1
|
Nguyen HD, Kim MS. In silico exploration of promising heterocyclic molecules against both acetylcholinesterase and butyrylcholinesterase enzymes. J Biomol Struct Dyn 2024; 42:7128-7149. [PMID: 37477246 DOI: 10.1080/07391102.2023.2238068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
We aimed to further explore the relationship between heterocyclic molecules and their associated biological activities for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. A dataset of 36 heterocycles was used to predict the activity of AChE and BChE inhibitors (the pIC50 values ranged from 7.84 to 12.49). A quantitative structure-activity relationship (QSAR) study was generated with the help of four different models (BMA, MNLR, MLR, and ANN). Four of the models were statistically acceptable based on both internal and external validation. The descriptors used in the models were similar to the X-ray structures of the target-ligand complexes, which made it possible to predict the pIC50 for AChE and BChE enzymes. Five selected molecules (compounds 6 (C21H21F3N4O), compound 7 (C22H23F3N4O), and compound 8 (C22H23F3N4O2) belong to the oxadiazole derivative group; compound 16 (C17H13ClN2O3) is classified into the chemical structures of different N, O, and S-based heterocycle groups; and compound 25 (C19H17NO2) pertains to the pyrimidine derivative group) possessed high pIC50 values for AChE and BChE enzymes (pIC50 values for AChE and BChE ranged from 9.01 to 10.32). The range of docking scores between the AChE and BChE receptors and their respective candidates was from -8.1 to -9.2 kcal/mol. The pharmacokinetics, biological activities, and physicochemical properties of five selected compounds supported their ability to protect against AD because they are not toxic, have a cholinergic effect, can cross the blood-brain barrier, and are well absorbed by the gastrointestinal tract.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
2
|
Verma P, Rezaei L, Govindarajan R, Greig NH, Donovan MD. Gastroretentive Delivery Approach to Address pH-Dependent Degradation of (+)- and (-)-Phenserine. AAPS PharmSciTech 2024; 25:198. [PMID: 39192157 DOI: 10.1208/s12249-024-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
(-)-Phenserine ("phenserine") and (+)-phenserine (posiphen; buntanetap) are longer-acting enantiomeric analogs of physostigmine with demonstrated promise in the treatment of Alzheimer's and Parkinson's diseases. Both enantiomers have short plasma half-lives, and their pharmacokinetics might be improved through the use of either once or twice-daily administration of an extended-release dosage form. Phenserine was observed to form a colored degradation product in near-neutral and alkaline pH environments, and at pH 7, the half-life of posiphen was determined to be ~ 9 h (40 °C). To limit luminal degradation which would reduce bioavailability, a gastroretentive tablet composed of a polyethylene oxide-xanthan gum matrix was developed. When placed in simulated gastric fluid (pH 1.2), approximately 70% of the phenserine was released over a 12 h period, and no degradants were detected in the release medium. In comparison, a traditional hydrophilic-matrix, extended-release tablet showed measurable amounts of phenserine degradation in a pH 7.2 medium over an 8 h release interval. These results confirm that a gastroretentive tablet can reduce the luminal degradation of phenserine or posiphen by limiting exposure to neutral pH conditions while providing sustained release of the drug over at least 12 h. Additional advantages of the gastroretentive tablet include reduced gastric and intestinal concentrations of the drug resulting from the slower release from the gastroretentive tablet which may also limit the occurrence of the dose-limiting GI side effects previously observed with immediate-release phenserine capsules.
