1
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Leyva-Grado VH, Marin A, Hlushko R, Yunus AS, Promeneur D, Luckay A, Lazaro GG, Hamm S, Dimitrov AS, Broder CC, Andrianov AK. Nano-Assembled Polyphosphazene Delivery System Enables Effective Intranasal Immunization with Nipah Virus Subunit Vaccine. ACS APPLIED BIO MATERIALS 2024; 7:4133-4141. [PMID: 38812435 PMCID: PMC11321498 DOI: 10.1021/acsabm.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The ultimate vaccine against infections caused by Nipah virus should be capable of providing protection at the respiratory tract─the most probable port of entry for this pathogen. Intranasally delivered vaccines, which target nasal-associated lymphoid tissue and induce both systemic and mucosal immunity, are attractive candidates for enabling effective vaccination against this lethal disease. Herein, the water-soluble polyphosphazene delivery vehicle assembles into nanoscale supramolecular constructs with the soluble extracellular portion of the Hendra virus attachment glycoprotein─a promising subunit vaccine antigen against both Nipah and Hendra viruses. These supramolecular constructs signal through Toll-like receptor 7/8 and promote binding interactions with mucin─an important feature of effective mucosal adjuvants. High mass contrast of phosphorus-nitrogen backbone of the polymer enables a successful visualization of nanoconstructs in their vitrified state by cryogenic electron microscopy. Here, we characterize the self-assembly of polyphosphazene macromolecule with biologically relevant ligands by asymmetric flow field flow fractionation, dynamic light scattering, fluorescence spectrophotometry, and turbidimetric titration methods. Furthermore, a polyphosphazene-enabled intranasal Nipah vaccine candidate demonstrates the ability to induce immune responses in hamsters and shows superiority in inducing total IgG and neutralizing antibodies when benchmarked against the respective clinical stage alum adjuvanted vaccine. The results highlight the potential of polyphosphazene-enabled nanoassemblies in the development of intranasal vaccines.
Collapse
Affiliation(s)
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Raman Hlushko
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | | | - Amara Luckay
- Auro Vaccines LLC, 401 Middletown Rd. Bldg. 205, Pearl River, NY, 10965
| | - Glorie G. Lazaro
- Auro Vaccines LLC, 401 Middletown Rd. Bldg. 205, Pearl River, NY, 10965
| | - Stefan Hamm
- Auro Vaccines LLC, 401 Middletown Rd. Bldg. 205, Pearl River, NY, 10965
| | - Antony S. Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| |
Collapse
|
3
|
Hlushko R, Pozharski E, Prabhu VM, Andrianov AK. Directly visualizing individual polyorganophosphazenes and their single-chain complexes with proteins. COMMUNICATIONS MATERIALS 2024; 5:36. [PMID: 38817739 PMCID: PMC11139433 DOI: 10.1038/s43246-024-00476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/07/2024] [Indexed: 06/01/2024]
Abstract
Polyorganophosphazenes are water-soluble macromolecules with immunoadjuvant activity that self-assemble with proteins to enable biological functionality. Direct imaging by cryogenic electron microscopy uncovers the coil structure of those highly charged macromolecules. The successful visualization of individual polymer chains within the vitrified state is achieved in the absence of additives for contrast enhancement and is attributed to the high mass contrast of the inorganic backbone. Upon assembly with proteins, multiple protein copies bind at the single polymer chain level resulting in structures reminiscent of compact spherical complexes or stiffened coils. The outcome depends on protein characteristics and cannot be deduced by commonly used characterization techniques, such as light scattering, thus revealing direct morphological insights crucial for understanding biological activity. Atomic force microscopy supports the morphology outcomes while advanced analytical techniques confirm protein-polymer binding. The chain visualization methodology provides tools for gaining insights into the processes of supramolecular assembly and mechanistic aspects of polymer enabled vaccine delivery.
Collapse
Affiliation(s)
- Raman Hlushko
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States of America
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States of America
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology‡, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States of America
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States of America
| |
Collapse
|
4
|
Marin A, Kethanapalli SH, Andrianov AK. Immunopotentiating Polyphosphazene Delivery Systems: Supramolecular Self-Assembly and Stability in the Presence of Plasma Proteins. Mol Pharm 2024; 21:791-800. [PMID: 38206583 PMCID: PMC11164237 DOI: 10.1021/acs.molpharmaceut.3c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Studies on the biological performance of nanomedicines have been increasingly focused on the paradigm shifting role of the protein corona, which is imminently formed once the formulation is placed in a complex physiological environment. This phenomenon is predominantly studied in the context of protein adsorption science, while such interactions for water-soluble systems remain virtually unexplored. In particular, the importance of plasma protein binding is yet to be understood for pharmaceuticals designed on the basis of supramolecular architectures, which generally lack well-defined surfaces. Water-soluble ionic polyphosphazenes, clinically proven immunoadjuvants and vaccine delivery vehicles, represent an example of a system that requires supramolecular coassembly with antigenic proteins to attain an optimal immunopotentiating effect. Herein, the self-assembly behavior and stability of noncovalently bound complexes on the basis of a model antigen─hen egg lysozyme─and polyphosphazene adjuvant are studied in the presence of plasma proteins utilizing isothermal calorimetry, asymmetric flow field flow fractionation, dynamic light scattering, and size exclusion chromatography methods. The results demonstrate that although plasma proteins, such as human serum albumin (HSA), show detectable avidity to polyphosphazene, the strength of such interactions is significantly lower than that for the model antigen. Furthermore, thermodynamic parameters indicate different models of binding: entropy driven, which is consistent with the counterion release mechanism for albumin versus electrostatic interactions for lysozyme, which are characterized by beneficial enthalpy changes. In vitro protein release experiments conducted in Franz diffusion cells using enzyme-linked immunoassay detection suggest that the antigen-adjuvant complex stability is not adversely affected by the presence of the most physiologically abundant protein, which confirms the importance of the delivery modality for this immunoadjuvant. Moreover, HSA shows an unexpected stabilizing effect on complexes with high antigen load─an important consideration for further development of polyphosphazene adjuvanted vaccine formulations and their functional assessment.
Collapse
Affiliation(s)
- Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Sri H. Kethanapalli
- University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|