1
|
Capone F, Muntada O, Ramírez JC, Esplandiu MJ, Dedryvère R, Grimaud A, Lassalle-Kaiser B, Céolin D, Pérez-Murano F, Rueff JP, Fraxedas J. Development of hard X-ray photoelectron spectroscopy in liquid cells using optimized microfabricated silicon nitride membranes. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1505-1513. [PMID: 39405044 PMCID: PMC11542648 DOI: 10.1107/s1600577524008865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024]
Abstract
We present first hard X-ray photoelectron spectroscopy (HAXPES) results of aqueous salt solutions and dispersions of gold nanoparticles in liquid cells equipped with specially designed microfabricated thin silicon nitride membranes, with thickness in the 15-25 nm range, mounted in a high-vacuum-compatible environment. The experiments have been performed at the HAXPES endstation of the GALAXIES beamline at the SOLEIL synchrotron radiation facility. The low-stress membranes are fabricated from 100 mm silicon wafers using standard lithography techniques. Platinum alignment marks are added to the chips hosting the membranes to facilitate the positioning of the X-ray beam on the membrane by detecting the corresponding photoemission lines. Two types of liquid cells have been used, a static one built on an Omicron-type sample holder with the liquid confined in the cell container, and a circulating liquid cell, in which the liquid can flow in order to mitigate the effects due to beam damage. We demonstrate that the membranes are mechanically robust and able to withstand 1 bar pressure difference between the liquid inside the cell and vacuum, and the intense synchrotron radiation beam during data acquisition. This opens up new opportunities for spectroscopic studies of liquids.
Collapse
Affiliation(s)
- F. Capone
- Synchrotron SOLEILL’Orme des Merisiers91190Saint-AubinFrance
- PHENIXSorbonne Université, CNRS75005ParisFrance
| | - O. Muntada
- Institute of Microelectronics of Barcelona (IMB-CNM) CSIC, Campus UAB, 08193Bellaterra, Barcelona, Spain
| | - J. C. Ramírez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193Bellaterra, Barcelona, Spain
| | - M. J. Esplandiu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193Bellaterra, Barcelona, Spain
| | - R. Dedryvère
- IPREM, CNRS, University of Pau & Pays Adour, E2S UPPA, 64000Pau, France
| | - A. Grimaud
- Department of Chemistry, Merkert Chemistry CenterBoston CollegeChestnut HillMA02467USA
| | | | - D. Céolin
- Synchrotron SOLEILL’Orme des Merisiers91190Saint-AubinFrance
| | - F. Pérez-Murano
- Institute of Microelectronics of Barcelona (IMB-CNM) CSIC, Campus UAB, 08193Bellaterra, Barcelona, Spain
| | - J.-P. Rueff
- Synchrotron SOLEILL’Orme des Merisiers91190Saint-AubinFrance
- LCPMRSorbonne Université, CNRS75005ParisFrance
| | - Jordi Fraxedas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Parikh S, Limbachiya C. Electron interaction with DNA constituents in aqueous phase. Chemphyschem 2024; 25:e202300916. [PMID: 38259215 DOI: 10.1002/cphc.202300916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/24/2024]
Abstract
Electron driven chemistry of biomolecules in aqueous phase presents the realistic picture to study molecular processes. In this study we have investigated the interactions of electrons with the DNA constituents in their aqueous phase in order to obtain the quantities useful for DNA damage assessment. We have computed the inelastic mean free path (IMFP), mass stopping power (MSP) and absorbed dose (D) for the DNA constituents (Adenine, Cytosine, Guanine, Thymine and Uracil) in the aqueous medium from ionisation threshold to 5000 eV. We have modified complex optical potential formalism to include band gap of the systems to calculate inelastic cross sections which are used to estimate these entities. This is the maiden attempt to report these important quantities for the aqueous DNA constituents. We have compared our results with available data in gas and other phase and have observed explicable accord for IMFP and MSP. Since these are the first results of absorbed dose (D) for these compounds, we have explored present results vis-a-vis dose absorption in water.
