1
|
Huang J, Ojambati OS, Climent C, Cuartero-Gonzalez A, Elliott E, Feist J, Fernández-Domínguez AI, Baumberg JJ. Influence of Quadrupolar Molecular Transitions within Plasmonic Cavities. ACS NANO 2024; 18:14487-14495. [PMID: 38787356 PMCID: PMC11155255 DOI: 10.1021/acsnano.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Optical nanocavities have revolutionized the manipulation of radiative properties of molecular and semiconductor emitters. Here, we investigate the amplified photoluminescence arising from exciting a dark transition of β-carotene molecules embedded within plasmonic nanocavities. Integrating a molecular monolayer into nanoparticle-on-mirror nanostructures unveils enhancements surpassing 4 orders of magnitude in the initially light-forbidden excitation. Such pronounced enhancements transcend conventional dipolar mechanisms, underscoring the presence of alternative enhancement pathways. Notably, Fourier-plane scattering spectroscopy shows that the photoluminescence excitation resonance aligns with a higher-order plasmonic cavity mode, which supports strong field gradients. Combining quantum chemistry calculations with electromagnetic simulations reveals an important interplay between the Franck-Condon quadrupole and Herzberg-Teller dipole contributions in governing the absorption characteristics of this dark transition. In contrast to free space, the quadrupole moment plays a significant role in photoluminescence enhancement within nanoparticle-on-mirror cavities. These findings provide an approach to access optically inactive transitions, promising advancements in spectroscopy and sensing applications.
Collapse
Affiliation(s)
- Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Oluwafemi S. Ojambati
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Clàudia Climent
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alvaro Cuartero-Gonzalez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Mechanical
Engineering Department, ICAI, Universidad
Pontificia Comillas, Madrid 28015, Spain
| | - Eoin Elliott
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
| | - Antonio I. Fernández-Domínguez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
2
|
Goerlitzer ESA, Zapata-Herrera M, Ponomareva E, Feller D, Garcia-Etxarri A, Karg M, Aizpurua J, Vogel N. Molecular-Induced Chirality Transfer to Plasmonic Lattice Modes. ACS PHOTONICS 2023; 10:1821-1831. [PMID: 37363627 PMCID: PMC10288536 DOI: 10.1021/acsphotonics.3c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 06/28/2023]
Abstract
Molecular chirality plays fundamental roles in biology. The chiral response of a molecule occurs at a specific spectral position, determined by its molecular structure. This fingerprint can be transferred to other spectral regions via the interaction with localized surface plasmon resonances of gold nanoparticles. Here, we demonstrate that molecular chirality transfer occurs also for plasmonic lattice modes, providing a very effective and tunable means to control chirality. We use colloidal self-assembly to fabricate non-close packed, periodic arrays of achiral gold nanoparticles, which are embedded in a polymer film containing chiral molecules. In the presence of the chiral molecules, the surface lattice resonances (SLRs) become optically active, i.e., showing handedness-dependent excitation. Numerical simulations with varying lattice parameters show circular dichroism peaks shifting along with the spectral positions of the lattice modes, corroborating the chirality transfer to these collective modes. A semi-analytical model based on the coupling of single-molecular and plasmonic resonances rationalizes this chirality transfer.
