1
|
Naser SS, Singh D, Preetam S, Kishore S, Kumar L, Nandi A, Simnani FZ, Choudhury A, Sinha A, Mishra YK, Suar M, Panda PK, Malik S, Verma SK. Posterity of nanoscience as lipid nanosystems for Alzheimer's disease regression. Mater Today Bio 2023; 21:100701. [PMID: 37415846 PMCID: PMC10320624 DOI: 10.1016/j.mtbio.2023.100701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Alzheimer's disease (AD) is a type of dementia that affects a vast number of people around the world, causing a great deal of misery and death. Evidence reveals a relationship between the presence of soluble Aβ peptide aggregates and the severity of dementia in Alzheimer's patients. The BBB (Blood Brain Barrier) is a key problem in Alzheimer's disease because it prevents therapeutics from reaching the desired places. To address the issue, lipid nanosystems have been employed to deliver therapeutic chemicals for anti-AD therapy in a precise and targeted manner. The applicability and clinical significance of lipid nanosystems to deliver therapeutic chemicals (Galantamine, Nicotinamide, Quercetin, Resveratrol, Curcumin, HUPA, Rapamycin, and Ibuprofen) for anti-AD therapy will be discussed in this review. Furthermore, the clinical implications of the aforementioned therapeutic compounds for anti-AD treatment have been examined. Thus, this review will pave the way for researchers to fashion therodiagnostics approaches based on nanomedicine to overcome the problems of delivering therapeutic molecules across the blood brain barrier (BBB).
Collapse
Affiliation(s)
- Shaikh Sheeran Naser
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Dibyangshee Singh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053 Ulrika, Sweden
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Aditya Nandi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Faizan Zarreen Simnani
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Sumira Malik
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| |
Collapse
|
2
|
Ozsan McMillan I, Li JP, Wang L. Heparan sulfate proteoglycan in Alzheimer's disease: aberrant expression and functions in molecular pathways related to amyloid-β metabolism. Am J Physiol Cell Physiol 2023; 324:C893-C909. [PMID: 36878848 PMCID: PMC10069967 DOI: 10.1152/ajpcell.00247.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Currently, there is no effective treatment for AD, as its etiology remains poorly understood. Mounting evidence suggests that the accumulation and aggregation of amyloid-β peptides (Aβ), which constitute amyloid plaques in the brain, is critical for initiating and accelerating AD pathogenesis. Considerable efforts have been dedicated to shedding light on the molecular basis and fundamental origins of the impaired Aβ metabolism in AD. Heparan sulfate (HS), a linear polysaccharide of the glycosaminoglycan family, co-deposits with Aβ in plaques in the AD brain, directly binds and accelerates Aβ aggregation, and mediates Aβ internalization and cytotoxicity. Mouse model studies demonstrate that HS regulates Aβ clearance and neuroinflammation in vivo. Previous reviews have extensively explored these discoveries. Here, this review focuses on the recent advancements in understanding abnormal HS expression in the AD brain, the structural aspects of HS-Aβ interaction, and the molecules involved in modulating Aβ metabolism through HS interaction. Furthermore, this review presents a perspective on the potential effects of abnormal HS expression on Aβ metabolism and AD pathogenesis. In addition, the review highlights the importance of conducting further research to differentiate the spatiotemporal components of HS structure and function in the brain and AD pathogenesis.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center, University of Uppsala, Uppsala, Sweden
- SciLifeLab Uppsala, University of Uppsala, Uppsala, Sweden
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
3
|
Xiao C, Chen T, Yuan M, Li Y, Wang F. A Novel Polysaccharide DSPP-1 from Durian Seed: Structure Characterization and Its Protective Effects Against Alzheimer's Disease in a Transgenic Caenorhabditis elegans Model. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01059-5. [PMID: 36964883 DOI: 10.1007/s11130-023-01059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Durian seeds are normally considered as agricultural waste in durian fruit processing, resulting in a huge waste of resources. The structure characterization of polysaccharide from durian seed and its neuroprotective effects against Alzheimer's disease (AD) in a transgenic Caenorhabditis elegans model were conducted in this study. A water-soluble polysaccharide was obtained using atmospheric pressure plasma treatment, and named DSPP-1. DSPP-1 was composed of rhamnose, galactose and galacturonic acid and its molecular weight was 3.765 × 105 Da. PDSP and DSPP-1 showed considerable antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging compared to the positive control (vitamin C). Besides, compared with the positive group (epigallocatechin gallate), PDSP and DSPP-1 exhibited the certain Abeta1 - 42 aggregation inhibitory effectiveness (p < 0.05). In contrast, DSPP-2 exerted a poor antioxidant and anti-aggregation effect (p < 0.05). In vivo results showed that DSPP-1 could decrease abnormal Aβ1-42 aggregation to delay the paralysis process of AD-nematodes. Moreover, DSPP-1 significantly improved the antioxidant enzyme activities and reduced lipid peroxidation in AD-nematodes. Taken together, these results indicated that DSPP-1 could be used as a potential natural source for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Chuxiang Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tiejun Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Meng Yuan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengwu Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Chakraborty P, Dey A, Gopalakrishnan AV, Swati K, Ojha S, Prakash A, Kumar D, Ambasta RK, Jha NK, Jha SK, Dewanjee S. Glutamatergic neurotransmission: A potential pharmacotherapeutic target for the treatment of cognitive disorders. Ageing Res Rev 2023; 85:101838. [PMID: 36610558 DOI: 10.1016/j.arr.2022.101838] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
In the mammalian brain, glutamate is regarded to be the primary excitatory neurotransmitter due to its widespread distribution and wide range of metabolic functions. Glutamate plays key roles in regulating neurogenesis, synaptogenesis, neurite outgrowth, and neuron survival in the brain. Ionotropic and metabotropic glutamate receptors, neurotransmitters, neurotensin, neurosteroids, and others co-ordinately formulate a complex glutamatergic network in the brain that maintains optimal excitatory neurotransmission. Cognitive activities are potentially synchronized by the glutamatergic activities in the brain via restoring synaptic plasticity. Dysfunctional glutamate receptors and other glutamatergic components are responsible for the aberrant glutamatergic activity in the brain that cause cognitive impairments, loss of synaptic plasticity, and neuronal damage. Thus, controlling the brain's glutamatergic transmission and modifying glutamate receptor function could be a potential therapeutic strategy for cognitive disorders. Certain drugs that regulate glutamate receptor activities have shown therapeutic promise in improving cognitive functions in preclinical and clinical studies. However, several issues regarding precise functional information of glutamatergic activity are yet to be comprehensively understood. The present article discusses the scope of developing glutamatergic systems as prospective pharmacotherapeutic targets to treat cognitive disorders. Special attention has been given to recent developments, challenges, and future prospects.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand 248007, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
5
|
Zhu M, Tang M, Du Y. Identification of TAC1 Associated with Alzheimer's Disease Using a Robust Rank Aggregation Approach. J Alzheimers Dis 2023; 91:1339-1349. [PMID: 36617784 DOI: 10.3233/jad-220950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) brings heavy burden to society and family. There is an urgent need to find effective methods for disease diagnosis and treatment. The robust rank aggregation (RRA) approach that could aggregate the resulting gene lists has been widely utilized in genomic data analysis. OBJECTIVE To identify hub genes using RRA approach in AD. METHODS Seven microarray datasets in frontal cortex from GEO database were used to identify differential expressed genes (DEGs) in AD patients using RRA approach. STRING was performed to explore the protein-to-protein interaction (PPI). Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were utilized for enrichment analysis. Human Gene Connectome and Gene Set Enrichment Analysis were used for functional annotation. Finally, the expression levels of hub genes were validated in the cortex of 5xFAD mice by quantitative real-time polymerase chain reaction. RESULTS After RRA analysis, 473 DEGs (216 upregulated and 257 downregulated) were identified in AD samples. PPI showed that DEGs had a total of 416 nodes and 2750 edges. These genes were divided into 17 clusters, each of which contains at least three genes. After functional annotation and enrichment analysis, TAC1 is identified as the hub gene and may be related to synaptic function and inflammation. In addition, Tac1 was found downregulated in cortices of 5xFAD mice. CONCLUSION In the current study, TAC1 is identified as a key gene in the frontal cortex of AD, providing insight into the possible pathogenesis and potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Min Zhu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Minglu Tang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Neurology (Cognitive sleep ward), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
