1
|
Albulushi A, Al Hajri R, Hovseth C, Jawa Z, El Hadad MG, Sallam M, Al-Mukhaini M. Advancements and challenges in cardiac amyloidosis imaging: A comprehensive review of novel techniques and clinical applications. Curr Probl Cardiol 2024; 49:102733. [PMID: 38955249 DOI: 10.1016/j.cpcardiol.2024.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Cardiac amyloidosis, characterized by amyloid fibril deposition in the myocardium, leads to restrictive cardiomyopathy and heart failure. This review explores recent advancements in imaging techniques for diagnosing and managing cardiac amyloidosis, highlighting their clinical applications, strengths, and limitations. Echocardiography remains a primary, non-invasive imaging modality but lacks specificity. Cardiac MRI (CMR), with Late Gadolinium Enhancement (LGE) and T1 mapping, offers superior tissue characterization, though at higher costs and limited availability. Scintigraphy with Tc-99m-PYP reliably diagnoses transthyretin (TTR) amyloidosis but is less effective for light chain (AL) amyloidosis, necessitating complementary diagnostics. Amyloid-specific PET tracers, such as florbetapir and flutemetamol, provide precise imaging and quantitative assessment for both TTR and AL amyloidosis. Challenges include differentiating between TTR and AL amyloidosis, early disease detection, and standardizing imaging protocols. Future research should focus on developing novel tracers, integrating multimodality imaging, and leveraging AI to enhance diagnostic accuracy and personalized treatment. Advancements in imaging have improved cardiac amyloidosis management. A multimodal approach, incorporating echocardiography, CMR, scintigraphy, and PET tracers, offers comprehensive assessment. Continued innovation in tracers and AI applications promises further enhancements in diagnosis, early detection, and patient outcomes.
Collapse
Affiliation(s)
- Arif Albulushi
- Department of Adult Cardiology, National Heart Center, The Royal Hospital, Muscat, Oman.
| | - Ruqaya Al Hajri
- Department of Adult Cardiology, National Heart Center, The Royal Hospital, Muscat, Oman
| | - Chad Hovseth
- Division of Cardiovascular Medicine, Nebraska Medicine, Omaha, NE, USA
| | - Zabah Jawa
- Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Mansour Sallam
- Division of Cardiology, Armed Forces Hospital, Muscat, Oman
| | - Mohammed Al-Mukhaini
- Department of Adult Cardiology, National Heart Center, The Royal Hospital, Muscat, Oman
| |
Collapse
|
2
|
Espargaró A, Álvarez-Berbel I, Busquets MA, Sabate R. In Vivo Assays for Amyloid-Related Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:433-458. [PMID: 38598824 DOI: 10.1146/annurev-anchem-061622-023326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Amyloid-related diseases, such as Alzheimer's and Parkinson's disease, are devastating conditions caused by the accumulation of abnormal protein aggregates known as amyloid fibrils. While assays involving animal models are essential for understanding the pathogenesis and developing therapies, a wide array of standard analytical techniques exists to enhance our understanding of these disorders. These techniques provide valuable information on the formation and propagation of amyloid fibrils, as well as the pharmacokinetics and pharmacodynamics of candidate drugs. Despite ethical concerns surrounding animal use, animal models remain vital tools in the search for treatments. Regardless of the specific animal model chosen, the analytical methods used are usually standardized. Therefore, the main objective of this review is to categorize and outline the primary analytical methods used in in vivo assays for amyloid-related diseases, highlighting their critical role in furthering our understanding of these disorders and developing effective therapies.
