1
|
Li Z, Wang Y, Wang Z, Wu D, Zhao Y, Gong X, Jiang Q, Xia C. Study on biotransformation and absorption of genistin based on fecal microbiota and Caco-2 cell. Front Pharmacol 2024; 15:1437020. [PMID: 39444613 PMCID: PMC11496136 DOI: 10.3389/fphar.2024.1437020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Genistin, as a kind of natural isoflavone glycoside, has good biological activity, and its weak absorption makes it closely related to intestinal flora. However, the role of the intestinal flora is still unclear and whether the metabolites produced by the intestinal flora are absorbed systemically is also variable. Methods Genistin was fermented for 24 h based on fecal bacteria fermentation technology. The components were qualitatively and quantitatively analyzed by HPLC and UHPLC-Q-Exactive Orbitrap Mass spectrometry. The composition of intestinal flora in fermentation samples from fecal bacteria was detected by 16S rRNA sequencing. Five representative probiotics were cultured in vitro and fermented with genistin to determine similarities and differences in genistin metabolites by different bacteria at different times. Finally, the absorption results of metabolites by fermentation were verified by a Caco-2 cell monolayer. Results The HPLC results of fecal fermentation showed that genistein levels increased from 0.0139 ± 0.0057 mg/mL to 0.0426 ± 0.0251 mg/mL and two new metabolites were produced. A total of 46 metabolites following fecal fermentation were identified, resulting from various biotransformation reaction products, such as decarbonylation, hydroxylation, and methylation. Simultaneously, the 16S rRNA results showed that the intestinal flora changed significantly before and after fermentation and that the intestinal microorganisms in the control (Con) group and the fermentation (Fer) group showed a significant separation trend. Five genera, Lactobacillus, Bifidobacterium, Parabacteroides, Sutterella, and Dorea, were considered the dominant flora for genistin fermentation. The qualitative results of fermentation of genistin by five probiotics at different times showed that there were significant differences in small molecule metabolites by fermentation of different bacteria. Meanwhile, most metabolites could be identified following fecal bacteria fermentation, which verified the importance of the dominant bacteria in the feces for the biotransformation of components. Finally, the absorption results of the metabolites based on the Caco-2 cell monolayer showed that 14 metabolites could be absorbed into the circulation in vivo through the mesentery. Discussion The small molecule metabolites of genistin by fermentation of fecal bacteria can be well absorbed systemically by the body. These studies provide a reference value for explaining the transformation and absorption of flavonoid glycosides in the intestine.
Collapse
Affiliation(s)
- Zhe Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqing Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zicheng Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Dongxue Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhao Zhao
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xun Gong
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Quan Jiang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Congmin Xia
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Jeon JH, Jeon SY, Baek YJ, Park CE, Choi MK, Han YT, Song IS. Pharmacokinetics and Enterohepatic Circulation of 2-(Quinoline-8-carboxamido)benzoic Acid (2-QBA) in Mice. Pharmaceutics 2024; 16:934. [PMID: 39065631 PMCID: PMC11279551 DOI: 10.3390/pharmaceutics16070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The quinoline alkaloid 2-(quinoline-8-carboxamido)benzoic acid (2-QBA), which is isolated from Aspergillus sp. SCSIO06786, a deep sea-derived fungus, has been suggested as a therapeutic candidate for the treatment of Parkinson's disease. We developed an analytical method for 2-QBA using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) in mouse plasma, in which a protein precipitation method for the sample preparation of 2-QBA in mouse plasma was used due to its simplicity and good extraction recovery rates (80.49-97.56%). The linearity of the calibration standard sample, inter- and intraday precision and accuracy, and stability of three quality control samples were suitable based on the assessment criteria and the lower limit of quantification (LLOQ) of the 2-QBA was 1 ng/mL. A pharmacokinetic study of 2-QBA was performed in mice divided into oral (2.0, 5.0, and 15 mg/kg) and intravenous (0.5 and 1.0 mg/kg) administration groups. The absolute oral bioavailability (BA) range of 2-QBA was calculated as 68.3-83.7%. Secondary peaks were observed at approximately 4-8 h after the oral administration of 2-QBA at all doses. The elimination half-life of the orally administered 2-QBA was significantly longer than that of the intravenous 2-QBA. In addition, glucuronide metabolites of 2-QBA were identified. They were transformed into 2-QBA using the β-glucuronidase treatment. Furthermore, the 2-QBA was readily absorbed from the jejunum to lower ileum. Taken together, the secondary peaks could be explained by the enterohepatic circulation of 2-QBA. In conclusion, the reabsorption of orally administered 2-QBA could contribute to the high oral BA of 2-QBA and could be beneficial for the efficacy of 2-QBA. Moreover, the simple and validated analytical method for 2-QBA using LC-MS/MS was applied to the pharmacokinetic study and BA assessments of 2-QBA in mice and would be helpful for subsequent pharmacokinetic studies, as well as for evaluations of the toxicokinetics and pharmacokinetic-pharmacodynamic correlation of 2-QBA to assess its potential as a drug.