Collapse
Affiliation(s)
- Eric Sidney Aaron Goerlitzer
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Mario Zapata-Herrera
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Ekaterina Ponomareva
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Déborah Feller
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Aitzol Garcia-Etxarri
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque
Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Matthias Karg
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Javier Aizpurua
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| |
Collapse
|
3
|
Hu S, Elliott E, Sánchez‐Iglesias A, Huang J, Guo C, Hou Y, Kamp M, Goerlitzer ESA, Bedingfield K, de Nijs B, Peng J, Demetriadou A, Liz‐Marzán LM, Baumberg JJ. Full Control of Plasmonic Nanocavities Using Gold Decahedra-on-Mirror Constructs with Monodisperse Facets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207178. [PMID: 36737852 PMCID: PMC10104671 DOI: 10.1002/advs.202207178] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Bottom-up assembly of nanoparticle-on-mirror (NPoM) nanocavities enables precise inter-metal gap control down to ≈ 0.4 nm for confining light to sub-nanometer scales, thereby opening opportunities for developing innovative nanophotonic devices. However limited understanding, prediction, and optimization of light coupling and the difficulty of controlling nanoparticle facet shapes restricts the use of such building blocks. Here, an ultraprecise symmetry-breaking plasmonic nanocavity based on gold nanodecahedra is presented, to form the nanodecahedron-on-mirror (NDoM) which shows highly consistent cavity modes and fields. By characterizing > 20 000 individual NDoMs, the variability of light in/output coupling is thoroughly explored and a set of robust higher-order plasmonic whispering gallery modes uniquely localized at the edges of the triangular facet in contact with the metallic substrate is found. Assisted by quasinormal mode simulations, systematic elaboration of NDoMs is proposed to give nanocavities with near hundred-fold enhanced radiative efficiencies. Such systematically designed and precisely-assembled metallic nanocavities will find broad application in nanophotonic devices, optomechanics, and surface science.
Collapse
Affiliation(s)
- Shu Hu
- Nanophotonics CentreDepartment of PhysicsCavendish LaboratoryUniversity of CambridgeCambridgeEnglandCB3 0HEUK
| | - Eoin Elliott
- Nanophotonics CentreDepartment of PhysicsCavendish LaboratoryUniversity of CambridgeCambridgeEnglandCB3 0HEUK
| | - Ana Sánchez‐Iglesias
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 194Donostia‐San Sebastián20014Spain
| | - Junyang Huang
- Nanophotonics CentreDepartment of PhysicsCavendish LaboratoryUniversity of CambridgeCambridgeEnglandCB3 0HEUK
| | - Chenyang Guo
- Nanophotonics CentreDepartment of PhysicsCavendish LaboratoryUniversity of CambridgeCambridgeEnglandCB3 0HEUK
| | - Yidong Hou
- Nanophotonics CentreDepartment of PhysicsCavendish LaboratoryUniversity of CambridgeCambridgeEnglandCB3 0HEUK
| | - Marlous Kamp
- Nanophotonics CentreDepartment of PhysicsCavendish LaboratoryUniversity of CambridgeCambridgeEnglandCB3 0HEUK
| | - Eric S. A. Goerlitzer
- Nanophotonics CentreDepartment of PhysicsCavendish LaboratoryUniversity of CambridgeCambridgeEnglandCB3 0HEUK
| | - Kalun Bedingfield
- School of Physics and AstronomyUniversity of BirminghamBirminghamB15 2TTUK
| | - Bart de Nijs
- Nanophotonics CentreDepartment of PhysicsCavendish LaboratoryUniversity of CambridgeCambridgeEnglandCB3 0HEUK
| | - Jialong Peng
- Nanophotonics CentreDepartment of PhysicsCavendish LaboratoryUniversity of CambridgeCambridgeEnglandCB3 0HEUK
- Present address:
College of Advanced Interdisciplinary Studies and Hunan Provincial Key Laboratory of Novel Nano‐Optoelectronic Information Materials and DevicesNational University of Defense TechnologyChangsha410073P. R. China
| | - Angela Demetriadou
- School of Physics and AstronomyUniversity of BirminghamBirminghamB15 2TTUK
| | - Luis M. Liz‐Marzán
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 194Donostia‐San Sebastián20014Spain
- IkerbasqueBasque Foundation for ScienceBilbao43009Spain
| | - Jeremy J. Baumberg
- Nanophotonics CentreDepartment of PhysicsCavendish LaboratoryUniversity of CambridgeCambridgeEnglandCB3 0HEUK
| |
Collapse
|