Collapse
Affiliation(s)
- Alba Espargaró
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Irene Álvarez-Berbel
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
| | - Maria Antònia Busquets
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sabate
- 1Department of Pharmacy and Pharmaceutical Technology and Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain;
- 2Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
4
|
Jiang J, Wang X, Bao Y, Shen F, Wang G, Li K, Lin Y. Harnessing Graphdiyne for Selective Cu 2+ Detection: A Promising Tool for Parkinson's Disease Diagnostics and Pathogenesis. ACS Sens 2024; 9:2317-2324. [PMID: 38752502 DOI: 10.1021/acssensors.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cu2+ accelerates the viral-like propagation of α-synuclein fibrils and plays a key role in the pathogenesis of Parkinson's disease (PD). Therefore, the accurate detection of Cu2+ is essential for the diagnosis of PD and other neurological diseases. The Cu2+ detection process is impeded by substances that have similar electrochemical properties. In this study, graphdiyne (GDY), a new kind of carbon allotrope with strong electron-donating ability, was utilized for the highly selective detection of Cu2+ by taking advantage of its outstanding adsorption capacity for Cu2+. Density functional theory (DFT) calculations show that Cu atoms are adsorbed in the cavity of GDY, and the absorption energy between Cu and C atoms is higher than that of graphene (GR), indicating that the cavity of GDY is favorable for the adsorption of Cu atoms and electrochemical sensing. The GDY-based electrochemical sensor can effectively avoid the interference of amino acids, metal ions and neurotransmitters and has a high sensitivity of 9.77 μA·μM-1·cm-2, with a minimum detectable concentration of 200 nM. During the investigating pathogenesis and therapeutic process of PD with α-synuclein as the diagnostic standard, the concentration of Cu2+ in cells before and after L-DOPA and GSH treatments were examined, and it was found that Cu2+ exhibits high potential as a biomarker for PD. This study not only harnesses the favorable adsorption of the GDY and Cu2+ to improve the specificity of ion detection but also provide clues for deeper understanding of the role of Cu2+ in neurobiology and neurological diseases.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xu Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yongqi Bao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Fangxu Shen
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
5
|
Maru K, Singh A, Jangir R, Jangir KK. Amyloid detection in neurodegenerative diseases using MOFs. J Mater Chem B 2024; 12:4553-4573. [PMID: 38646795 DOI: 10.1039/d4tb00373j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Neurodegenerative diseases (amyloid diseases such as Alzheimer's and Parkinson's), stemming from protein misfolding and aggregation, encompass a spectrum of disorders with severe systemic implications. Timely detection is pivotal in managing these diseases owing to their significant impact on organ function and high mortality rates. The diverse array of amyloid disorders, spanning localized and systemic manifestations, underscores the complexity of these conditions and highlights the need for advanced detection methods. Traditional approaches have focused on identifying biomarkers using imaging techniques (PET and MRI) or invasive procedures. However, recent efforts have focused on the use of metal-organic frameworks (MOFs), a versatile class of materials known for their unique properties, in revolutionizing amyloid disease detection. The high porosity, customizable structures, and biocompatibility of MOFs enable their integration with biomolecules, laying the groundwork for highly sensitive and specific biosensors. These sensors have been employed using electrochemical and photophysical techniques that target amyloid species under neurodegenerative conditions. The adaptability of MOFs allows for the precise detection and quantification of amyloid proteins, offering potential advancements in early diagnosis and disease management. This review article delves into how MOFs contribute to detecting amyloid diseases by categorizing their uses based on different sensing methods, such as electrochemical (EC), electrochemiluminescence (ECL), fluorescence, Förster resonance energy transfer (FRET), up-conversion luminescence resonance energy transfer (ULRET), and photoelectrochemical (PEC) sensing. The drawbacks of MOF biosensors and the challenges encountered in the field are also briefly explored from our perspective.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Amarendra Singh
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | | |
Collapse
|
6
|
Farzam F, Dabirmanesh B. Experimental techniques for detecting and evaluating the amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:183-227. [PMID: 38811081 DOI: 10.1016/bs.pmbts.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Amyloid fibrils are insoluble proteins with intricate β-sheet structures associated with various human diseases, including Parkinson's, Alzheimer's, and prion diseases. Proteins can form aggregates when their structure is misfolded, resulting in highly organized amyloid fibrils or amorphous aggregates. The formation of protein aggregates is a promising research field for mitigating diseases and the pharmaceutical and food industries. It is important to monitor and minimize the appearance of aggregates in these protein products. Several methods exist to assess protein aggregation, that includes from basic investigations to advanced biophysical techniques. Physicochemical parameters such as molecular weight, conformation, structure, and dimension are examined to study aggregation. There is an urgent need to develop methods for the detection of protein aggregation and amyloid fibril formation both in vitro and in vivo. This chapter focuses on a comprehensive discussion of the methods used to characterize and evaluate aggregates and amyloid fibrils.