Collapse
Affiliation(s)
- Smruti Parikh
- The Maharaja Sayajirao University of Baroda, Vadodara, 390 001
| | | |
Collapse
|
3
|
Das C, Roy R, Kedia M, Kot M, Zuo W, Félix R, Sobol T, Flege JI, Saliba M. Unraveling the Role of Perovskite in Buried Interface Passivation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56500-56510. [PMID: 37991727 DOI: 10.1021/acsami.3c13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Interfaces in perovskite solar cells play a crucial role in their overall performance, and therefore, detailed fundamental studies are needed for a better understanding. In the case of the classical n-i-p architecture, TiO2 is one of the most used electron-selective layers and can induce chemical reactions that influence the performance of the overall device stack. The interfacial properties at the TiO2/perovskite interface are often neglected, owing to the difficulty in accessing this interface. Here, we use X-rays of variable energies to study the interface of (compact and mesoporous) TiO2/perovskite in such a n-i-p architecture. The X-ray photoelectron spectroscopy and X-ray absorption spectroscopy methods show that the defect states present in the TiO2 layer are passivated by a chemical interaction of the perovskite precursor solution during the formation of the perovskite layer and form an organic layer at the interface. Such passivation of intrinsic defects in TiO2 removes charge recombination centers and shifts the bands upward. Therefore, interface defect passivation by oxidation of Ti3+ states, the organic cation layer, and an upward band bending at the TiO2/perovskite interface explain the origin of an improved electron extraction and hole-blocking nature of TiO2 in the n-i-p perovskite solar cells.
Collapse
Affiliation(s)
- Chittaranjan Das
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
- Helmholtz Young Investigator Group, IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rajarshi Roy
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Mayank Kedia
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
- Helmholtz Young Investigator Group, IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Małgorzata Kot
- Chair of Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Straße 1, 03046 Cottbus, Germany
| | - Weiwei Zuo
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Roberto Félix
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Tomasz Sobol
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 31-007 Krakow, Poland
| | - Jan Ingo Flege
- Chair of Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Straße 1, 03046 Cottbus, Germany
| | - Michael Saliba
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
- Helmholtz Young Investigator Group, IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
4
|
Huerta-Juan Y, Xicohténcatl-Hernández N, Massillon-Jl G. Linear energy transfer (LET) distribution outside small radiotherapy field edges produced by 6 MV X-rays. Sci Rep 2023; 13:21466. [PMID: 38052891 PMCID: PMC10697984 DOI: 10.1038/s41598-023-44409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/07/2023] [Indexed: 12/07/2023] Open
Abstract
In modern radiotherapy with photons, the absorbed dose outside the radiation field is generally investigated. But it is well known that the biological damage depends not only on the absorbed dose but also on LET. This work investigated the dose-average LET (LΔ,D) outside several small radiotherapy fields to provide information that can help for better evaluating the biological effect in organs at risk close to the tumour volume. The electron fluences produced in liquid water by a 6 MV X-rays Varian iX linac were calculated using the EGSnrc Monte Carlo code. With the electron spectra, LΔ,D calculations were made for eight open small square fields and the reference field at water depths of 0.15 cm, 1.35 cm, 9.85 cm and 19.85 cm and several off-axis distances. The variation of LΔ,D from the centre of the beam to 2 cm outside the field's edge depends on the field size and water depth. Using radiobiological data reported in the literature for chromosomal aberrations as an endpoint for the induction of dicentrics determined in Human Lymphocytes, we estimated the maximum low-dose relative biological effectiveness, (RBEM) finding an increase of up to 100% from the centre of the beam to 2 cm from the field's edge.
Collapse
Affiliation(s)
- Y Huerta-Juan
- Instituto de Física, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - N Xicohténcatl-Hernández
- Instituto de Física, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Departamento de Matemáticas, Universidad Popular Autónoma del Estado de Puebla, 72410, Puebla, Mexico
| | - G Massillon-Jl
- Instituto de Física, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Gadeyne T, Zhang P, Schild A, Wörner HJ. Low-energy electron distributions from the photoionization of liquid water: a sensitive test of electron mean free paths. Chem Sci 2022; 13:1675-1692. [PMID: 35282614 PMCID: PMC8826766 DOI: 10.1039/d1sc06741a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/21/2022] Open
Abstract
The availability of accurate mean free paths for slow electrons (<50 eV) in water is central to the understanding of many electron-driven processes in aqueous solutions, but their determination poses major challenges to experiment and theory alike. Here, we describe a joint experimental and theoretical study demonstrating a novel approach for testing, and, in the future, refining such mean free paths. We report the development of Monte-Carlo electron-trajectory simulations including elastic and inelastic electron scattering, as well as energy loss and secondary-electron production to predict complete photoelectron spectra of liquid water. These simulations are compared to a new set of photoelectron spectra of a liquid-water microjet recorded over a broad range of photon energies in the extreme ultraviolet (20-57 eV). Several previously published sets of scattering parameters are investigated, providing direct and intuitive insights on how they influence the shape of the low-energy electron spectra. A pronounced sensitivity to the escape barrier is also demonstrated. These simulations considerably advance our understanding of the origin of the prominent low-energy electron distributions in photoelectron spectra of liquid water and clarify the influence of scattering parameters and the escape barrier on their shape. They moreover describe the reshaping and displacement of low-energy photoelectron bands caused by vibrationally inelastic scattering. Our work provides a quantitative basis for the interpretation of the complete photoelectron spectra of liquids and opens the path to fully predictive simulations of low-energy scattering in liquid water.
