1
|
He L, Chen MJ, Zeng FR, Wang T, Wei-Luo, Fang DX, Guo SQ, Deng C, Zhao HB, Wang YZ. Multiple free-radical-trapping and hydrogen-bonding-enhanced polyurethane foams with long-lasting flame retardancy, aging resistance, and toughness. MATERIALS HORIZONS 2024; 11:4462-4471. [PMID: 38967543 DOI: 10.1039/d4mh00607k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Flexible polyurethane foam (FPUF) is a ubiquitous material utilized in furniture cushions, mattresses, and various technical applications. Despite the widespread use, FPUF faces challenges in maintaining long-lasting flame retardancy and aging resistance, particularly in harsh environments, while retaining mechanical robustness. Here, we present a novel approach to address these issues by enhancing FPUF through multiple free-radical-trapping and hydrogen-bonding mechanisms. A hindered amine phosphorus-containing polyol (DTAP) was designed and chemically introduced into FPUF. The distinctive synergy between hindered amine and phosphorus-containing structures enables the formation of multiple hydrogen bonds with urethane, while also effectively capturing free radicals across a broad temperature spectrum. As a result, incorporating only 5.1 wt% of DTAP led to the material successfully passing vertical burning tests and witnessing notable enhancements in tensile strength, elongation at break, and tear strength. Even after enduring accelerated thermal aging for 168 hours, the foam maintained exceptional flame retardancy and mechanical properties. This study offers novel insights into material enhancement, simultaneously achieving outstanding long-lasting flame retardancy, toughness, and anti-aging performance.
Collapse
Affiliation(s)
- Lei He
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ming-Jun Chen
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Fu-Rong Zeng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ting Wang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Wei-Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Dan-Xuan Fang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Shuai-Qi Guo
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Cong Deng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Lee GS, Kim JG, Kim JT, Lee CW, Cha S, Choi GB, Lim J, Padmajan Sasikala S, Kim SO. 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics, and Single Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307689. [PMID: 37777874 DOI: 10.1002/adma.202307689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Recent consecutive discoveries of various 2D materials have triggered significant scientific and technological interests owing to their exceptional material properties, originally stemming from 2D confined geometry. Ever-expanding library of 2D materials can provide ideal solutions to critical challenges facing in current technological trend of the fourth industrial revolution. Moreover, chemical modification of 2D materials to customize their physical/chemical properties can satisfy the broad spectrum of different specific requirements across diverse application areas. This review focuses on three particular emerging application areas of 2D materials: smart fibers, soft robotics, and single atom catalysts (SACs), which hold immense potentials for academic and technological advancements in the post-artificial intelligence (AI) era. Smart fibers showcase unconventional functionalities including healthcare/environmental monitoring, energy storage/harvesting, and antipathogenic protection in the forms of wearable fibers and textiles. Soft robotics aligns with future trend to overcome longstanding limitations of hard-material based mechanics by introducing soft actuators and sensors. SACs are widely useful in energy storage/conversion and environmental management, principally contributing to low carbon footprint for sustainable post-AI era. Significance and unique values of 2D materials in these emerging applications are highlighted, where the research group has devoted research efforts for more than a decade.