Collapse
Affiliation(s)
- Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Trinh N, Bhuskute KR, Varghese NR, Buchanan JA, Xu Y, McCutcheon FM, Medcalf RL, Jolliffe KA, Sunde M, New EJ, Kaur A. A Coumarin-Based Array for the Discrimination of Amyloids. ACS Sens 2024; 9:615-621. [PMID: 38315454 DOI: 10.1021/acssensors.3c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Self-assembly of misfolded proteins can lead to the formation of amyloids, which are implicated in the onset of many pathologies including Alzheimer's disease and Parkinson's disease. The facile detection and discrimination of different amyloids are crucial for early diagnosis of amyloid-related pathologies. Here, we report the development of a fluorescent coumarin-based two-sensor array that is able to correctly discriminate between four different amyloids implicated in amyloid-related pathologies with 100% classification. The array was also applied to mouse models of Alzheimer's disease and was able to discriminate between samples from mice corresponding to early (6 months) and advanced (12 months) stages of Alzheimer's disease. Finally, the flexibility of the array was assessed by expanding the analytes to include functional amyloids. The same two-sensor array was able to correctly discriminate between eight different disease-associated and functional amyloids with 100% classification.
Collapse
Affiliation(s)
- Natalie Trinh
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kaustubh R Bhuskute
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Melbourne, Victoria 3052, Australia
| | - Nikhil R Varghese
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jessica A Buchanan
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yijia Xu
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Fiona M McCutcheon
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Margaret Sunde
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Melbourne, Victoria 3052, Australia
| |
Collapse
|
8
|
Fang D, Pan D, Wen X, Zhang J, Yang M, Ye D, Liu H. A Near-infrared Fluorescence and Positron Emission Tomography Bimodal Probe for In Vivo Imaging of Amyloid-β Species. ACS Chem Neurosci 2024; 15:472-478. [PMID: 38214485 DOI: 10.1021/acschemneuro.3c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Noninvasive imaging of amyloid-β (Aβ) species in vivo is important for the early diagnosis of Alzheimer's disease (AD). In this paper, we report a near-infrared (NIR) fluorescence (FL) and positron emission tomography (PET) bimodal probe (NIR-[68Ga]) for in vivo imaging of both soluble and insoluble Aβ species. NIR-[68Ga] holds a high binding affinity, high selectivity and high sensitivity toward Aβ42 monomers, oligomers, and aggregates in vitro. In vivo imaging results show that NIR-[68Ga] can cross the blood-brain-barrier (BBB), and produce significantly higher PET and NIR FL bimodal signals in the brains of APP/PS1 transgenic AD mice relative to that of age-matched wild-type mice, which are also validated by the ex vivo autoradiography and histological staining images. Our results demonstrate that NIR-[68Ga] is an efficient NIR FL and PET bimodal probe for the sensitive imaging of soluble and insoluble Aβ species in AD mice.
Collapse
Affiliation(s)
- Daqing Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
9
|
Chisholm TS, Hunter CA. A closer look at amyloid ligands, and what they tell us about protein aggregates. Chem Soc Rev 2024; 53:1354-1374. [PMID: 38116736 DOI: 10.1039/d3cs00518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The accumulation of amyloid fibrils is characteristic of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Detecting these fibrils with fluorescent or radiolabelled ligands is one strategy for diagnosing and better understanding these diseases. A vast number of amyloid-binding ligands have been reported in the literature as a result. To obtain a better understanding of how amyloid ligands bind, we have compiled a database of 3457 experimental dissociation constants for 2076 unique amyloid-binding ligands. These ligands target Aβ, tau, or αSyn fibrils, as well as relevant biological samples including AD brain homogenates. From this database significant variation in the reported dissociation constants of ligands was found, possibly due to differences in the morphology of the fibrils being studied. Ligands were also found to bind to Aβ(1-40) and Aβ(1-42) fibrils with similar affinities, whereas a greater difference was found for binding to Aβ and tau or αSyn fibrils. Next, the binding of ligands to fibrils was shown to be largely limited by the hydrophobic effect. Some Aβ ligands do not fit into this hydrophobicity-limited model, suggesting that polar interactions can play an important role when binding to this target. Finally several binding site models were outlined for amyloid fibrils that describe what ligands target what binding sites. These models provide a foundation for interpreting and designing site-specific binding assays.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| |
Collapse
|
10
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
11
|
Abidi SMS, Sharma C, Randhawa S, Shukla AK, Acharya A. A review on nanotechnological perspective of "the amyloid cascade hypothesis" for neurodegenerative diseases. Int J Biol Macromol 2023; 253:126821. [PMID: 37690655 DOI: 10.1016/j.ijbiomac.2023.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Nikiforova A, Sedov I. Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits. Int J Mol Sci 2023; 24:11152. [PMID: 37446329 DOI: 10.3390/ijms241311152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The ability to detect and monitor amyloid deposition in the brain using non-invasive imaging techniques provides valuable insights into the early diagnosis and progression of Alzheimer's disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI) is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has entered clinical practice. We review the advances in the field and deduce the requirements for the molecular structure and properties of a diagnostic probe candidate. These requirements make up the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with known binders offering the possibility to use computational structure-based design methods. With continued research and development, MRI probes may revolutionize the diagnosis and treatment of neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.