6
|
Liu X, Yu C, Su B, Zha D. Synthesis and properties of the kojic acid dimer and its potential for the treatment of Alzheimer's disease. RSC Med Chem 2023; 14:268-276. [PMID: 36846369 PMCID: PMC9945874 DOI: 10.1039/d2md00383j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The kojic acid dimer (KAD) is a metabolite derived from developing cottonseed when contaminated with aflatoxin. The KAD has been shown to exhibit bright greenish-yellow fluorescence, but little else is known about its biological activity. In this study, using kojic acid as a raw material, we developed a four-step synthetic route that achieved the gram-scale preparation of the KAD in approximately 25% total yield. The structure of the KAD was verified by single-crystal X-ray diffraction. The KAD showed good safety in a variety of cells and had a good protective effect in SH-SY5Y cells. At concentrations lower than 50 μM, the KAD was superior to vitamin C in ABTS+ free radical scavenging assay; the KAD resisted the production of reactive oxygen species induced by H2O2 as confirmed by fluorescence microscopy observation and flow cytometry analysis. Notably, the KAD could enhance the superoxide dismutase activity, which might be the mechanism of its antioxidant activity. The KAD also moderately inhibited the deposition of amyloid-β (Aβ) and selectively chelated Cu2+, Zn2+, Fe2+, Fe3+, and Al3+, which are related to the progress of Alzheimer's disease. Based on its good effects in terms of oxidative stress, neuroprotection, inhibition of Aβ deposition, and metal accumulation, the KAD shows potential for the multi-target treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xueyan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| | - Chuanyu Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Biling Su
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| |
Collapse
|
7
|
Pharmacotherapy Evolution in Alzheimer's Disease: Current Framework and Relevant Directions. Cells 2022; 12:cells12010131. [PMID: 36611925 PMCID: PMC9818415 DOI: 10.3390/cells12010131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD), once considered a rare disease, is now the most common form of dementia in the elderly population. Current drugs (cholinesterase inhibitors and glutamate antagonists) are safe but of limited benefit to most patients, offering symptomatic relief without successful cure of the disease. Since the last several decades, there has been a great need for the development of a treatment that might cure the underlying causes of AD and thereby slow its progression in vulnerable individuals. That is why phase I, II, and III studies that act on several fronts, such as cognitive improvement, symptom reduction, and enhancing the basic biology of AD, are imperative to stop the disease. This review discusses current treatment strategies, summarizing the clinical features and pharmacological properties, along with molecular docking analyses of the existing medications.
Collapse
|
8
|
Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Ţiț DM, Pașcalău N, Nistor-Cseppentö DC. The Link between Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alzheimer's Disease: Therapeutic Implications and Future Perspectives. Antioxidants (Basel) 2022; 11:2167. [PMID: 36358538 PMCID: PMC9686795 DOI: 10.3390/antiox11112167] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, has increasing incidence, increasing mortality rates, and poses a huge burden on healthcare. None of the currently approved drugs for the treatment of AD influence disease progression. Many clinical trials aiming at inhibiting amyloid plaque formation, increasing amyloid beta clearance, or inhibiting neurofibrillary tangle pathology yielded inconclusive results or failed. Meanwhile, research has identified many interlinked vicious cascades implicating oxidative stress, mitochondrial dysfunction, and chronic neuroinflammation, and has pointed to novel therapeutic targets such as improving mitochondrial bioenergetics and quality control, diminishing oxidative stress, or modulating the neuroinflammatory pathways. Many novel molecules tested in vitro or in animal models have proven efficient, but their translation into clinic needs further research regarding appropriate doses, delivery routes, and possible side effects. Cell-based therapies and extracellular vesicle-mediated delivery of messenger RNAs and microRNAs seem also promising strategies allowing to target specific signaling pathways, but need further research regarding the most appropriate harvesting and culture methods as well as control of the possible tumorigenic side effects. The rapidly developing area of nanotechnology could improve drug delivery and also be used in early diagnosis.