Collapse
Affiliation(s)
- Ji-Hyeon Jeon
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - So-Yeon Jeon
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea; (S.-Y.J.); (Y.-J.B.); (C.-E.P.); (M.-K.C.)
| | - Yeon-Ju Baek
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea; (S.-Y.J.); (Y.-J.B.); (C.-E.P.); (M.-K.C.)
| | - Chan-E Park
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea; (S.-Y.J.); (Y.-J.B.); (C.-E.P.); (M.-K.C.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea; (S.-Y.J.); (Y.-J.B.); (C.-E.P.); (M.-K.C.)
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea; (S.-Y.J.); (Y.-J.B.); (C.-E.P.); (M.-K.C.)
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
3
|
Joshi H, Gupta DS, Abjani NK, Kaur G, Mohan CD, Kaur J, Aggarwal D, Rani I, Ramniwas S, Abdulabbas HS, Gupta M, Tuli HS. Genistein: a promising modulator of apoptosis and survival signaling in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2893-2910. [PMID: 37300702 DOI: 10.1007/s00210-023-02550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Genistein, a commonly occurring isoflavone, has recently gained popularity owing to its ever-expanding spectrum of pharmacological benefits. In addition to health benefits such as improved bone health and reduced postmenopausal complications owing to its phytoestrogen properties, it has been widely evaluated for its anti-cancer potential. Several studies have established the potential for its usage in the management of breast, lung, and prostate cancers, and its usage has significantly evolved from early applications in traditional systems of medicine. This review offers an insight into its current status of usage, the chemistry, and pharmacokinetics of the molecule, an exploration of its apoptotic mechanisms in cancer management, and opportunities for synergism to improve therapeutic outcomes. In addition to this, the authors have presented an overview of recent clinical trials, to offer an understanding of contemporary studies and explore prospects for a greater number of focused trials, moving forward. Advancements in the application of nanotechnology as a strategy to improve safety and efficacy have also been highlighted, with a brief discussion of results from safety and toxicology studies.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | | | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, 134007, Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
4
|
Dan A, Zhang S, Chen Z, Dong J, Zheng W, Tu Y, Lin Z, Cai Z. Facile synthesis of Cu 2+-immobilized magnetic covalent organic frameworks for highly efficient enrichment and sensitive determination of five phthalate monoesters from mouse plasma with HPLC-MS/MS. Talanta 2023; 253:123923. [PMID: 36108515 DOI: 10.1016/j.talanta.2022.123923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Development of a simple, highly selective, and sensitive analytical method for phthalate monoesters (mPAEs) remains a challenge due to the complexity of biological samples. To address this issue, Cu2+ immobilized magnetic covalent organic frameworks (Fe3O4@TtDt@Cu2+ composites) with core-shell structures were prepared to enhance the enrichment efficiency of mPAEs by a facile approach synthesis of COFs shells with inherent bifunctional groups on Fe3O4 NPs and further Cu2+ immobilization. The composites exhibit high specific surface area (348.1 m2 g-1), outstanding saturation magnetization (34.94 emu g-1), ordered mesoporous structure, Cu2+ immobilization, and excellent thermal stability. Accordingly, a magnetic solid-phase extraction (MSPE) pretreatment technique based on Cu2+ immobilized COF composites combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established, and key parameters including the adsorbent amount, adsorption time, elution solvent, etc. were examined in detail. The developed analytical method showed wide linear ranges (10-8000 ng L-1), low limit of detections (LODs, 2-10 ng L-1), and good correlation coefficients (R2 ≥ 0.9904) for the five mPAEs. Furthermore, the analytical method was also successfully applied to the highly sensitive detection of metabolite mPAEs in mouse plasma samples, indicating the promising application of the Fe3O4@TtDt@Cu2+ composites as a quick and efficient adsorbent in the sample pretreatment.