Collapse
Affiliation(s)
- Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
13
|
Sarkar A, Namboodiri V, Kumbhakar M. Single-Molecule Orientation Imaging Reveals Two Distinct Binding Configurations on Amyloid Fibrils. J Phys Chem Lett 2023:4990-4996. [PMID: 37220418 DOI: 10.1021/acs.jpclett.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fluorescence readouts for an amyloid fibril sensor critically depend on its molecular interaction and local environment offered by the available structural motifs. Here we employ polarized points accumulation for imaging in nanoscale topography with intramolecular charge transfer probes transiently bound to amyloid fibrils to investigate the organization of fibril nanostructures and probe binding configurations. Besides the in-plane (θ ≈ 90°) mode for binding on the fibril surface parallel to the long fibril axis, we also observed a sizable population of over 60% out-of-plane (θ < 60°) dipoles for rotor probes experiencing a varying degree of orientational mobility. Highly confined dipoles exhibiting an out-of-plane configuration probably reflect tightly bound dipoles in the inner channel grooves, while the weakly bound ones on amyloid enjoy rotational flexibility. Our observation of an out-of-plane binding mode emphasizes the pivotal role played by the electron donor amino group toward fluorescence detection and hence the emergence of anchored probes alongside conventional groove binders.
Collapse
Affiliation(s)
- Aranyak Sarkar
- Radiation & Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinu Namboodiri
- Radiation & Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
| | - Manoj Kumbhakar
- Radiation & Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
14
|
Guo WY, Fu YX, Mei LC, Chen Z, Zhang ZY, Wang F, Yang WC, Liu G, Yang GF. Rational Design of Esterase-Insensitive Fluorogenic Probes for In Vivo Imaging. ACS Sens 2023; 8:2041-2049. [PMID: 37146071 DOI: 10.1021/acssensors.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Small-molecule fluorogenic probes are indispensable tools for performing research in biomedical fields and chemical biology. Although numerous cleavable fluorogenic probes have been developed to investigate various bioanalytes, few of them meet the baseline requirements for in vivo biosensing for disease diagnosis due to their insufficient specificity resulted from the remarkable esterase interferences. To address this critical issue, we developed a general approach called fragment-based fluorogenic probe discovery (FBFPD) to design esterase-insensitive probes for in vitro and in vivo applications. With the designed esterase-insensitive fluorogenic probe, we successfully achieved light-up in vivo imaging and quantitative analysis of cysteine. This strategy was further extended to design highly specific fluorogenic probes for other representative targets, sulfites, and chymotrypsin. The present study expands the bioanalytical toolboxes available and offers a promising platform to develop esterase-insensitive cleavable fluorogenic probes for in vivo biosensing and bioimaging for the early diagnosis of diseases.