Collapse
Affiliation(s)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Florin Marcu
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Ţiț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Nicoleta Pașcalău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
9
|
Li RL, Wang LY, Duan HX, Zhang Q, Guo X, Wu C, Peng W. Regulation of mitochondrial dysfunction induced cell apoptosis is a potential therapeutic strategy for herbal medicine to treat neurodegenerative diseases. Front Pharmacol 2022; 13:937289. [PMID: 36210852 PMCID: PMC9535092 DOI: 10.3389/fphar.2022.937289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disease is a progressive neurodegeneration caused by genetic and environmental factors. Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are the three most common neurodegenerative diseases clinically. Unfortunately, the incidence of neurodegenerative diseases is increasing year by year. However, the current available drugs have poor efficacy and large side effects, which brings a great burden to the patients and the society. Increasing evidence suggests that occurrence and development of the neurodegenerative diseases is closely related to the mitochondrial dysfunction, which can affect mitochondrial biogenesis, mitochondrial dynamics, as well as mitochondrial mitophagy. Through the disruption of mitochondrial homeostasis, nerve cells undergo varying degrees of apoptosis. Interestingly, it has been shown in recent years that the natural agents derived from herbal medicines are beneficial for prevention/treatment of neurodegenerative diseases via regulation of mitochondrial dysfunction. Therefore, in this review, we will focus on the potential therapeutic agents from herbal medicines for treating neurodegenerative diseases via suppressing apoptosis through regulation of mitochondrial dysfunction, in order to provide a foundation for the development of more candidate drugs for neurodegenerative diseases from herbal medicine.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| |
Collapse
|
10
|
Shang Y, Ding S, Liu Q. The Effects and Regulative Mechanism of Scutellaria Baicalensis Georgi Stems and Leaves Flavonoids in Promoting Neurogenesis and Improving Memory Impairment Mediated by BDNF-ERK-CREB Signal Pathway in Rats. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:354-366. [PMID: 34455975 DOI: 10.2174/1871527320666210827112048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/30/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is well known that Alzheimer's disease (AD) is a degenerative disease, and accompanied by memory impairment and main pathological changes of the extracellular senile plaque (SP) and intracellular neurofibrillary tangles (NFTs). However, there are many evidences showing that the disorders of neurogenesis are also regarded as a new opinion in AD. OBJECTIVE To investigate the effects and regulative mechanism of Scutellaria baicalensis Georgi stems and leaves flavonoids in promoting neurogenesis and improving memory impairment mediated by BDNF-ERK-CREB signal pathway in rats. METHODS Male Wistar rats were intracerebroventricularly injected with amyloid-beta protein 25-35 (Aβ25-35) in combination with aluminum trichloride (AlCl3) and recombinant human transforming growth factor-β1 (RHTGF-β1) (composited Aβ), to establish an AD model. Morris water maze was used to screen AD model of rats and measure the rats' learning and memory ability. The expression of cell neurogenesis related molecule Ki67 protein in the hippocampal gyrus of rats was detected by the immunohistochemical method. The expression of mRNA and protein of Grb2, SOS1, Ras, ERK and BDNF in the BDNF-ERK-CREB signaling pathway, in the hippocampus and cerebral cortex were assayed by the Quantitative real-time PCR (qPCR) and Western blotting methods, respectively. RESULTS Intracerebroventricular injection of composited Aβ could produce the rats' memory impairment, decrease the protein expression of Ki67 in the hippocampal gyrus, and increase the mRNA and protein expression levels of Grb2, SOS1, Ras, ERK and BDNF in the hippocampus and cerebral cortex. However, SSF could significantly ameliorate the rats' memory impairment, lower the reduction of Ki67 protein expression in the hippocampal gyrus and regulate the mRNA and protein expression abnormal levels of Grb2, SOS1, Ras, ERK and BDNF in the hippocampus and cerebral cortex induced by composited Aβ. CONCLUSION Composited Aβ can result in memory impairment, decrease neurogenesis and regulate the mRNA and protein abnormal expression of Grb2, SOS1, Ras, ERK and BDNF in BDNF-ERK-CREB signaling pathway. The effects of SSF in promoting neurogenesis and improving memory impairment may be related to the regulation in Grb2, SOS1, Ras, ERK and BDNF molecules' expression of the BDNF-ERK-CREB signaling pathway.
