1
|
Rider MS, Johnson EC, Bates D, Wardley WP, Gordon RH, Oliver RDJ, Armes SP, Leggett GJ, Barnes WL. Strong coupling in molecular systems: a simple predictor employing routine optical measurements. NANOPHOTONICS 2024; 13:2453-2467. [PMID: 38836102 PMCID: PMC11147498 DOI: 10.1515/nanoph-2023-0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/06/2024]
Abstract
We provide a simple method that enables readily acquired experimental data to be used to predict whether or not a candidate molecular material may exhibit strong coupling. Specifically, we explore the relationship between the hybrid molecular/photonic (polaritonic) states and the bulk optical response of the molecular material. For a given material, this approach enables a prediction of the maximum extent of strong coupling (vacuum Rabi splitting), irrespective of the nature of the confined light field. We provide formulae for the upper limit of the splitting in terms of the molar absorption coefficient, the attenuation coefficient, the extinction coefficient (imaginary part of the refractive index) and the absorbance. To illustrate this approach, we provide a number of examples, and we also discuss some of the limitations of our approach.
Collapse
Affiliation(s)
- Marie S. Rider
- Department of Physics and Astronomy, University of Exeter, Stocker Road, DevonEX4 4QL, UK
| | - Edwin C. Johnson
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Demetris Bates
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - William P. Wardley
- Department of Physics and Astronomy, University of Exeter, Stocker Road, DevonEX4 4QL, UK
| | - Robert H. Gordon
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Robert D. J. Oliver
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Graham J. Leggett
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - William L. Barnes
- Department of Physics and Astronomy, University of Exeter, Stocker Road, DevonEX4 4QL, UK
| |
Collapse
|
2
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
3
|
Mandal A, Xu D, Mahajan A, Lee J, Delor M, Reichman DR. Microscopic Theory of Multimode Polariton Dispersion in Multilayered Materials. NANO LETTERS 2023; 23:4082-4089. [PMID: 37103998 DOI: 10.1021/acs.nanolett.3c01017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We develop a microscopic theory for the multimode polariton dispersion in materials coupled to cavity radiation modes. Starting from a microscopic light-matter Hamiltonian, we devise a general strategy for obtaining simple matrix models of polariton dispersion curves based on the structure and spatial location of multilayered 2D materials inside the optical cavity. Our theory exposes the connections between seemingly distinct models that have been employed in the literature and resolves an ambiguity that has arisen concerning the experimental description of the polaritonic band structure. We demonstrate the applicability of our theoretical formalism by fabricating various geometries of multilayered perovskite materials coupled to cavities and demonstrating that our theoretical predictions agree with the experimental results presented here.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
4
|
Thomas PA, Menghrajani KS, Barnes WL. All-optical control of phase singularities using strong light-matter coupling. Nat Commun 2022; 13:1809. [PMID: 35383172 PMCID: PMC8983677 DOI: 10.1038/s41467-022-29399-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Strong light-matter coupling occurs when the rate of energy exchange between an electromagnetic mode and a molecular ensemble exceeds competing dissipative processes. The study of strong coupling has been motivated by applications such as lasing and the modification of chemical processes. Here we show that strong coupling can be used to create phase singularities. Many nanophotonic structures have been designed to generate phase singularities for use in sensing and optoelectronics. We utilise the concept of cavity-free strong coupling, where electromagnetic modes sustained by a material are strong enough to strongly couple to the material's own molecular resonance, to create phase singularities in a simple thin film of organic molecules. We show that the use of photochromic molecules allows for all-optical control of phase singularities. Our results suggest what we believe to be both a new application for strong light-matter coupling and a new, simplified, more versatile means of manipulating phase singularities.
Collapse
Affiliation(s)
- Philip A Thomas
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
| | | | - William L Barnes
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
| |
Collapse
|
5
|
Nagarajan K, Thomas A, Ebbesen TW. Chemistry under Vibrational Strong Coupling. J Am Chem Soc 2021; 143:16877-16889. [PMID: 34609858 DOI: 10.1021/jacs.1c07420] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade, the possibility of manipulating chemistry and material properties using hybrid light-matter states has stimulated considerable interest. Hybrid light-matter states can be generated by placing molecules in an optical cavity that is resonant with a molecular transition. Importantly, the hybridization occurs even in the dark because the coupling process involves the zero-point fluctuations of the optical mode (a.k.a. vacuum field) and the molecular transition. In other words, unlike photochemistry, no real photon is required to induce this strong coupling phenomenon. Strong coupling in general, but vibrational strong coupling (VSC) in particular, offers exciting possibilities for molecular and, more generally, material science. Not only is it a new tool to control chemical reactivity, but it also gives insight into which vibrations are involved in a reaction. This Perspective gives the underlying fundamentals of light-matter strong coupling, including a mini-tutorial on the practical issues to achieve VSC. Recent advancements in "vibro-polaritonic chemistry" and related topics are presented along with the challenges for this exciting new field.