Collapse
Affiliation(s)
- Wu-Yingzheng Guo
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Yi-Xuan Fu
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Long-Can Mei
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Zhao Chen
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Zi-Ye Zhang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Fan Wang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
15
|
Tang C, Wang X, Jin Y, Wang F. Recent advances in HDAC-targeted imaging probes for cancer detection. Biochim Biophys Acta Rev Cancer 2022; 1877:188788. [PMID: 36049581 DOI: 10.1016/j.bbcan.2022.188788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Histone Deacetylases (HDACs) are abnormally high expressed in various cancers and play a crucial role in regulating gene expression. While HDAC-targeted inhibitors have been rapidly developed and approved in the last twenty years, noninvasive monitoring and visualizing the expression levels of HDACs in tumor tissues might help to early diagnosis in cancer and predict the response to HDAC-targeted cancer therapy. In this review, we summarize the recent advancements in the development of HDAC-targeted probes and their applications in cancer imaging and image-guided surgery. We also discuss the design strategies, advantages and disadvantages of these probes. We hope that this review will provide guidance for the design of HDAC-targeted imaging probes and clinical applications in future.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
16
|
Takalloobanafshi G, Kukreja A, Hicks JW. Historical efforts to develop 99mTc-based amyloid plaque targeting radiotracers. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:963698. [PMID: 39390996 PMCID: PMC11466234 DOI: 10.3389/fnume.2022.963698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/21/2022] [Indexed: 10/12/2024]
Abstract
Imaging biomarkers have changed the way we study Alzheimer's disease and related dementias, develop new therapeutics to treat the disease, and stratify patient populations in clinical trials. With respect to protein aggregates comprised of amyloid-β plaques and tau neurofibrillary tangles, Positron Emission Tomography (PET) has become the gold standard imaging modality for quantitative visualization. Due to high infrastructural costs, the availability of PET remains limited to large urban areas within high income nations. This limits access to leading edge medical imaging, and potentially access to new treatments, by millions of rural and remote residents in those regions as well as billions of people in middle- and low-income countries. Single Photon Emission Computed Tomography (SPECT) is a more widely available imaging alternative with lower infrastructural costs and decades of familiarity amongst nuclear medicine professionals. Recent technological advances have closed the gap in spatial resolution and quantitation between SPECT and PET. If effective SPECT radiotracers were available to visualize amyloid-β plaques, geographic barriers to imaging could be circumvented. In this review, we will discuss past efforts to develop SPECT radiotracers targeting amyloid-β plaques which incorporate the most used radionuclide in nuclear medicine: technetium-99m (99mTc; t 1/2 = 6.01 h; γ = 140 keV). While reviewing the various chemical scaffolds and chelates employed, the focus will be upon the impact to the pharmacological properties of putative 99mTc-based amyloid-targeting radiotracers.
Collapse
Affiliation(s)
- Ghazaleh Takalloobanafshi
- Department of Chemistry, Western University, London, ON, Canada
- Cyclotron and Radiochemistry Facility, Lawson Health Research Institute, London, ON, Canada
| | - Aditi Kukreja
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Justin W. Hicks
- Cyclotron and Radiochemistry Facility, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Saint Joseph's Health Care London, London, ON, Canada
| |
Collapse
|
17
|
Yue N, Fu H, Chen Y, Gao X, Dai J, Cui M. Rational design of molecular rotor-based fluorescent probes with Bi-aromatic rings for efficient in vivo detection of amyloid-β plaques in Alzheimer's disease. Eur J Med Chem 2022; 243:114715. [DOI: 10.1016/j.ejmech.2022.114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
|
18
|
Mann G, Chauhan K, Kumar V, Daksh S, Kumar N, Thirumal M, Datta A. Bio-Evaluation of 99mTc-Labeled Homodimeric Chalcone Derivative as Amyloid-β-Targeting Probe. Front Med (Lausanne) 2022; 9:813465. [PMID: 35783620 PMCID: PMC9249127 DOI: 10.3389/fmed.2022.813465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Chalcone derivatives have been successfully utilized for a range of biological applications and can cross the blood–brain barrier easily. β-amyloid-specific bis-chalcone derivative, 6,9-bis(carboxymethyl)-14-(4-[(E)-3-(4-(dimethylamino)phenyl)acryloyl]phenoxy)-3-(2-[(2-(4-[(E)-3-(4-(dimethylamino)phenyl)acryloyl]phenoxy)ethyl)amino]-2-oxoethyl)-11-oxo-3,6,9,12-tetraazatetradecanoic acid, DT(Ch)2, was analyzed using molecular modeling to explain the binding modes of the ligand with amyloid fibril and monomer followed by 99mTc-complexation in 95% yield and 98.7% efficiency. High-binding specificity of the radiocomplex was established following in vitro evaluation against 100-fold excess of DT(Ch)2. 99mTc–DT(Ch)2 exhibited <3% trans-complexation in human serum after 24 h, indicating high stability. A fast clearance rate in pharmacokinetics studies displayed a biphasic pattern with t1/2(F) = 30 min ± 0.09 and t1/2(S) = 4 h 20 min ± 0.06. In vivo single-photon emission computed tomography (SPECT) imaging in rabbits reiterated the pharmacokinetics data with initially high brain uptake followed by rapid washout. Biodistribution studies confirmed the initial brain uptake as 1.16 ± 0.02% ID/g after 2 min and the brain2min/brain30min ratio was 3.74. Radioactivity distribution in the brain was >40% in the cingulate cortex followed by >25% in the hippocampus, a distribution pattern aligned to Alzheimer’s affected brain regions. Radiocomplex also displayed rapid plasma clearance followed by hepatobolic and renal modes of excretion.
