1
|
Ma W, Ji X, Ding L, Yang SX, Guo K, Li Q. Automatic Monitoring Methods for Greenhouse and Hazardous Gases Emitted from Ruminant Production Systems: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4423. [PMID: 39001201 PMCID: PMC11244603 DOI: 10.3390/s24134423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
The research on automatic monitoring methods for greenhouse gases and hazardous gas emissions is currently a focal point in the fields of environmental science and climatology. Until 2023, the amount of greenhouse gases emitted by the livestock sector accounts for about 11-17% of total global emissions, with enteric fermentation in ruminants being the main source of the gases. With the escalating problem of global climate change, accurate and effective monitoring of gas emissions has become a top priority. Presently, the determination of gas emission indices relies on specialized instrumentation such as breathing chambers, greenfeed systems, methane laser detectors, etc., each characterized by distinct principles, applicability, and accuracy levels. This paper first explains the mechanisms and effects of gas production by ruminant production systems, focusing on the monitoring methods, principles, advantages, and disadvantages of monitoring gas concentrations, and a summary of existing methods reveals their shortcomings, such as limited applicability, low accuracy, and high cost. In response to the current challenges in the field of equipment for monitoring greenhouse and hazardous gas emissions from ruminant production systems, this paper outlines future perspectives with the aim of developing more efficient, user-friendly, and cost-effective monitoring instruments.
Collapse
Affiliation(s)
- Weihong Ma
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 100096, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Xintong Ji
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 100096, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Luyu Ding
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Simon X Yang
- Advanced Robotics and Intelligent Systems Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kaijun Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 100096, China
| | - Qifeng Li
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| |
Collapse
|
2
|
Xie B, Liu Y, Lei Y, Qian H, Li Y, Yan W, Zhou C, Wen HM, Xia S, Mao P, Han M, Hu J. Innovative Thermocatalytic H 2 Sensor with Double-Sided Pd Nanocluster Films on an Ultrathin Mica Substrate. ACS Sens 2024; 9:2529-2539. [PMID: 38723609 DOI: 10.1021/acssensors.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Hydrogen (H2) is crucial in the future global energy landscape due to its eco-friendly properties, but its flammability requires precise monitoring. This study introduces an innovative thermocatalytic H2 sensor utilizing ultrathin mica sheets as substrates, coated on both sides with Pd nanocluster (NC) films. The ultrathin mica substrate ensures robustness and flexibility, enabling the sensor to withstand high temperatures and mechanical deformation. Additionally, it simplifies the fabrication process by eliminating the need for complex microelectro-mechanical systems (MEMS) technology. Constructed through cluster beam deposition, the sensor exhibits exceptional characteristics, including a wide concentration range (from 500 ppm to 4%), rapid response and recovery times (3.1 and 2.4 s for 1% H2), good selectivity, high stability, and repeatability. The operating temperature can be as low as 40 °C, achieving remarkably low power consumption. The study explores the impact of double-sided versus single-sided catalytic layers, revealing significantly higher sensitivity and response with the double-sided configuration due to the increased catalytic surface area. Additionally, the research investigates the relationship between the deposition amount of Pd NCs and the sensor's sensitivity, identifying an optimal value that maximizes performance without excessive use of Pd. The sensor's innovative design and excellent performance position it as a promising candidate for meeting the demands of a hydrogen-based energy economy.