Collapse
Affiliation(s)
- Gang San Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jin Goo Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sujin Cha
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Go Bong Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Joonwon Lim
- Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suchithra Padmajan Sasikala
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
- Materials Creation, Seoul, 06179, Republic of Korea
| |
Collapse
|
3
|
Wang K, Li XE, Yuan G, Liu Z, Yang H, Li Z, Diao W, Xiao F, Wu K, Shi J. A Spear and Shield-Inspired Ar Plasma Safeguard Few-Layer Black Phosphore with Firefighting of Epoxy Resin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301430. [PMID: 37093557 DOI: 10.1002/smll.202301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Appearing as an innovative and efficient strategy, a facile strategy of a plasma ball mill is carried out to prepare few-layer black phosphorus nanosheets (BPNSs), for abating the fire risk of epoxy resin (EP). A spear and shield-inspired Ar plasma emergeed through a plasma ball mill to prevent Ar@BP nanosheets from oxidation compared with the preparation of BP nanosheets (MBPNSs) in a mechanical ball mill. The absorption coefficient in the synchrotron radiation spectrum is increased by 16.91%, indicating that BP is effectively protected by Ar proof. The Vienna ab initio simulation reveals that the combination of Ar@BP with oxygen cannot proceed spontaneously with the binding energy of 4.44 eV. With the introduction of 1.5 wt% Ar@BP, the total heat release (THR), total smoke release (TSR), total smoke production(TSP), CO, and CO2 yield, compared with that of EP, are descended by 30.40%, 24.41%, 24.10%, 33.23%, and 37.60%, respectively, indicating excellent flame retardancy property. It is attributed to the condensed and gas phase function. Meanwhile, the tensile strength and elongation at break increase by 27.92% and 56.04%, respectively, with the incorporation of 1.5 wt% Ar@BP.
Collapse
Affiliation(s)
- Kunxin Wang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Xiu-E Li
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Guoming Yuan
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Zhijun Liu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Hui Yang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Zhao Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Wenjie Diao
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Fei Xiao
- School of Safety Science and Emergency Management, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Kun Wu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Jun Shi
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
- New Materials Research Institute of CASCHEM (Chongqing) Co., Ltd, Chongqing, 400714, P. R. China
| |
Collapse
|
4
|
Zhou Y, Chu F, Ding L, Yang W, Zhang S, Xu Z, Qiu S, Hu W. MOF-derived 3D petal-like CoNi-LDH array cooperates with MXene to effectively inhibit fire and toxic smoke hazards of FPUF. CHEMOSPHERE 2022; 297:134134. [PMID: 35276116 DOI: 10.1016/j.chemosphere.2022.134134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The toxic smoke produced by the combustion of flexible polyurethane foam (FPUF) may not only caused casualties, but also polluted the environment. Here, double metal hydroxide derived from ZIF-67 (MOF-LDH) modified Ti3C2TX (Ti3C2TX@MOF-LDH) was innovatively designed to solve the serious smoke and fire hazards of FPUF. The FPUF nanocomposite containing 6 wt% Ti3C2Tx@MOF-LDH achieved a 16.1% reduction in total smoke production (TSP) along with 22.2% reduction in peak smoke production rate (PSPR), which greatly reduced the hazard of smoke. At the same time, toxic gases, such as carbon monoxide (CO), carbon dioxide (CO2), and aromatic compounds, showed the same reduction pattern. In addition, the heat release of FPUF nanomaterials was also suppressed. In particular, the FPUF/Ti3C2Tx@MOF-LDH 3.0 achieved 110.4% and 76.1% increase in compressive strength and tensile strength, respectively, confirming the effective mechanical enhancement. Therefore, this work provided a new reference for the preparation of high-performance FPUF nanocomposites with low smoke, low fire hazard and excellent mechanical properties.