Collapse
Affiliation(s)
- Garima Mann
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Vikas Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Nikhil Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - M. Thirumal
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
- *Correspondence: Anupama Datta, ;
| |
Collapse
|
19
|
Maiti M, Kikuchi K, Athul KK, Kaur A, Bhuniya S. β-Galactosidase-activated theranostic for hepatic carcinoma therapy and imaging. Chem Commun (Camb) 2022; 58:6413-6416. [PMID: 35543438 DOI: 10.1039/d2cc01825j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A β-galactosidase activatable fluorescent turn-on theranostic Gal-CGem exhibits gemcitabine release specifically in β-galactosidase overexpressing hepatic carcinoma cells. The cytotoxicity of Gal-CGem in cancer cells is achieved through the apoptotic cell death pathway. Overall, Gal-CGem is a new frontline prodrug in cancer therapy that has provided antineoplastic information through fluorescence imaging.
Collapse
Affiliation(s)
- Mrinmoy Maiti
- Department of Science, Amrita School of Engineering, Amrita Viswa Vidyapeetham, Coimbatore, India, 641112
| | - Kai Kikuchi
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - K K Athul
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Arch Waterfront, GP Block, Sector V, Kolkata, India, 700091.
| | - Amandeep Kaur
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Sankarprasad Bhuniya
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Arch Waterfront, GP Block, Sector V, Kolkata, India, 700091.
| |
Collapse
|
20
|
Su D, Diao W, Li J, Pan L, Zhang X, Wu X, Mao W. Strategic Design of Amyloid-β Species Fluorescent Probes for Alzheimer's Disease. ACS Chem Neurosci 2022; 13:540-551. [PMID: 35132849 DOI: 10.1021/acschemneuro.1c00810] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a high mortality and high disability rates neurodegenerative disease characterized by irreversible progression and poses a significant social and economic burden throughout the world. However, currently approved AD therapeutic agents only alleviate symptoms and there is still a lack of practical therapeutic regimens to stop or slow the progression of this disease. Thus, there is urgently needed novel diagnosis tools and drugs for early diagnosis and treatment of AD. Among several AD pathological hallmarks, amyloid-β (Aβ) peptide deposition is considered a critical initiating factor in AD. In recent years, with the advantages of excellent sensitivity and high resolution, near-infrared fluorescence (NIRF) imaging has attracted the attention of many researchers to develop Aβ plaque probes. This review mainly focused on different NIRF probe design strategies for imaging Aβ species to pave the way for the future design of novel NIRF probes for early diagnosis AD.
Collapse
Affiliation(s)
- Dunyan Su
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Diao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610093, P. R. China
| |
Collapse
|
21
|
Haratake Y, Sano K, Tsuchiya M, Minaki K, Munekane M, Yamasaki T, Hagimori M, Mukai T. Development of a radioiodinated thioflavin-T-Congo-red hybrid probe for diagnosis of systemic amyloidosis. Bioorg Med Chem 2022; 56:116591. [DOI: 10.1016/j.bmc.2021.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
|
22
|
Kaur A, Adair LD, Ball SR, New EJ, Sunde M. A Fluorescent Sensor for Quantitative Super‐Resolution Imaging of Amyloid Fibril Assembly**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amandeep Kaur
- School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Liam D. Adair
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Sarah R. Ball
- School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW 2006 Australia
| | - Elizabeth J. New
- The University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Margaret Sunde
- School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
23
|
Kaur A, Adair LD, Ball SR, New EJ, Sunde M. A Fluorescent Sensor for Quantitative Super-resolution Imaging of Amyloid Fibril Assembly. Angew Chem Int Ed Engl 2021; 61:e202112832. [PMID: 34935241 DOI: 10.1002/anie.202112832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/07/2022]
Abstract
Many soluble proteins can self-assemble into macromolecular structures called amyloids, a subset of which are implicated in a range of neurodegenerative disorders. The nanoscale size and structural heterogeneity of prefibrillar and early aggregates, as well as mature amyloid fibrils, pose significant challenges for the quantification of amyloid species, identification of their cellular interaction partners and for elucidation of the molecular basis for cytotoxicity. We report a fluorescent amyloid sensor AmyBlink-1 and its application in super-resolution imaging of amyloid structures. AmyBlink-1 exhibits a 5-fold increase in ratio of the green (thioflavin T) to red (Alexa Fluor 647) emission intensities upon interaction with amyloid fibrils. Using AmyBlink-1 , we performed nanoscale imaging of four different types of amyloid fibrils, achieving a resolution of ~30 nm. AmyBlink-1 enables nanoscale visualization and subsequent quantification of morphological features, such as the length and skew of individual amyloid aggregates formed at different times along the amyloid assembly pathway.