Collapse
Affiliation(s)
- Bo Xie
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Yini Liu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Yingshuang Lei
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Haoyu Qian
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Yingzhu Li
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Wenjing Yan
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Changjiang Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Shengjie Xia
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Peng Mao
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Min Han
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| |
Collapse
|
3
|
Lyu X, Gao H, Diehle P, Altmann F, Schmitt K, Tarantik K, Wöllenstein J. Towards Low Temperature Operation of Catalytic Gas Sensors: Mesoporous Co 3O 4-Supported Au-Pd Nanoparticles as Functional Material. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2192. [PMID: 37570510 PMCID: PMC10421295 DOI: 10.3390/nano13152192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
It is shown that the operating temperature of pellistors for the detection of methane can be reduced to 300 °C by using Au-Pd nanoparticles on mesoporous cobalt oxide (Au-Pd@meso-Co3O4). The aim is to reduce possible catalyst poisoning that occurs during the high-temperature operation of conventional Pd-based pellistors, which are usually operated at 450 °C or higher. The individual role of Au-Pd as well as Co3O4 in terms of their catalytic activity has been investigated. Above 300 °C, Au-Pd bimetallic particles are mainly responsible for the catalytic combustion of methane. However, below 300 °C, only the Co3O4 has a catalytic effect. In contrast to methane, the sensor response and the temperature increase of the sensor under propane exposure is much larger than for methane due to the larger heat of combustion of propane. Due to its lower activation energy requirement, propane exhibits a higher propensity for oxidation compared to methane. As a result, the detection of propane can be achieved at even lower temperatures due to its enhanced reactivity.
Collapse
Affiliation(s)
- Xuemeng Lyu
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (X.L.)
- Fraunhofer Institute for Physical Measurement Techniques (IPM), 79110 Freiburg, Germany
| | - Haitao Gao
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (X.L.)
| | - Patrick Diehle
- Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), 06120 Halle, Germany
| | - Frank Altmann
- Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), 06120 Halle, Germany
| | - Katrin Schmitt
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (X.L.)
- Fraunhofer Institute for Physical Measurement Techniques (IPM), 79110 Freiburg, Germany
| | - Karina Tarantik
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (X.L.)
| | - Jürgen Wöllenstein
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (X.L.)
- Fraunhofer Institute for Physical Measurement Techniques (IPM), 79110 Freiburg, Germany
| |
Collapse
|
4
|
Wollak B, Espinoza D, Dippel AC, Sturm M, Vrljic F, Gutowski O, Nielsen IG, Sheppard TL, Korup O, Horn R. Catalytic reactor for operando spatially resolved structure-activity profiling using high-energy X-ray diffraction. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:571-581. [PMID: 37042662 PMCID: PMC10161877 DOI: 10.1107/s1600577523001613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/22/2023] [Indexed: 05/06/2023]
Abstract
In heterogeneous catalysis, operando measurements probe catalysts in their active state and are essential for revealing complex catalyst structure-activity relationships. The development of appropriate operando sample environments for spatially resolved studies has come strongly into focus in recent years, particularly when coupled to the powerful and multimodal characterization tools available at synchrotron light sources. However, most catalysis studies at synchrotron facilities only measure structural information about the catalyst in a spatially resolved manner, whereas gas analysis is restricted to the reactor outlet. Here, a fully automated and integrated catalytic profile reactor setup is shown for the combined measurement of temperature, gas composition and high-energy X-ray diffraction (XRD) profiles, using the oxidative dehydrogenation of C2H6 to C2H4 over MoO3/γ-Al2O3 as a test system. The profile reactor methodology was previously developed for X-ray absorption spectroscopy and is here extended for operando XRD. The profile reactor is a versatile and accessible research tool for combined spatially resolved structure-activity profiling, enabling the use of multiple synchrotron-based characterization methods to promote a knowledge-based optimization of a wide range of catalytic systems in a time- and resource-efficient way.