Collapse
Affiliation(s)
- Titouan Gadeyne
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
- Département de Chimie, École Normale Supérieure, PSL University 75005 Paris France
| | - Pengju Zhang
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Axel Schild
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Hans Jakob Wörner
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
6
|
Shinotsuka H, Tanuma S, Powell CJ. Calculations of electron inelastic mean free paths. XIII. Data for 14 organic compounds and water over the 50 eV to 200 keV range with the relativistic full Penn algorithm. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroshi Shinotsuka
- Materials Data Platform Center National Institute for Materials Science Ibaraki Japan
| | - Shigeo Tanuma
- Materials Data Platform Center National Institute for Materials Science Ibaraki Japan
| | - Cedric J. Powell
- Associate, Materials Measurement Science Division National Institute of Standards and Technology Gaithersburg MD USA
| |
Collapse
|
7
|
Sinha N, Antony B. Mean Free Paths and Cross Sections for Electron Scattering from Liquid Water. J Phys Chem B 2021; 125:5479-5488. [PMID: 34014676 DOI: 10.1021/acs.jpcb.0c10781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron collision with liquid water is theoretically investigated and reported in this article. The range of projectile energy considered is 10-5000 eV, covering all major channels, viz., ionization, inelastic, elastic, and total scattering. The liquid phase electron charge density and static potential are generated and used in the calculation under a spherical complex optical potential formalism to achieve the goals. For the ionization channel, the complex scattering potential-ionization contribution method is used. The agreement with available theoretical data is satisfactory. The study on the total electron scattering from liquid water, using a common method for elastic and inelastic cross sections, is new and requires further attempts to support the reported data.
Collapse
Affiliation(s)
- Nidhi Sinha
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India
| | - Bobby Antony
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India
| |
Collapse
|
8
|
Massillon-Jl G. Future directions on low-energy radiation dosimetry. Sci Rep 2021; 11:10569. [PMID: 34012097 PMCID: PMC8134474 DOI: 10.1038/s41598-021-90152-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 01/02/2023] Open
Abstract
For more than one century, low-energy (< 100 keV) photons (x-rays and gamma) have been widely used in different areas including biomedical research and medical applications such as mammography, fluoroscopy, general radiography, computed tomography, and brachytherapy treatment, amongst others. It has been demonstrated that most of the electrons produced by low photon energy beams have energies below 10 keV. However, the physical processes by which these low energy electrons interact with matter are not yet well understood. Besides, it is generally assumed that all the energy deposited within a dosimeter sensitive volume is transformed into a response. But such an assumption could be incorrect since part of the energy deposited might be used to create defects or damages at the molecular and atomic level. Consequently, the relationship between absorbed dose and dosimeter response can be mistaken. During the last few years, efforts have been made to identify models that allow to understand these interaction processes from a quantum mechanical point of view. Some approaches are based on electron-beam − solid-state-interaction models to calculate electron scattering cross-sections while others consider the density functional theory method to localize low energy electrons and evaluate the energy loss due to the creations of defects and damages in matter. The results obtained so far could be considered as a starting point. This paper presents some methodologies based on fundamental quantum mechanics which can be considered useful for dealing with low-energy interactions.
Collapse
Affiliation(s)
- G Massillon-Jl
- Instituto de Física, Universidad Nacional Autónoma de México, 04510, Coyoacan Mexico City, Mexico.
| |
Collapse
|