Collapse
Affiliation(s)
- Yazhen Shang
- Institute of Traditional Chinese Medicine, Chengde Medical College / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, An Yuan Road, Chengde 067000. China
| | - Shengkai Ding
- Institute of Traditional Chinese Medicine, Chengde Medical College / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, An Yuan Road, Chengde 067000. China
| | - Qianqian Liu
- Institute of Traditional Chinese Medicine, Chengde Medical College / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, An Yuan Road, Chengde 067000. China
| |
Collapse
|
11
|
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer's Disease: Probing Therapeutic Potential. Neurochem Res 2021; 46:3103-3122. [PMID: 34386919 DOI: 10.1007/s11064-021-03418-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Apoptosis is an intrinsic biochemical, cellular process that regulates cell death and is crucial for cell survival, cellular homeostasis, and maintaining the optimum functional status. Apoptosis in a predetermined and programmed manner regulates several molecular events, including cell turnover, embryonic development, and immune system functions but may be the exclusive contributor to several disorders, including neurodegenerative manifestations, when it functions in an aberrant and disorganized manner. Alzheimer's disease (AD) is a fatal, chronic neurodegenerative disorder where apoptosis has a compelling and divergent role. The well-characterized pathological features of AD, including extracellular plaques of amyloid-beta, intracellular hyperphosphorylated tangles of tau protein (NFTs), inflammation, mitochondrial dysfunction, oxidative stress, and excitotoxic cell death, also instigate an abnormal apoptotic cascade in susceptible brain regions (cerebral cortex, hippocampus). The apoptotic players in these regions affect cellular organelles (mitochondria and endoplasmic reticulum), interact with trophic factors, and several pathways, including PI3K/AKT, JNK, MAPK, mTOR signalling. This dysregulated apoptotic cascade end with an abnormal neuronal loss which is a primary event that may precede the other events of AD progression and correlates well with the degree of dementia. The present review provides insight into the diverse and versatile apoptotic mechanisms that are indispensable for neuronal survival and constitute an integral part of the pathological progression of AD. Identification of potential targets (restoring apoptotic and antiapoptotic balance, caspases, TRADD, RIPK1, FADD, TNFα, etc.) may be valuable and advantageous to decide the fate of neurons and to develop potential therapeutics for treatment of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.,Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | | | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
12
|
Castillo CA, Ballesteros-Yáñez I, León-Navarro DA, Albasanz JL, Martín M. Early Effects of the Soluble Amyloid β 25-35 Peptide in Rat Cortical Neurons: Modulation of Signal Transduction Mediated by Adenosine and Group I Metabotropic Glutamate Receptors. Int J Mol Sci 2021; 22:ijms22126577. [PMID: 34205261 PMCID: PMC8234864 DOI: 10.3390/ijms22126577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
The amyloid β peptide (Aβ) is a central player in the neuropathology of Alzheimer’s disease (AD). The alteration of Aβ homeostasis may impact the fine-tuning of cell signaling from the very beginning of the disease, when amyloid plaque is not deposited yet. For this reason, primary culture of rat cortical neurons was exposed to Aβ25-35, a non-oligomerizable form of Aβ. Cell viability, metabotropic glutamate receptors (mGluR) and adenosine receptors (AR) expression and signalling were assessed. Aβ25-35 increased mGluR density and affinity, mainly due to a higher gene expression and protein presence of Group I mGluR (mGluR1 and mGluR5) in the membrane of cortical neurons. Intriguingly, the main effector of group I mGluR, the phospholipase C β1 isoform, was less responsive. Also, the inhibitory action of group II and group III mGluR on adenylate cyclase (AC) activity was unaltered or increased, respectively. Interestingly, pre-treatment of cortical neurons with an antagonist of group I mGluR reduced the Aβ25-35-induced cell death. Besides, Aβ25-35 increased the density of A1R and A2AR, along with an increase in their gene expression. However, while A1R-mediated AC inhibition was increased, the A2AR-mediated stimulation of AC remained unchanged. Therefore, one of the early events that takes place after Aβ25-35 exposure is the up-regulation of adenosine A1R, A2AR, and group I mGluR, and the different impacts on their corresponding signaling pathways. These results emphasize the importance of deciphering the early events and the possible involvement of metabotropic glutamate and adenosine receptors in AD physiopathology.