Collapse
Affiliation(s)
- Akang Dan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhongliang Chen
- Fujian Inspection and Research Institute for Product Quality, Fuzhou, Fujian, 350002, China
| | - Jinghan Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wenjun Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, PR China.
| |
Collapse
|
5
|
Zhu Y, Zheng F, Xiao C, Liu X, Yao X, Zeng W. Synthesis and Bio-evaluation of 2-Alkyl Substituted Fluorinated Genistein Analogues Against Breast Cancer. Med Chem 2021; 18:589-601. [PMID: 34463229 DOI: 10.2174/1573406417666210830114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the leading cause of cancer death in women. The current methods of chemotherapy for breast cancer generally have strong adverse reactions and drug resistance. Therefore, the discovery of novel anti-breast cancer lead compounds is urgently needed. OBJECTIVE Design and synthesize a series of 2-alkyl substituted fluorinated genistein analogues and evaluate their anti-breast cancer activity. METHODS Target compounds were obtained in a multistep reaction synthesis. The anti-tumor activity of compounds I-1~I-35 were evaluated with MCF-7, MDA-MB-231, MDA-MB-435, and MCF-10A cell lines in vitro, with tamoxifen as the positive control. Molecular docking was used to study the interaction between the synthesized compounds and PI3K-gamma. RESULTS A series of 2-alkyl substituted fluorinated genistein analogues were designed, synthesized and screened for their bioactivity. Most of the compounds displayed better selectivity toward breast cancer cell lines as compared with tamoxifen. Among these analogues, I-2, I-3, I-4, I-9, I-15 and I-17 have the strongest selective inhibition of breast cancer cells. Compounds I-10, I-13, I-15, I-17 and I-33 were found to have significant inhibitory effects on breast cancer cells. Molecular docking studies have shown that these compounds may act as PI3Kγ inhibitors and may further exhibit anti-breast cancer effects. CONCLUSION Most of the newly synthesized compounds could highly selectively inhibit breast cancer cell lines. The experimental results indicate that the synthesized analogs may also have obvious selective inhibitory effects on other malignant proliferation cancer cells.
Collapse
Affiliation(s)
- Yingli Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Can Xiao
- Group of Lead Compound, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Xiaohe Liu
- Group of Lead Compound, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Xu Yao
- Group of Lead Compound, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
7
|
Hakami T, Mahmoud MI, de Juan E, Cooney M. Pharmacokinetics of genistein distribution in blood and retinas of diabetic and non-diabetic rats. Drug Metab Pharmacokinet 2021; 39:100404. [PMID: 34171772 DOI: 10.1016/j.dmpk.2021.100404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
Genistein, a natural tyrosine kinase inhibitor, may act as an intraocular antiangiogenic agent. Its therapeutical use, however, is limited by its nonlinear pharmacokinetics. We aimed to determine genistein's kinetics and retinal tissue distributions in normal and diabetic rats. We developed an isocratic, reverse-phase C18 HPLC system to measure genistein concentration in blood and retinas of streptozotocin (65 mg/kg IV)-diabetic and non-diabetic rats receiving two types of genistein-rich diet (150 and 300 mg/kg) for ten days. Genistein's decay exhibited a two-compartmental open model. Half-lives of distribution and elimination were 2.09 and 71.79 min, with no difference between groups. Genistein steady-state concentration in blood for 150 and 300 mg/kg diet did not differ between diabetic (0.259 ± 0.07 and 0.26 ± 0.06 μg/ml) and non-diabetic rats (0.192 ± 0.05 and 0.183 ± 0.09 μg/ml). In retina, genistein concentration was significantly higher in diabetic rats (1.05 ± 0.47 and 0.997 ± 0.47 μg/gm wt. vs. 0.087 ± 0.11 and 0.314 ± 0.18 μg/gm wt., p < 0.05). The study determined that increasing genistein dose did not change its bioavailability, perhaps due to the poor aqueous solubility. The retina's increased genistein could be due to increased permeability of blood-retinal barrier that occurs early in diabetes.
Collapse
Affiliation(s)
- T Hakami
- The Department of Clinical Pharmacology, Faculty of Medicine Jazan University, Saudi Arabia.