Collapse
Affiliation(s)
- Pratishtha Verma
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Leyla Rezaei
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Ramprakash Govindarajan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Maureen D Donovan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
3
|
Galasko D, Farlow MR, Lucey BP, Honig LS, Elbert D, Bateman R, Momper J, Thomas RG, Rissman RA, Pa J, Aslanyan V, Balasubramanian A, West T, Maccecchini M, Feldman HH. A multicenter, randomized, double-blind, placebo-controlled ascending dose study to evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamic (PD) effects of Posiphen in subjects with early Alzheimer's Disease. Alzheimers Res Ther 2024; 16:151. [PMID: 38970127 PMCID: PMC11225352 DOI: 10.1186/s13195-024-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Amyloid beta protein (Aβ) is a treatment target in Alzheimer's Disease (AD). Lowering production of its parent protein, APP, has benefits in preclinical models. Posiphen, an orally administered small molecule, binds to an iron-responsive element in APP mRNA and decreases translation of APP and Aβ. To augment human data for Posiphen, we evaluated safety, tolerability and pharmacokinetic and pharmacodynamic (PD) effects on Aβ metabolism using Stable Isotope Labeling Kinetic (SILK) analysis. METHODS Double-blind phase 1b randomized ascending dose clinical trial, at five sites, under an IRB-approved protocol. Participants with mild cognitive impairment or mild AD (Early AD) confirmed by low CSF Aβ42/40 were randomized (within each dose arm) to Posiphen or placebo. Pretreatment assessment included lumbar puncture for CSF. Participants took Posiphen or placebo for 21-23 days, then underwent CSF catheter placement, intravenous infusion of 13C6-leucine, and CSF sampling for 36 h. Safety and tolerability were assessed through participant reports, EKG and laboratory tests. CSF SILK analysis measured Aβ40, 38 and 42 with immunoprecipitation-mass spectrometry. Baseline and day 21 CSF APP, Aβ and other biomarkers were measured with immunoassays. The Mini-Mental State Exam and ADAS-cog12 were given at baseline and day 21. RESULTS From June 2017 to December 2021, 19 participants were enrolled, randomized within dose cohorts (5 active: 3 placebo) of 60 mg once/day and 60 mg twice/day; 1 participant was enrolled and completed 60 mg three times/day. 10 active drug and 5 placebo participants completed all study procedures. Posiphen was safe and well-tolerated. 8 participants had headaches related to CSF catheterization; 5 needed blood patches. Prespecified SILK analyses of Fractional Synthesis Rate (FSR) for CSF Aβ40 showed no significant overall or dose-dependent effects of Posiphen vs. placebo. Comprehensive multiparameter modeling of APP kinetics supported dose-dependent lowering of APP production by Posiphen. Cognitive measures and CSF biomarkers did not change significantly from baseline to 21 days in Posiphen vs. placebo groups. CONCLUSIONS Posiphen was safe and well-tolerated in Early AD. A multicenter SILK study was feasible. Findings are limited by small sample size but provide additional supportive safety and PK data. Comprehensive modeling of biomarker dynamics using SILK data may reveal subtle drug effects. TRIAL REGISTRATION NCT02925650 on clinicaltrials.gov (registered on 10-24-2016).
Collapse
Affiliation(s)
- Douglas Galasko
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA.
| | | | | | | | | | | | - Jeremiah Momper
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| | - Ronald G Thomas
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| | - Robert A Rissman
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| | - Judy Pa
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| | | | - Archana Balasubramanian
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| | - Tim West
- C2N Diagnostics, St Louis, MO, USA
| | | | - Howard H Feldman
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| |
Collapse
|
4
|
Rahi V, Kaundal RK. Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci 2024; 347:122651. [PMID: 38642844 DOI: 10.1016/j.lfs.2024.122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Calcium ion (Ca2+) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca2+ homeostasis is compromised. Ca2+ regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca2+ homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca2+. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca2+ within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca2+ homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na+/Ca2+ exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca2+ sequestering and release mechanisms to maintain intracellular Ca2+ homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca2+ and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca2+ overload in cerebral ischemia.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India
| | - Ravinder K Kaundal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India.
| |
Collapse
|
5
|
Pidany F, Kroustkova J, Jenco J, Breiterova KH, Muckova L, Novakova L, Kunes J, Fibigar J, Kucera T, Novak M, Sorf A, Hrabinova M, Pulkrabkova L, Janousek J, Soukup O, Jun D, Korabecny J, Cahlikova L. Carltonine-derived compounds for targeted butyrylcholinesterase inhibition. RSC Med Chem 2024; 15:1601-1625. [PMID: 38784455 PMCID: PMC11110763 DOI: 10.1039/d4md00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
The investigation into human butyrylcholinesterase (hBChE) inhibitors as therapeutic agents for Alzheimer's disease (AD) holds significant promise, addressing both symptomatic relief and disease progression. In the pursuit of novel drug candidates with a selective BChE inhibition pattern, we focused on naturally occurring template structures, specifically Amaryllidaceae alkaloids of the carltonine-type. Herein, we explored a series of compounds implementing an innovative chemical scaffold built on the 3- and 4-benzyloxy-benzylamino chemotype. Notably, compounds 28 (hBChE IC50 = 0.171 ± 0.063 μM) and 33 (hBChE IC50 = 0.167 ± 0.018 μM) emerged as top-ranked hBChE inhibitors. In silico simulations elucidated the binding modes of these compounds within hBChE. CNS availability was predicted using the BBB score algorithm, corroborated by in vitro permeability assessments with the most potent derivatives. Compound 33 was also inspected for aqueous solubility, microsomal and plasma stability. Chemoinformatics analysis validated these hBChE inhibitors for oral administration, indicating favorable gastrointestinal absorption in compliance with Lipinski's and Veber's rules. Safety assessments, crucial for the chronic administration typical in AD treatment, were conducted through cytotoxicity testing on human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines.