Collapse
Affiliation(s)
- Yifan Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Fukai Chu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Longlong Ding
- Zhuhai Gree New Material Co., Ltd., 789 Jinji Road, Xiangzhou District, Zhuhai City, China
| | - Wenhao Yang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Shenghe Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Zhoumei Xu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Suilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
5
|
Jia P, Ma C, Lu J, Yang W, Jiang X, Jiang G, Yin Z, Qiu Y, Qian L, Yu X, Hu Y, Hu W, Wang B. Design of copper salt@graphene nanohybrids to accomplish excellent resilience and superior fire safety for flexible polyurethane foam. J Colloid Interface Sci 2022; 606:1205-1218. [PMID: 34492459 DOI: 10.1016/j.jcis.2021.08.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/14/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023]
Abstract
Flexible polyurethane foam (FPUF) is the most commonly used polyurethane, but its highly flammable characteristics makes it ignite easily and release a lot of heat and toxic gases. Here, the effect of different forms of copper salt modified graphene (rGO@CuO, rGO@Cu2O and rGO@CSOH) on improving the fire protection efficiency and mechanical property of FPUF is explored. Hybrid FPUF is characterized by thermogravimetric analysis (TGA), cone calorimeter, thermogravimetric analysis/Fourier transform infrared spectroscopy (TG-IR), tension, compression, and falling ball rebound testing. Compared with pure FPUF, the FPUF/rGO@CSOH show a significant decreasement in reducing the heat release of FPUF, the PHRR and THR are reduced by 36.9% and 29.4%, respectively. While the FPUF/rGO@Cu2O demonstrate excellent smoke and toxic gases suppression in FPUF, the PSPR and TSR are reduced by 24.6% and 51.9%, and the COP and COY are also reduced by 51.9% and 55.3%, respectively. After adding the copper salt hybrid, the buffering performance of FPUF did not change. Fortunately, the tensile and compressive strength increase obviously. The flame retardant and smoke suppression mechanism of hybrid FPUF has also been studied. This article gives a effective strategy for the preparation of FPUF with outstanding mechanical property, flame retardant and smoke suppression properties.
Collapse
Affiliation(s)
- Pengfei Jia
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Chao Ma
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Jingyi Lu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Wenhao Yang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Xin Jiang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Guangyong Jiang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Zhenting Yin
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Yong Qiu
- Petroleum and Chemical Industry Engineering Laboratory of Non-halogen Flame Retardants for Polymers, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, China
| | - Lijun Qian
- Petroleum and Chemical Industry Engineering Laboratory of Non-halogen Flame Retardants for Polymers, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Haidian District, Beijing 100048, China
| | - Xiaoli Yu
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
6
|
Effect of phosphorus-modified nickel phyllosilicates on the thermal stability, flame retardancy and mechanical property of epoxy composites. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02843-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Sideri IK, Tagmatarchis N. Chemically modified carbon nanostructures and 2D nanomaterials for fabrics performing under operational tension and extreme environmental conditions. MATERIALS HORIZONS 2021; 8:3187-3200. [PMID: 34731229 DOI: 10.1039/d1mh01077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The extensive research on carbon nanostructures and 2D nanomaterials will come to fruition once these materials steadily join everyday-life applications. Their chemical functionalization unlocks their potential as carriers of customized properties and counterparts to fabric fibers. The scope of the current review covers the chemical modification of carbon nanostructures and 2D nanomaterials for hybrid fabrics with enhanced qualities against critical operational and weather conditions, such as antibacterial, flame retardant, UV resistant, water repellent and high air and water vapor permeability activities.
Collapse
Affiliation(s)
- Ioanna K Sideri
- Theoretical and Physical Chemistry, Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry, Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
8
|
Dong F, Wang Y, Wang S, Shaghaleh H, Sun P, Huang X, Xu X, Wang S, Liu H. Flame-retarded polyurethane foam conferred by a bio-based nitrogen‑phosphorus-containing flame retardant. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Yin Z, Lu J, Hong N, Cheng W, Jia P, Wang H, Hu W, Wang B, Song L, Hu Y. Functionalizing Ti 3C 2T x for enhancing fire resistance and reducing toxic gases of flexible polyurethane foam composites with reinforced mechanical properties. J Colloid Interface Sci 2021; 607:1300-1312. [PMID: 34583035 DOI: 10.1016/j.jcis.2021.09.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/24/2023]
Abstract
Flexible polyurethane foam (FPUF) is the most used polyurethane, but the highly flammable characteristic limits its widespread usage. In this work, ZIF-8@Ti3C2Txwas synthesized to reduce the heat and toxic gases of FPUF. Flame-retardant FPUF was characterized by cone calorimeter (Cone), thermogravimetric analysis/fourier-transform infrared spectroscopy (TG-FTIR), tensileand compression tests. Compared with pure FPUF, these results showed that the peak of heat release rate (PHRR), total heat release (THR), CO and HCN of FPUF6 decreased by 46%, 69%, 27% and 43.5%, respectively. Moreover, the tensile and compression strength of FPUF6 demonstrated a 52% and 130% increment, respectively. The superior dual metal catalytical charring-forming effect and physical barrier effect of ZIF-8@Ti3C2Tx were achieved. In summary, a simple and reliable strategy for preparing flame-retardant FPUF with reinforced mechanical and fire safety properties was provided.