| | - M I Mahmoud
- The Department of Clinical Pharmacology, Faculty of Medicine Jazan University, Saudi Arabia; American University of Health Sciences, Signal Hill, CA, USA
| | - E de Juan
- Ophthalmology, University of California, San Francisco, CA, USA
| | - M Cooney
- Ophthalmology, NYU Medical Center, NY, USA
| |
Collapse
|
8
|
Aqueous Extract of Pepino Leaves Ameliorates Palmitic Acid-Induced Hepatocellular Lipotoxicity via Inhibition of Endoplasmic Reticulum Stress and Apoptosis. Antioxidants (Basel) 2021; 10:antiox10060903. [PMID: 34204987 PMCID: PMC8227507 DOI: 10.3390/antiox10060903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022] Open
Abstract
Saturated fatty acid is one of the important nutrients, but contributes to lipotoxicity in the liver, causing hepatic steatosis. Aqueous pepino leaf extract (AEPL) in the previous study revealed alleviated liver lipid accumulation in metabolic syndrome mice. The study aimed to investigate the mechanism of AEPL on saturated long-chain fatty acid-induced lipotoxicity in HepG2 cells. Moreover, the phytochemical composition of AEPL was identified in the present study. HepG2 cells treated with palmitic acid (PA) were used for exploring the effect of AEPL on lipid accumulation, apoptosis, ER stress, and antioxidant response. The chemical composition of AEPL was analyzed by HPLC-ESI-MS/MS. AEPL treatment reduced PA-induced ROS production and lipid accumulation. Further molecular results revealed that AEPL restored cytochrome c in mitochondria and decreased caspase 3 activity to cease apoptosis. In addition, AEPL in PA-stressed HepG2 cells significantly reduced the ER stress and suppressed SREBP-1 activation for decreasing lipogenesis. For defending PA-induced oxidative stress, AEPL promoted Nrf2 expression and its target genes, SOD1 and GPX3, expressions. The present study suggested that AEPL protected from PA-induced lipotoxicity through reducing ER stress, increasing antioxidant ability, and inhibiting apoptosis. The efficacy of AEPL on lipotoxicity was probably concerned with kaempferol and isorhamnetin derived compounds.
Collapse
|
9
|
Singh G. Resveratrol: nanocarrier-based delivery systems to enhance its therapeutic potential. Nanomedicine (Lond) 2020; 15:2801-2817. [PMID: 33191840 DOI: 10.2217/nnm-2020-0289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is a polyphenolic compound existing in trees, peanuts and grapes and exhibits a broad spectrum of promising therapeutic activities, but it is unclear whether this entity targets the sites of action after oral administration. In vivo applicability of resveratrol has limited success so far, mainly due to its incompetent systemic delivery resulting from its low water solubility, poor bioavailability and short biological half-life. First-pass metabolism and presence of enterohepatic recirculation create doubt on the biological application of high doses typically used for in vitro trials. To augment bioavailability, absorption and uptake of resveratrol by cellular internalization, countless approaches have been implemented which involve the use of nanocarriers. Nanocarriers are a well-known delivery system used to reduce first-pass hepatic metabolism, overcome enterohepatic recirculation and accelerate the absorption of drugs via lymphatic pathways.
Collapse
|
10
|
Brotons-Canto A, Gonzalez-Navarro CJ, Gurrea J, González-Ferrero C, Irache JM. Zein nanoparticles improve the oral bioavailability of resveratrol in humans. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Integrated metabolomics and network pharmacology strategy for ascertaining the quality marker of flavonoids for Sophora flavescens. J Pharm Biomed Anal 2020; 186:113297. [PMID: 32325403 DOI: 10.1016/j.jpba.2020.113297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
Abstract
Traditional Chinese medicines (TCMs) have been widely used in Asian countries for thousands of years due to their supreme quality and good clinical efficacy. However, the increasing demand for TCMs in recent decades warrants effective quality control methodology to avoid clinical problems. Therefore, comprehensive quality evaluation systems should be established for ensuring TCM's quality, in terms of chemical components, as well as bioactivity for identifying quality markers in TCM and developing suitable analytical methods for quality control. In this study, we selected Sophora flavescens (S. flavescens) as the research object and developed a novel integrated strategy combining metabolomics and network pharmacology to explore the quality markers. Firstly, we determined the targeted metabolomic profiles of seventy-four batches of S. flavescens (aged from 1 to 6 years) by UHPLC/QE-MS. Six potential markers were successfully screened, quantified and reverse-verified as the most influential effective compounds by UHPLC/QE-MS and multivariate statistical analysis. Secondly, the network of "components-targets-pathways" was constructed, and the pharmacological activities of six potential markers were predicted. Finally, we determined the anti-tumor activity of six flavonoids (kurarinone, norkurarinone, kuraridin, kushenol N, trifolirhizin, and genistein) as the quality markers for Sophora flavescens, evaluated their pharmacokinetic profiles and reviewed their existing pharmacological researches. Thus, integrated metabolomics and network pharmacology technology were applied for the effective discovery of quality markers of Chinese material medica.
Collapse
|