Collapse
Affiliation(s)
- Birte Wollak
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Diego Espinoza
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Ann-Christin Dippel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marina Sturm
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Filip Vrljic
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ida G. Nielsen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas L. Sheppard
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg, Germany
- REACNOSTICS GmbH, Am Kaiserkai 30, 20457 Hamburg, Germany
| | - Oliver Korup
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
- REACNOSTICS GmbH, Am Kaiserkai 30, 20457 Hamburg, Germany
| | - Raimund Horn
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
- REACNOSTICS GmbH, Am Kaiserkai 30, 20457 Hamburg, Germany
| |
Collapse
|
5
|
Zhou L, Jiang C, Lin Q. Entropy analysis and grey cluster analysis of multiple indexes of 5 kinds of genuine medicinal materials. Sci Rep 2022; 12:6618. [PMID: 35459282 PMCID: PMC9033816 DOI: 10.1038/s41598-022-10509-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
5 kinds of genuine medicinal materials, including Diding (Latin name: Corydalis bungeana Turcz), Purslane (Latin name: Portulaca oleracea L.), straw sandal board (Latin name: Hoya carnosa (L.f.) R. Br), June snow (Latin name: Serissa japonica (Thunb.) Thunb.), pine vine rattan (Latin name: Lycopodiastrum casuarinoides (Spring) Holub. [Lycopodium casuarinoides Spring]), were selected as the research objects. The combustion heat, thermo gravimetric parameters, and fat content, calcium content, trace element content, ash content of 5 kinds of genuine medicinal materials were measured. The combustion heat, differential thermal gravimetric analysis, fat content, calcium content, trace elements content, and ash content of 5 kinds of genuine medicinal materials were used to build a systematic multi-index evaluation system by gray pattern recognition and grey correlation coefficient cluster analysis, which can make up for the gaps in this area and provide scientific basis and research significance for the study of genuine medicinal materials quality. The results showed that the order of combustion heat of 5 kinds of genuine medicinal materials, including Diding, Purslane, straw sandal board, June snow, pine vine rattan, was Diding > June snow > straw sandal board > Purslane > pine vine rattan, the order of fat content (%) of 5 kinds of genuine medicinal materials was straw sandal board > Diding > pine vine rattan > June snow > Purslane, the order of calcium content (%) was pine vine rattan > June snow > Purslane > straw sandal board > Diding, the order of ash content was June snow > Purslane > straw sandal board > pine vine rattan > Diding. From the analysis of thermogravimetric analysis results and thermogravimetric combustion stability, the order of combustion stability of 5 kinds of genuine medicinal materials was June snow > pine Vine rattan > straw sandal board > Diding > Portulaca oleracea. The order of the content of 12 trace elements in 5 kinds of genuine medicinal materials, in terms of trace element content, June snow contains the highest trace elements in all samples. According to combustion heat, combustibility (combustion stability of genuine medicinal materials), fat, calcium, ash, trace element content, the comprehensive evaluation results of multi-index analysis constructed by gray correlation degree, gray correlation coefficient factor analysis, and gray hierarchical cluster analysis showed that the comprehensive evaluation multi-index order of 5 genuine medicinal materials, including Diding, Purslane, straw sandal board, June snow and pine vine rattan, was June snow > straw sandal board > Diding > Purslane > pine vine rattan. Therefore, the comprehensive evaluation results of the quality of genuine medicinal materials selected in this study were June snow the best, followed by straw sandal board. This research has important theoretical and practical significance for the multi-index measurement and comprehensive evaluation of genuine medicinal materials, and can provide scientific basis and research significance for the research of multi-index quality control of genuine medicinal material.
Collapse
Affiliation(s)
- Libing Zhou
- Guangxi Science & Technology Normal University, Laibin, 546199, Guangxi, China.