Collapse
Affiliation(s)
- Zhenting Yin
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Jingyi Lu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Ningning Hong
- The State Key Laboratory of Special Cable Technology of Shanghai Electric Cable Research Institute Co., Ltd., 1000 Junhong Road, Shanghai 200093, People's Republic of China
| | - Wenhua Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Pengfei Jia
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
10
|
Synthesis of Ethyl (Diethoxymethyl)phosphinate Derivatives and Their Flame Retardancy in Flexible Polyurethane Foam: Structure-flame Retardancy Relationships. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Recent Progress in Two-dimensional Nanomaterials Following Graphene for Improving Fire Safety of Polymer (Nano)composites. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2575-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Oliwa R, Ryszkowska J, Oleksy M, Auguścik-Królikowska M, Gzik M, Bartoń J, Budzik G. Effects of Various Types of Expandable Graphite and Blackcurrant Pomace on the Properties of Viscoelastic Polyurethane Foams. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1801. [PMID: 33917343 PMCID: PMC8038687 DOI: 10.3390/ma14071801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3-15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (-87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.
Collapse
Affiliation(s)
- Rafał Oliwa
- Department of Polymer Composites, Faculty of Chemistry, Rzeszow University of Technology, PL-35959 Rzeszow, Poland;
| | - Joanna Ryszkowska
- Department of Ceramics and Polymers, Faculty of Materials Science and Engineering, Warsaw University of Technology, PL-02507 Warsaw, Poland; (J.R.); (M.A.-K.); (M.G.); (J.B.)
| | - Mariusz Oleksy
- Department of Polymer Composites, Faculty of Chemistry, Rzeszow University of Technology, PL-35959 Rzeszow, Poland;
| | - Monika Auguścik-Królikowska
- Department of Ceramics and Polymers, Faculty of Materials Science and Engineering, Warsaw University of Technology, PL-02507 Warsaw, Poland; (J.R.); (M.A.-K.); (M.G.); (J.B.)
| | - Małgorzata Gzik
- Department of Ceramics and Polymers, Faculty of Materials Science and Engineering, Warsaw University of Technology, PL-02507 Warsaw, Poland; (J.R.); (M.A.-K.); (M.G.); (J.B.)
| | - Joanna Bartoń
- Department of Ceramics and Polymers, Faculty of Materials Science and Engineering, Warsaw University of Technology, PL-02507 Warsaw, Poland; (J.R.); (M.A.-K.); (M.G.); (J.B.)
| | - Grzegorz Budzik
- Department of Mechanical Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, PL-35959 Rzeszow, Poland;
| |
Collapse
|
13
|
Kim IJ, Ko JW, Song MS, Cheon JW, Lee DJ, Park JW, Yu S, Lee JH. Thermal and Flame Retardant Properties of Phosphate-Functionalized Silica/Epoxy Nanocomposites. MATERIALS 2020; 13:ma13235418. [PMID: 33260743 PMCID: PMC7730795 DOI: 10.3390/ma13235418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
We report a flame retardant epoxy nanocomposite reinforced with 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO)-tethered SiO2 (DOPO-t-SiO2) hybrid nanoparticles (NPs). The DOPO-t-SiO2 NPs were successfully synthesized through surface treatment of SiO2 NPs with (3-glycidyloxypropyl)trimethoxysilane (GPTMS), followed by a click reaction between GPTMS on SiO2 and DOPO. The epoxy nanocomposites with DOPO-t-SiO2 NPs as multifunctional additive exhibited not only high flexural strength and fracture toughness but also excellent flame retardant properties and thermal stability, compared to those of pristine epoxy and epoxy nanocomposites with a single additive of SiO2 or DOPO, respectively. Our approach allows a facile, yet effective strategy to synthesize a functional hybrid additive for developing flame retardant nanocomposites.