Collapse
Affiliation(s)
- Carlos Alberto Castillo
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Physiotherapy and Nursing, University of Castilla-La Mancha, 45071 Toledo, Spain;
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
| | - Inmaculada Ballesteros-Yáñez
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, School of Medicine of Ciudad Real, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - David Agustín León-Navarro
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, Faculty of Chemical and Technological Sciences, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José Luis Albasanz
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, School of Medicine of Ciudad Real, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence:
| | - Mairena Martín
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, Faculty of Chemical and Technological Sciences, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
13
|
Reiss AB, Montufar N, DeLeon J, Pinkhasov A, Gomolin IH, Glass AD, Arain HA, Stecker MM. Alzheimer Disease Clinical Trials Targeting Amyloid: Lessons Learned From Success in Mice and Failure in Humans. Neurologist 2021; 26:52-61. [PMID: 33646990 DOI: 10.1097/nrl.0000000000000320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of slowing or halting the development of Alzheimer disease (AD) has resulted in the huge allocation of resources by academic institutions and pharmaceutical companies to the development of new treatments. The etiology of AD is elusive, but the aggregation of amyloid-β and tau peptide and oxidative processes are considered critical pathologic mechanisms. The failure of drugs with multiple mechanisms to meet efficacy outcomes has caused several companies to decide not to pursue further AD studies and has left the field essentially where it has been for the past 15 years. Efforts are underway to develop biomarkers for detection and monitoring of AD using genetic, imaging, and biochemical technology, but this is of minimal use if no intervention can be offered. REVIEW SUMMARY In this review, we consider the natural progression of AD and how it continues despite present attempts to modify the amyloid-related machinery to alter the disease trajectory. We describe the mechanisms and approaches to AD treatment targeting amyloid, including both passive and active immunotherapy as well as inhibitors of enzymes in the amyloidogenic pathway. CONCLUSION Lessons learned from clinical trials of amyloid reduction strategies may prove crucial for the leap forward toward novel therapeutic targets to treat AD.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Natalie Montufar
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Joshua DeLeon
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Aaron Pinkhasov
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Irving H Gomolin
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Amy D Glass
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Hirra A Arain
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Mark M Stecker
- Fresno Center for Medical Education and Research, Department of Medicine, University of California-San Francisco, Fresno, CA
| |
Collapse
|
14
|
Malafaia D, Albuquerque HMT, Silva AMS. Amyloid-β and tau aggregation dual-inhibitors: A synthetic and structure-activity relationship focused review. Eur J Med Chem 2021; 214:113209. [PMID: 33548635 DOI: 10.1016/j.ejmech.2021.113209] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is one of the most common types of dementia, especially in elderly, with an increasing number of people suffering from this disease worldwide. There are no available disease-modifying therapies and only four drugs are approved for the relief of symptoms. Currently, the therapeutic approach used for AD treatment is based on single target drugs, which are not capable to stop its progression. To address this issue, multi-target compounds, combining two or more pharmacophores in a single molecular entity, have gained increasing interest to deal with the multiple factors related to AD. The exact cause of AD is not yet completely disclosed, and several hallmarks have been associated to this neurodegenerative disease. Even though, the accumulation of both amyloid-β plaques (Aβ) and neurofibrillary tangles (NFTs) are fully accepted as the main AD hallmarks, being object of lots of research for early-stage diagnosis and pharmacological therapy. In this context, this review summarizes the state-of-the-art in the field of dual-target inhibitors of both Aβ and tau aggregation simultaneously, including the design and synthetic strategy of the dual-target compounds, as well as a brief structure-activity relationships (SAR) analysis.