| | - Caiyun Jiang
- Guangxi Science & Technology Normal University, Laibin, 546199, Guangxi, China
| | - Qingxia Lin
- Guangxi Science & Technology Normal University, Laibin, 546199, Guangxi, China
| |
Collapse
|
6
|
WU RJ, TIAN XM, HUA ZQ, LU N, WANG P. A low temperature catalytic combustible gas sensor based on Ru supported zeolite catalyst films. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Eggart D, Zimina A, Cavusoglu G, Casapu M, Doronkin DE, Lomachenko KA, Grunwaldt JD. Versatile and high temperature spectroscopic cell for operando fluorescence and transmission x-ray absorption spectroscopic studies of heterogeneous catalysts. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:023106. [PMID: 33648105 DOI: 10.1063/5.0038428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
A modular high-temperature cell consisting of a plug-flow microreactor with a fixed catalyst bed and long heating zone has been established for operando x-ray absorption/fluorescence spectroscopic and diffraction studies. The functionality of the cell is demonstrated for two important areas: emission control using 2 wt. % Pd/Al2O3 acting as a three-way catalyst and direct conversion of methane to olefins and aromatics on a 0.5% Fe/SiO2 catalyst. The performance has been determined by online infrared spectroscopy and mass spectrometry, respectively. In addition, the cell can be combined with optical spectroscopy, such as Raman spectroscopy. The catalyst, present as powdered/sieved samples, can be measured under reaction conditions at temperatures of up to 1050 °C. Another key aspect is a long isothermal heating zone with a small temperature gradient (<3 °C/mm at 1000 °C without reaction) including an inert zone for pre-heating of the reactant gas. Due to the small size of the microreactor and the heating system including a water cooling system, heating/cooling rates of up to 100 °C/min can be achieved. Moreover, due to the compact design and the autonomous control system, the high temperature operando setup fits to the space at the majority of synchrotron beamlines. In many cases, the concentration of the element of interest in the catalysts is low requiring x-ray absorption spectroscopy measurements in the fluorescence measurement mode. Hence, the microreactor was designed to fit such needs as well. More specifically, the case of Fe-containing catalysts was particularly considered by using iron-free materials for the reactor housing.
Collapse
Affiliation(s)
- Daniel Eggart
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Anna Zimina
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gülperi Cavusoglu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E Doronkin
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Kirill A Lomachenko
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Florea OG, Stănoiu A, Gheorghe M, Cobianu C, Neaţu F, Trandafir MM, Neaţu Ş, Florea M, Simion CE. Methane Combustion Using Pd Deposited on CeO x-MnO x/La-Al 2O 3 Pellistors. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13214888. [PMID: 33143340 PMCID: PMC7663723 DOI: 10.3390/ma13214888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Pd deposited on CeOx-MnOx/La-Al2O3 has been prepared as a sensitive material for methane (CH4) detection. The effect of different amounts (1.25%, 2.5% and 5%) of Pd loading has been investigated. The as prepared materials were deposited on Pt microcoils using a drop-coating method, as a way of developing pellistors operated using a Wheatstone bridge configuration. By spanning the operating temperature range between 300 °C and 550 °C, we established the linearity region as well as the maximum sensitivity towards 4900 ppm of CH4. By making use of the sigmoid dependence of the output voltage signal from the Wheatstone bridge, the gas surface reaction and diffusion phenomena have been decoupled. The pellistor with 5% Pd deposited on CeOx-MnOx/La-Al2O3 exhibited the highest selective-sensitivity in the benefit of CH4 detection against threshold limits of carbon monoxide (CO), sulfur dioxide (SO2) and hydrogen sulfide (H2S). Accordingly, adjusting the percent of Pd makes the preparation strategies of pellistors good candidates towards CH4 detection.
Collapse
Affiliation(s)
- Ovidiu G. Florea
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (O.G.F.); (A.S.)
| | - Adelina Stănoiu
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (O.G.F.); (A.S.)
| | - Marin Gheorghe
- NANOM-MEMS SRL, G. Cosbuc 9, 505400 Rasnov, Romania; (M.G.); (C.C.)
| | - Cornel Cobianu
- NANOM-MEMS SRL, G. Cosbuc 9, 505400 Rasnov, Romania; (M.G.); (C.C.)
| | - Florentina Neaţu
- Laboratory of Nanoscale Condensed Matter, National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (F.N.); (M.M.T.); (Ş.N.)
| | - Mihaela M. Trandafir
- Laboratory of Nanoscale Condensed Matter, National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (F.N.); (M.M.T.); (Ş.N.)
| | - Ştefan Neaţu
- Laboratory of Nanoscale Condensed Matter, National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (F.N.); (M.M.T.); (Ş.N.)
| | - Mihaela Florea
- Laboratory of Multifunctional Materials and Structures, National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania;
| | - Cristian E. Simion
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (O.G.F.); (A.S.)
| |
Collapse
|