1
|
Tabatabaee RS, Naghdi T, Peyravian M, Kiani MA, Golmohammadi H. An Invisible Dermal Nanotattoo-Based Smart Wearable Sensor for eDiagnostics of Jaundice. ACS NANO 2024; 18:28012-28025. [PMID: 39356285 DOI: 10.1021/acsnano.4c06191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Despite substantial progress in the diagnosis of jaundice/hyperbilirubinemia as the most common disease and cause of hospitalization of newborns, on the eve of Industry/Healthcare 5.0, the development of accurate and reliable wearable diagnostic sensors for noninvasive smart monitoring of bilirubin (BIL) is still in high demand. Aiming to fabricate a smart wearable sensor for early diagnosis of neonatal jaundice and its therapeutic monitoring, we here report a fluorescent dermal nanotattoo that further coupled with an IoT-integrated wearable optoelectronic reader for minimally invasive, continuous, and real-time monitoring of BIL in interstitial fluid. Selective recovery of quenched fluorescence of the dermal tattoo sensor, composed of biocompatible dissolving/hydrogel microneedles loaded with fluorescent carbon quantum dots, upon blue light exposure used for jaundice phototherapy was utilized for highly selective BIL sensing. The fascinating features of our developed smart wearable tattoo sensor and its successful results with high correlation with blood BIL results make it a highly promising sensor for easy, minimally invasive, reliable, and smart eDiagnostics and continuous therapeutic eMonitoring of jaundice and other BIL-induced diseases at the point of care. We envision that the developed nanotattoo sensing bioplatform will inspire the development of future smart tattoo sensors in various diagnostic and monitoring scenarios.
Collapse
Affiliation(s)
- Raziyeh Sadat Tabatabaee
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Mohammad Peyravian
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Mohammad Ali Kiani
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
2
|
Xie X, Yang X, Zhang Y, Mao F, He Z, Sun Z, Zhang S, Liu X. Ready-to-use ratiometric bioluminescence immunosensor for detection of ochratoxin a in pepper. Biosens Bioelectron 2024; 259:116401. [PMID: 38761743 DOI: 10.1016/j.bios.2024.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Rapid, portable, and accurate detection tools for monitoring ochratoxin A (OTA) in food are essential for the guarantee of food safety and human health. Herein, as a proof-of-concept, this study proposed a ratiometric bioluminescence immunosensor (RBL-immunosensor) for homogeneous detection of OTA in pepper. The construct of the RBL-immunosensor consists of three components, including the large fragment of the split nanoluciferase (NanoLuc)-tagged nanobody (NLg), the small fragment of the split NanoLuc-tagged mimotope peptide heptamer (MPSm), and the calibrator luciferase (GeNL). The specific nanobody-mimotope peptide interaction between NLg and MPSm induces the reconstitution of the NanoLuc, which catalyzes the Nano-Glo substrate and produces a blue emission peak at 458 nm. Meanwhile, GeNL can produce a green emission peak at 518 nm upon substrate conversion via bioluminescent resonance energy transfer (BRET). Therefore, the concentration of OTA can be linked to the variation of the bioluminescence signal (λ458/λ518) measured by microplate reader and the variation of the blue/green ratio measured by smartphone via the competitive immunoreaction where OTA competes with MPSm to bind NLg. The immunosensor is ready-to-use and works by simply mixing the components in a one-step incubation of 10 min for readout. It has a limit of detection (LOD) of 0.98 ng/mL by a microplate reader and an LOD of 1.89 ng/mL by a smartphone. Good selectivity and accuracy were confirmed for the immunosensor by cross-reaction analysis and recovery experiments. The contents of OTA in 10 commercial pepper powder samples were tested by the RBL-immunosensor and validated by high-performance liquid chromatography. Hence, the ready-to-use RBL-immunosensor was demonstrated as a highly reliable tool for detection of OTA in food.