Collapse
Affiliation(s)
- Kalaivanan Nagarajan
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Anoop Thomas
- Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Thomas W Ebbesen
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
6
|
Vasista AB, Menghrajani KS, Barnes WL. Polariton assisted photoemission from a layered molecular material: role of vibrational states and molecular absorption. NANOSCALE 2021; 13:14497-14505. [PMID: 34473173 PMCID: PMC8412029 DOI: 10.1039/d1nr03913j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The way molecules absorb, transfer, and emit light can be modified by coupling them to optical cavities. The extent of the modification is often defined by the cavity-molecule coupling strength, which depends on the number of coupled molecules. We experimentally and numerically study the evolution of photoemission from a thin layered J-aggregated molecular material strongly coupled to a Fabry-Perot microcavity as a function of the number of coupled layers. We unveil an important difference between the strong coupling signatures obtained from reflection spectroscopy and from polariton assisted photoluminescence. We also study the effect of the vibrational modes supported by the molecular material on the polariton assisted emission both for a focused laser beam and for normally incident excitation, for two different excitation wavelengths: a laser in resonance with the lower polariton branch, and a laser not in resonance. We found that Raman scattered photons appear to play an important role in populating the lower polariton branch, especially when the system was excited with a laser in resonance with the lower polariton branch. We also found that the polariton assisted photoemission depends on the extent of modification of the molecular absorption induced by the molecule-cavity coupling.
Collapse
|
7
|
Thomas PA, Menghrajani KS, Barnes WL. Cavity-Free Ultrastrong Light-Matter Coupling. J Phys Chem Lett 2021; 12:6914-6918. [PMID: 34280306 PMCID: PMC8327311 DOI: 10.1021/acs.jpclett.1c01695] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/02/2021] [Indexed: 05/10/2023]
Abstract
Strong coupling between light and matter can occur when the interaction strength between a confined electromagnetic field and a molecular resonance exceeds the losses to the environment, leading to the formation of hybrid light-matter states known as polaritons. Ultrastrong coupling occurs when the coupling strength becomes comparable to the transition energy of the system. It is widely assumed that the confined electromagnetic fields necessary for strong coupling to organic molecules can only be achieved with external structures such as Fabry-Pérot resonators, plasmonic nanostructures, or dielectric resonators. Here we show experimentally that such structures are unnecessary and that a simple dielectric film of dye molecules supports sufficiently modified vacuum electromagnetic fields to enable room-temperature ultrastrong light-matter coupling. Our results may be of use in the design of experiments to probe polaritonic chemistry and suggest that polaritonic states are perhaps easier to realize than previously thought.
Collapse
Affiliation(s)
- Philip A. Thomas
- Department of Physics and
Astronomy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| | - Kishan S. Menghrajani
- Department of Physics and
Astronomy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| | - William L. Barnes
- Department of Physics and
Astronomy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| |
Collapse
|
8
|
Gonçalves MR. Strong Coupling, Hyperbolic Metamaterials and Optical Tamm States in Layered Dielectric-Plasmonic Media. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.638442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thin films of noble metals with thickness smaller than the wavelength of light constitute one of the most investigated structures in plasmonics. The fact that surface plasmon modes can be excited in these films by different ways and the simplicity of fabrication offer ideal conditions for applications in nanophotonics. The generation of optical modes in coupled Fabry-Pérot planar cavities and their migration to hyperbolic metamaterials is investigated. Coupled Fabry-Pérot cavities behave as simple coupled resonators. When the intra-cavity media have different refractive indices in two or more coupled cavities resonance anti-crossings arise. The application of this kind of strong coupling in sensing is foreseen. Beyond the cavity modes excited by propagating waves, also long range plasmonic guided modes can be excited using emitters or evanescent waves. A periodic structure made by multiple plasmonic films and dielectrica supports bulk plasmons, of large propagation constant and increasing field amplitude. The optical response of these structures approaches that of the hyperbolic metamaterial predicted by the effective medium theory. Light can propagate with full transmission in a structure made of a photonic crystal based on quarter wavelength layers and a second photonic crystal with an overlapping forbidden band, but presenting a non-trivial topological phase achieved by band inversion. This is due to excitation of optical Tamm states at the boundary between both crystals. The extension to multiple optical Tamm states using dielectric and plasmonic materials and the symmetries of the edge states is investigated.
Collapse
|
9
|
Hertzog M, Munkhbat B, Baranov D, Shegai T, Börjesson K. Enhancing Vibrational Light-Matter Coupling Strength beyond the Molecular Concentration Limit Using Plasmonic Arrays. NANO LETTERS 2021; 21:1320-1326. [PMID: 33502874 PMCID: PMC7883392 DOI: 10.1021/acs.nanolett.0c04014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Vibrational strong coupling is emerging as a promising tool to modify molecular properties by making use of hybrid light-matter states known as polaritons. Fabry-Perot cavities filled with organic molecules are typically used, and the molecular concentration limits the maximum reachable coupling strength. Developing methods to increase the coupling strength beyond the molecular concentration limit are highly desirable. In this Letter, we investigate the effect of adding a gold nanorod array into a cavity containing pure organic molecules using FT-IR microscopy and numerical modeling. Incorporation of the plasmonic nanorod array that acts as artificial molecules leads to an order of magnitude increase in the total coupling strength for the cavity with matching resonant frequency filled with organic molecules. Additionally, we observe a significant narrowing of the plasmon line width inside the cavity. We anticipate that these results will be a step forward in exploring vibropolaritonic chemistry and may be used in plasmon based biosensors.
Collapse
Affiliation(s)
- Manuel Hertzog
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Battulga Munkhbat
- Department
of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Denis Baranov
- Department
of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemigården 4, 412 96, Gothenburg, Sweden
| |
Collapse
|