. [PMID: 35487101 DOI: 10.1016/j.bmc.2022.116777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Ever increasing drug resistance has become an impeding threat that continues to hamper effective tackling of otherwise treatable tuberculosis (TB). Such dismal situation necessitates identification and exploration of multitarget acting newer chemotypes with bactericidal efficacy as a priority, that could efficiently hinder uncontrolled spread of TB. In this context, herein we present design, synthesis and bio-evaluation of chalcone tethered bezoxazole-2-amines as promising anti-TB chemotypes. Preliminary screening of 24 compounds revealed initial hits 3,4,5-trimethoxyphenyl and 5-nitrofuran-2-yl derivative exhibiting selective inhibition of Mycobacterium tuberculosis (Mtb) H37Rv. Further, structural optimization of hit compounds generated 12 analogues, amongst which 5-nitrofuran-2-yl derivatives displayed potent inhibition of not only drug-susceptible (DS) Mtb but also clinical isolates of drug-resistant (DR) Mtb strains equipotently. Moreover, cell viability test against Vero cells found these compounds with favourable selectivity. Time kill analysis led to the identification of the lead compound (E)-1-(4-((5-chlorobenzo[d]oxazol-2-yl)amino)phenyl)-3-(5-nitrofuran-2-yl)prop-2-en-1-one, that demonstrated bactericidal killing of Mtb bacilli. Together with acceptable microsomal stability, the lead compound of the series manifested all desirable traits of a promising antitubercular agent.
Collapse
Affiliation(s)
- Santosh Kumar Sahoo
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| | - Sarvan Maddipatla
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER),Balanagar, Hyderabad 500037, Telangana, India
| | - Mohammad Naiyaz Ahmad
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, UP, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, UP, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER),Balanagar, Hyderabad 500037, Telangana, India.
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, UP, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, UP, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India.
| |
Collapse
|
7
|
Zhu YS, Shi L, Fu L, Chen X, Zhu X, Hao XQ, Song MP. Iodine-catalyzed amination of benzothiazoles with KSeCN in water to access primary 2-aminobenzothiazoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Long L, Jieyan W, Li X, Peng S, Qiao L, Luo G, Chen Z. Hypervalent Iodine(III) Promoted Tandem Reaction of o-Fluoroanilines with Formamides to Construct 2-Aminobenzoxazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and practical synthesis of 2-aminobenzoxaoles has been developed from commercially available o-fluoroanilines, and formamides. The process can be performed in the absence of metal catalyst with high levels...
Collapse
|
9
|
Park SA, Park JU, Kim YL, Kim JH. Transition Metal-Free, Methoxide-Catalyzed Synthesis of Pyridoindolones. J Org Chem 2021; 86:17050-17062. [PMID: 34761671 DOI: 10.1021/acs.joc.1c02176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A simple transition metal-free strategy for the synthesis of pyrido[1,2-a]indolone derivatives has been devised through sodium methoxide-catalyzed intramolecular cyclization of 2-alkenylated N-pyrimidyl indoles. The reactions involved a Smiles rearrangement/cyclization cascade, which resulted in a new series of N-fused indoles, potentially applicable skeletons in medicinal chemistry. This reaction presents simple eco-friendly reaction conditions, a high atom- and cost-economy, a short reaction time, and a broad range of substrate scope with high reaction efficiency.
Collapse
Affiliation(s)
- Sun-A Park
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Jong-Un Park
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Ye Lim Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| |
Collapse
|
10
|
Saeed A, Shabir G, Hökelek T, Flörke Ü, Erben MF. Synthesis, conformation and Hirshfeld surface analysis of benzoxazole methyl ester as a versatile building block for heterocycles. Heliyon 2021; 7:e08042. [PMID: 34611565 PMCID: PMC8477190 DOI: 10.1016/j.heliyon.2021.e08042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/28/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022] Open
Abstract
Solventless cyclocondensation of 2-aminothiophenol with thiourea afforded the benzo[d]oxazole-2-thiol (3a) capable of existing also in the tautomeric form benzo[d]oxazole-2(3H)-thione (3b). Acylation with methyl chloroacetate in dry ethanol in absence of any base or catalyst selectively afforded the S-substituted ester 2-(methoxycarbonylmethylthio)benzo[d]oxazole (4a) in preference to the corresponding N-substituted ester N-(methoxycarbonylmethyl)thioxobenzoxazole (4b). Quantum chemical calculations were conducted to determine the conformational landscape and NBO population analysis showed the strong electronic delocalization via resonance interactions on the 2-mercaptobenzaxazole group. The anomeric effect and the occurrence of a 1,4-S···O intramolecular interactions suggest the relevance of chalcogen bonding in the conformational preference. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (33.2%), H⋯O/O⋯H (19.9%) and H⋯C/C⋯H (17.8%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C-H⋯O hydrogen-bond energy is 44.8 kJ mol-1.
Collapse
Affiliation(s)
- Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, 45320, Islamabad, Pakistan
| | - Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, 45320, Islamabad, Pakistan
| | - Tuncer Hökelek
- Department of Physics, Faculty of Engineering, Hacettepe University, 06800, Beytepe-Ankara, Turkey
| | - Ülrich Flörke
- Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098, Paderborn, Germany
| | - Mauricio F. Erben
- CEQUINOR (UNLP-CONICET, CCT-La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 e/ 60 y 64 Nº 1465 La Plata, B1900, Buenos Aires, Argentina
| |
Collapse
|
11
|
Honnanayakanavar JM, Harish B, Nanubolu JB, Suresh S. Tandem Copper-Catalyzed Regioselective N-Arylation-Aza-Michael Addition: Synthesis of Tetracyclic 5 H-Benzothiazolo[3,2- a]quinazoline Derivatives. J Org Chem 2020; 85:8780-8791. [PMID: 32603597 DOI: 10.1021/acs.joc.0c00275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A copper-catalyzed tandem process integrating regioselective N-arylation, followed by aza-Michael addition, is disclosed using 2-aminobenzothiazoles and ortho-halo cinnamic acid congeners. This process generated diverse tetracyclic 5H-benzothiazolo[3,2-a]quinazoline derivatives in moderate to good yields. The present tandem reaction appears to proceed through concomitant ring opening of 2-aminobenzothiazole and S-arylation to give the ortho-cyanamide-substituted diaryl thioether intermediate. The thus generated intermediate likely undergoes an unprecedented Truce-Smiles-type rearrangement involving S- to N-aryl migration, followed by reformation of the thiazole ring and intramolecular aza-Michael addition to furnish the title products.
Collapse
Affiliation(s)
- Jyoti M Honnanayakanavar
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Battu Harish
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Jagadeesh Babu Nanubolu
- Laboratory of X-Ray Crystallography, Department of Analytical Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Surisetti Suresh
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|