Collapse
Affiliation(s)
- Filip Pidany
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jana Kroustkova
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jaroslav Jenco
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Katerina Hradiska Breiterova
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Lubica Muckova
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Lucie Novakova
- Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jiri Kunes
- Faculty of Pharmacy in Hradec Kralove, Department of Bioorganic and Organic Chemistry, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jakub Fibigar
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Tomas Kucera
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Martin Novak
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
| | - Ales Sorf
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Martina Hrabinova
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Lenka Pulkrabkova
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Jiri Janousek
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Daniel Jun
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Lucie Cahlikova
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| |
Collapse
|
6
|
Galasko D, Farlow MR, Lucey BP, Honig LS, Elbert D, Bateman R, Momper J, Thomas R, Rissman RA, Pa J, Aslanyan V, Balasubramanian A, West T, Maccecchini M, Feldman HH. A multicenter, randomized, double-blind, placebo-controlled ascending dose study to evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamic (PD) effects of Posiphen in subjects with Early Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.20.24304638. [PMID: 38562783 PMCID: PMC10984053 DOI: 10.1101/2024.03.20.24304638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Amyloid beta protein (Aβ) is a treatment target in Alzheimer's Disease (AD). Lowering production of its parent protein, APP, has benefits in preclinical models. Posiphen binds to an iron-responsive element in APP mRNA and decreases translation of APP and Aβ. To augment human data for Posiphen, we evaluated safety, tolerability and pharmacokinetic and pharmacodynamic (PD) effects on Aβ metabolism using Stable Isotope Labeling Kinetic (SILK) analysis. Methods Double-blind phase 1b randomized ascending dose clinical trial, at five sites, under an IRB-approved protocol. Participants with mild cognitive impairment or mild AD (Early AD) with positive CSF biomarkers were randomized (within each dose arm) to Posiphen or placebo. Pretreatment assessment included lumbar puncture for CSF. Participants took Posiphen or placebo for 21-23 days, then underwent CSF catheter placement, intravenous infusion of 13C6-leucine, and CSF sampling for 36 hours. Safety and tolerability were assessed through participant reports, EKG and laboratory tests. CSF SILK analysis measured Aβ40, 38 and 42 with immunoprecipitation-mass spectrometry. Baseline and day 21 CSF APP, Aβ and other biomarkers were measured with immunoassays. The Mini-Mental State Exam and ADAS-cog12 were given at baseline and day 21. Results From June 2017 to December 2021, 19 participants were enrolled, in dose cohorts (6 active: 2 placebo) of 60 mg once/day and 60 mg twice/day; 1 participant was enrolled and completed 60 mg three times/day. 10 active drug and 5 placebo participants completed all study procedures. Posiphen was safe and well-tolerated. 8 participants had headaches related to CSF catheterization; 5 needed blood patches. Prespecified SILK analyses of Fractional Synthesis Rate (FSR) for CSF Aβ40 showed no significant overall or dose-dependent effects of Posiphen vs. placebo. Comprehensive multiparameter modeling of APP kinetics supported dose-dependent lowering of APP production by Posiphen. Cognitive measures and CSF biomarkers did not change significantly from baseline to 21 days in Posiphen vs placebo groups. Conclusions Posiphen was safe and well-tolerated in Early AD. A multicenter SILK study was feasible. Findings are limited by small sample size but provide additional supportive safety and PK data. Comprehensive modeling of biomarker dynamics using SILK data may reveal subtle drug effects. Trial registration NCT02925650 on clinicaltrials.gov.