Collapse
Affiliation(s)
- Daniela Malafaia
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Hélio M T Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
15
|
Zsila F, Samsonov SA, Maszota-Zieleniak M. Mind Your Dye: The Amyloid Sensor Thioflavin T Interacts with Sulfated Glycosaminoglycans Used To Induce Cross-β-Sheet Motifs. J Phys Chem B 2020; 124:11625-11633. [DOI: 10.1021/acs.jpcb.0c08273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Sergey A. Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | |
Collapse
|
16
|
Sabnis RW. Novel Bicyclic Heteroaryl Compounds as γ-Secretase Modulators for Treating Alzheimer's Disease. ACS Med Chem Lett 2020; 11:2077-2078. [PMID: 33214813 DOI: 10.1021/acsmedchemlett.0c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
17
|
Zhao Y, Jaber V, Alexandrov PN, Vergallo A, Lista S, Hampel H, Lukiw WJ. microRNA-Based Biomarkers in Alzheimer's Disease (AD). Front Neurosci 2020; 14:585432. [PMID: 33192270 PMCID: PMC7664832 DOI: 10.3389/fnins.2020.585432] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, age-related neurological disease characterized by complex pathophysiological dynamics taking place at multiple biological levels, including molecular, genetic, epigenetic, cellular and large-scale brain networks. These alterations account for multiple pathophysiological mechanisms such as brain protein accumulation, neuroinflammatory/neuro-immune processes, synaptic dysfunction, and neurodegeneration that eventually lead to cognitive and behavioral decline. Alterations in microRNA (miRNA) signaling have been implicated in the epigenetics and molecular genetics of all neurobiological processes associated with AD pathophysiology. These changes encompass altered miRNA abundance, speciation and complexity in anatomical regions of the CNS targeted by the disease, including modified miRNA expression patterns in brain tissues, the systemic circulation, the extracellular fluid (ECF) and the cerebrospinal fluid (CSF). miRNAs have been investigated as candidate biomarkers for AD diagnosis, disease prediction, prognosis and therapeutic purposes because of their involvement in multiple brain signaling pathways in both health and disease. In this review we will: (i) highlight the significantly heterogeneous nature of miRNA expression and complexity in AD tissues and biofluids; (ii) address how information may be extracted from these data to be used as a diagnostic, prognostic and/or screening tools across the entire continuum of AD, from the preclinical stage, through the prodromal, i.e., mild cognitive impairment (MCI) phase all the way to clinically overt dementia; and (iii) consider how specific miRNA expression patterns could be categorized using miRNA reporters that span AD pathophysiological initiation and disease progression.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | | | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’Hôpital, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, Paris, France
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Russian Academy of Medical Sciences, Moscow, Russia
- Department of Ophthalmology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Neurology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, LA, United States
| |
Collapse
|