Collapse
Affiliation(s)
- Il Jin Kim
- New Functional Components Research Team, Korea Institute of Footwear and Leather Technology (KIFLT), Busan 47154, Korea; (I.J.K.); (J.W.K.); (M.S.S.); (J.W.C.); (D.J.L.)
- School of Chemical Engineering, Pusan National University, Busan 46421, Korea
| | - Jae Wang Ko
- New Functional Components Research Team, Korea Institute of Footwear and Leather Technology (KIFLT), Busan 47154, Korea; (I.J.K.); (J.W.K.); (M.S.S.); (J.W.C.); (D.J.L.)
- School of Chemical Engineering, Pusan National University, Busan 46421, Korea
| | - Min Seop Song
- New Functional Components Research Team, Korea Institute of Footwear and Leather Technology (KIFLT), Busan 47154, Korea; (I.J.K.); (J.W.K.); (M.S.S.); (J.W.C.); (D.J.L.)
| | - Ji Won Cheon
- New Functional Components Research Team, Korea Institute of Footwear and Leather Technology (KIFLT), Busan 47154, Korea; (I.J.K.); (J.W.K.); (M.S.S.); (J.W.C.); (D.J.L.)
- School of Chemical Engineering, Pusan National University, Busan 46421, Korea
| | - Dong Jin Lee
- New Functional Components Research Team, Korea Institute of Footwear and Leather Technology (KIFLT), Busan 47154, Korea; (I.J.K.); (J.W.K.); (M.S.S.); (J.W.C.); (D.J.L.)
| | - Jun Woo Park
- Next Generation Battery Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea;
| | - Seunggun Yu
- Insulation Materials Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Correspondence: (S.Y.); (J.H.L.)
| | - Jin Hong Lee
- School of Chemical Engineering, Pusan National University, Busan 46421, Korea
- Correspondence: (S.Y.); (J.H.L.)
| |
Collapse
|
14
|
Nabipour H, Wang X, Song L, Hu Y. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Carbohydr Polym 2020; 246:116641. [PMID: 32747276 DOI: 10.1016/j.carbpol.2020.116641] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
The present study reports the successful synthesis of the flame-retardant and smoke-suppressant flexible polyurethane foam (FPUF) through a fully bio-based coating. Hydroxyapatite (HAP) is added to the solutions containing sodium alginate (SA) and chitosan (CH), respectively, to create negative and positive polyelectrolytes for Layer-by-Layer (LbL) assembly. The influence of the solution concentrations and bilayers numbers deposited on the flame-retardant and mechanical properties of FPUF samples is investigated systematically. Benefitting from the presence of such a fully bio-based coating, the resultant FPUF affords excellent smoke-suppressant and flame-retardant features. In particular, the FPUF coated by 9 bilayers of HAP-SA/HAP-CH exhibits significantly declined peak heat release rate, total release rate and smoke production release by 77.7 %, 56.5 % and 53.8 %, respectively. The compression test verifies the coated FPUFs exhibit lower recovery properties compared with the uncoated one. These results demonstrate that a green and cost-effective strategy is provided for producing flame-retardant, anti-dripping and smoke-suppressant FPUFs.
Collapse
Affiliation(s)
- Hafezeh Nabipour
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Xin Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| |
Collapse
|