Collapse
Affiliation(s)
- Amandeep Kaur
- University of Sydney, School.of Medical Sciences, University of Sydney, 2006, Sydney, AUSTRALIA
| | - Liam D Adair
- The University of Sydney, School of Chemistry, AUSTRALIA
| | - Sarah R Ball
- The University of Sydney, School of Medical Sciences, AUSTRALIA
| | | | - Margaret Sunde
- The University of Sydney, School of Medical Sciences, AUSTRALIA
| |
Collapse
|
24
|
Graziotto ME, Adair LD, Kaur A, Vérité P, Ball SR, Sunde M, Jacquemin D, New EJ. Versatile naphthalimide tetrazines for fluorogenic bioorthogonal labelling. RSC Chem Biol 2021; 2:1491-1498. [PMID: 34704054 PMCID: PMC8496007 DOI: 10.1039/d1cb00128k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
Fluorescent probes for biological imaging have revealed much about the functions of biomolecules in health and disease. Fluorogenic probes, which are fluorescent only upon a bioorthogonal reaction with a specific partner, are particularly advantageous as they ensure that fluorescent signals observed in biological imaging arise solely from the intended target. In this work, we report the first series of naphthalimide tetrazines for bioorthogonal fluorogenic labelling. We establish that all of these compounds can be used for imaging through photophysical, analytical and biological studies. The best candidate was Np6mTz, where the tetrazine ring is appended to the naphthalimide at its 6-position via a phenyl linker in a meta configuration. Taking our synthetic scaffold, we generated two targeted variants, LysoNpTz and MitoNpTz, which successfully localized within the lysosomes and mitochondria respectively, without the requirement of genetic modification. In addition, the naphthalimide tetrazine system was used for the no-wash imaging of insulin amyloid fibrils in vitro, providing a new method that can monitor their growth kinetics and morphology. Since our synthetic approach is simple and modular, these new naphthalimide tetrazines provide a novel scaffold for a range of bioorthogonal tetrazine-based imaging agents for selective staining and sensing of biomolecules.
Collapse
Affiliation(s)
- Marcus E Graziotto
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
| | - Liam D Adair
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
| | - Amandeep Kaur
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| | | | - Sarah R Ball
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
| | - Margaret Sunde
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| | | | - Elizabeth J New
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| |
Collapse
|
25
|
Gaur P, Galkin M, Kurochka A, Ghosh S, Yushchenko DA, Shvadchak VV. Fluorescent Probe for Selective Imaging of α-Synuclein Fibrils in Living Cells. ACS Chem Neurosci 2021; 12:1293-1298. [PMID: 33819025 DOI: 10.1021/acschemneuro.1c00090] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaques of amyloid fibrils composed of neuronal protein α-synuclein are one of the hallmarks of Parkinson's disease, and their selective imaging is crucial to study the mechanism of its pathogenesis. However, the existing fluorescent probes for amyloids are efficient only in solution and tissue systems, and they are not selective enough for the visualization of amyloid fibrils in living cells. In this study, we present two molecular rotor-based probes RB1 and RB2. These thiazolium probes show affinity to α-synuclein fibrils and turn-on fluorescence response upon interactions. Because of its extended π-conjugation and high rotational degree of freedom, RB1 exhibits a 76 nm red-shift of absorption maxima and 112-fold fluorescence enhancement upon binding to amyloid fibrils. Owing to its strong binding affinity to α-synuclein fibrils, RB1 can selectively stain them in the cytoplasm of living HeLa and SH-SY5Y cells with high optical contrast. RB1 is a cell-permeable and noncytotoxic probe. Taken together, we have demonstrated that RB1 is an amyloid probe with an outstanding absorption red-shift that can be used for intracellular imaging of α-synuclein fibrils.