Collapse
|
7
|
Palumbo TB, Miwa JM. Lynx1 and the family of endogenous mammalian neurotoxin-like proteins and their roles in modulating nAChR function. Pharmacol Res 2023; 194:106845. [PMID: 37437646 DOI: 10.1016/j.phrs.2023.106845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The promise of nicotinic receptors as a therapeutic target has yet to be fully realized, despite solid data supporting their involvement in neurological and neuropsychiatric diseases. The reasons for this are likely complex and manifold, having to do with the widespread action of the cholinergic system and the biophysical mechanism of action of nicotinic receptors leading to fast desensitization and down-regulation. Conventional drug development strategies tend to focus on receptor subtype-specific action of candidate therapeutics, although the broad agonist, nicotine, is being explored in the clinic. The potential negative effects of nicotine make the search for alternate strategies warranted. Prototoxins are a promising yet little-explored avenue of nicotinic receptor drug development. Nicotinic receptors in the brain belong to a complex of proteins, including those that bind to the extracellular face of the receptor, as well as chaperones that bind the intracellular domain, etc. Lynx prototoxins have allosteric modularity effects on receptor function and number and have been implicated in complex in vivo processes such as neuroplasticity, learning, and memory. Their mechanism of action and binding specificity on sets of nAChR subtypes present intriguing possibilities for more efficacious and nuanced therapeutic targeting than nicotinic receptor subtypes alone. An allosteric drug may restrict its actions to physiologically relevant time points, which tend to be correlated with salient events which would be encoded into long-term memory storage. Rather than blanketing the brain with a steady and prolonged elevation of agonist, an allosteric nAChR compound could avoid side effects and loss of efficacy over time. This review details the potential strengths and challenges of prototoxin proteins as therapeutic targets, and some of the utility of such therapeutics based on the emerging understanding of cholinergic signaling in a growing number of complex neural processes.
Collapse
Affiliation(s)
- Talulla B Palumbo
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| |
Collapse
|
8
|
Dong H, Zhao L, Wang T, Chen Y, Hao W, Zhang Z, Hao Y, Zhang C, Wei X, Zhang Y, Zhou Y, Xu M. Dual-Mode Ratiometric Electrochemical and Turn-On Fluorescent Detection of Butyrylcholinesterase Utilizing a Single Probe for the Diagnosis of Alzheimer's Disease. Anal Chem 2023; 95:8340-8347. [PMID: 37192372 DOI: 10.1021/acs.analchem.3c00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biomarkers detection in blood with high accuracy is crucial for the diagnosis and treatment of many diseases. In this study, the proof-of-concept fabrication of a dual-mode sensor based on a single probe (Re-BChE) using a dual-signaling electrochemical ratiometric strategy and a "turn-on" fluorescent method is presented. The probe Re-BChE was synthesized in a single step and demonstrated dual mode response toward butyrylcholinesterase (BChE), a promising biomarker of Alzheimer's disease (AD). Due to the specific hydrolysis reaction, the probe Re-BChE demonstrated a turn-on current response for BChE at -0.28 V, followed by a turn-off current response at -0.18 V, while the fluorescence spectrum demonstrated a turn-on response with an emission wavelength of 600 nm. The developed ratiometric electrochemical sensor and fluorescence detection demonstrated high sensitivity with BChE concentrations with a low detection limit of 0.08 μg mL-1 and 0.05 μg mL-1, respectively. Importantly, the dual-mode sensor presents the following advantages: (1) dual-mode readout can correct the impact of systematic or background error, thereby achieving more accurate results; (2) the responses of dual-mode readout originate from two distinct mechanisms and relatively independent signal transduction, in which there is no interference between two signaling routes. Additionally, compared with the reported single-signal electrochemical assays for BChE, both redox potential signals were detected in the absence of biological interference within a negative potential window. Furthermore, it was discovered that the outcomes of direct dual-mode electrochemical and fluorescence quantifications of the level of BChE in serum were in agreement with those obtained from the use of commercially available assay kits for BChE sensing. This method has the potential to serve as a useful point-of-care tool for the early detection of AD.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Le Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Tao Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yanan Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Wanqing Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Ziyi Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yizhao Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Cunliang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| |
Collapse
|
9
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|