Collapse
Affiliation(s)
- Pankaj Gaur
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 6, 16610, Czech Republic
| | - Maksym Galkin
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 6, 16610, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague, 12843, Czech Republic
| | - Andrii Kurochka
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 6, 16610, Czech Republic
| | - Subrata Ghosh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Dmytro A. Yushchenko
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 6, 16610, Czech Republic
| | - Volodymyr V. Shvadchak
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 6, 16610, Czech Republic
| |
Collapse
|
26
|
Majdoub S, Garda Z, Oliveira AC, Relich I, Pallier A, Lacerda S, Hureau C, Geraldes CFGC, Morfin JF, Tóth É. Concentration-Dependent Interactions of Amphiphilic PiB Derivative Metal Complexes with Amyloid Peptides Aβ and Amylin*. Chemistry 2021; 27:2009-2020. [PMID: 33026686 DOI: 10.1002/chem.202004000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/07/2022]
Abstract
Metal chelates targeted to amyloid peptides are widely explored as diagnostic tools or therapeutic agents. The attachment of a metal complex to amyloid recognition units typically leads to a decrease in peptide affinity. We show here that by separating a macrocyclic GdL chelate and a PiB targeting unit with a long hydrophobic C10 linker, it is possible to attain nanomolar affinities for both Aβ1-40 (Kd =4.4 nm) and amylin (Kd =4.5 nm), implicated, respectively in Alzheimer's disease and diabetes. The Scatchard analysis of surface plasmon resonance data obtained for a series of amphiphilic, PiB derivative GdL complexes indicate that their Aβ1-40 or amylin binding affinity varies with their concentration, thus micellar aggregation state. The GdL chelates also affect peptide aggregation kinetics, as probed by thioflavin-T fluorescence assays. A 2D NMR study allowed identifying that the hydrophilic region of Aβ1-40 is involved in the interaction between the monomer peptide and the Gd3+ complex. Finally, ex vivo biodistribution experiments were conducted in healthy mice by using 111 In labeled analogues. Their pancreatic uptake, ∼3 %ID g-1 , is promising to envisage amylin imaging in diabetic animals.
Collapse
Affiliation(s)
- Saida Majdoub
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Zoltán Garda
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Alexandre C Oliveira
- Department of Chemistry, University of Coimbra, Coimbra Chemistry Centre (CQC), 3004-535, Coimbra, Portugal
| | - Inga Relich
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | | | - Carlos F G C Geraldes
- Department of Chemistry, University of Coimbra, Coimbra Chemistry Centre (CQC), 3004-535, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-393, Coimbra, Portugal.,CIBIT/ICNAS-Instituto de Ciências Nucleares Aplicadas à Saúde, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| |
Collapse
|
27
|
Dzyuba SV. BODIPY Dyes as Probes and Sensors to Study Amyloid-β-Related Processes. BIOSENSORS 2020; 10:E192. [PMID: 33260945 PMCID: PMC7760207 DOI: 10.3390/bios10120192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Amyloid formation plays a major role in a number of neurodegenerative diseases, including Alzheimer's disease. Amyloid-β peptides (Aβ) are one of the primary markers associated with this pathology. Aβ aggregates exhibit a diverse range of morphologies with distinct pathological activities. Recognition of the Aβ aggregates by using small molecule-based probes and sensors should not only enhance understanding of the underlying mechanisms of amyloid formation, but also facilitate the development of therapeutic strategies to interfere with amyloid neurotoxicity. BODIPY (boron dipyrrin) dyes are among the most versatile small molecule fluorophores. BODIPY scaffolds could be functionalized to tune their photophysical properties to the desired ranges as well as to adapt these dyes to various types of conditions and environments. Thus, BODIPY dyes could be viewed as unique platforms for the design of probes and sensors that are capable of detecting and tracking structural changes of various Aβ aggregates. This review summarizes currently available examples of BODIPY dyes that have been used to investigate conformational changes of Aβ peptides, self-assembly processes of Aβ, as well as Aβ interactions with various molecules.
Collapse
Affiliation(s)
- Sergei V Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA
| |
Collapse
|