Collapse
Affiliation(s)
- Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fujing Mao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Golmohammadi H, Parnianchi F, Sharifi AR, Naghdi T, Tabatabaee RS, Peyravian M, Kashanian S. Spicy Recipe for At-Home Diagnostics: Smart Salivary Sensors for Point-of-Care Diagnosis of Jaundice. ACS Sens 2024; 9:3455-3464. [PMID: 38875528 DOI: 10.1021/acssensors.4c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Even though significant advances have been made, there is still a lack of reliable sensors capable of noninvasively monitoring bilirubin and diagnosing jaundice as the most common neonatal disease, particularly at the point-of-care (POC) where blood sampling from infants is accompanied by serious challenges and concerns. Herein, for the first time, using an easy-to-fabricate/use assay, we demonstrate the capability of curcumin embedded within paper for noninvasive optical monitoring of bilirubin in saliva. The highly selective sensing of the developed sensor toward bilirubin is attributed to bilirubin photoisomerization under blue light exposure, which can selectively restore the bilirubin-induced quenched fluorescence of curcumin. We also fabricated an IoT-enabled hand-held optoelectronic reader to measure and quantify the fluorescence and color signals of our sensor. Clinical analysis on the saliva of 18 jaundiced infants by using our developed smart salivary sensor proved that it is amenable to be widely exploited in POC applications for bilirubin monitoring as there are good correlations between its results with those of reference methods in saliva and blood. Meeting all WHO's REASSURED criteria by our developed sensor makes it a highly promising sensor for smart noninvasive diagnosis and therapeutic monitoring of jaundice, hepatitis, and other bilirubin-induced neurologic diseases at the POC.
Collapse
Affiliation(s)
- Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK─Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Fatemeh Parnianchi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Amir Reza Sharifi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK─Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Raziyeh Sadat Tabatabaee
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Mohammad Peyravian
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
| |
Collapse
|
4
|
Ahmed WS, Geethakumari AM, Sultana A, Fatima A, Philip AM, Uddin SMN, Biswas KH. A slow but steady nanoLuc: R162A mutation results in a decreased, but stable, nanoLuc activity. Int J Biol Macromol 2024; 269:131864. [PMID: 38692549 DOI: 10.1016/j.ijbiomac.2024.131864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
NanoLuc (NLuc) luciferase has found extensive application in designing a range of biological assays, including gene expression analysis, protein-protein interaction, and protein conformational changes due to its enhanced brightness and small size. However, questions related to its mechanism of interaction with the substrate, furimazine, as well as bioluminescence activity remain elusive. Here, we combined molecular dynamics (MD) simulation and mutational analysis to show that the R162A mutation results in a decreased but stable bioluminescence activity of NLuc in living cells and in vitro. Specifically, we performed multiple, all-atom, explicit solvent MD simulations of the apo and furimazine-docked (holo) NLuc structures revealing differential dynamics of the protein in the absence and presence of the ligand. Further, analysis of trajectories for hydrogen bonds (H-bonds) formed between NLuc and furimazine revealed substantial H-bond interaction between R162 and Q32 residues. Mutation of the two residues in NLuc revealed a decreased but stable activity of the R162A, but not Q32A, mutant NLuc in live cell and in vitro assays performed using lysates prepared from cells expressing the proteins and with the furimazine substrate. In addition to highlighting the role of the R162 residue in NLuc activity, we believe that the mutant NLuc will find wide application in designing in vitro assays requiring extended monitoring of NLuc bioluminescence activity. SIGNIFICANCE: Bioluminescence has been extensively utilized in developing a variety of biological and biomedical assays. In this regard, engineering of brighter bioluminescent proteins, i.e. luciferases, has played a significant role. This is acutely exemplified by the engineering of the NLuc luciferase, which is small in size and displays much enhanced bioluminescence and thermal stability compared to previously available luciferases. While enhanced bioluminescent activity is desirable in a multitude of biological and biomedical assays, it would also be useful to develop variants of the protein that display a prolonged bioluminescence activity. This is specifically relevant in designing assays that require bioluminescence for extended periods, such as in the case of biosensors designed for monitoring slow enzymatic or cellular signaling reactions, without necessitating multiple rounds of luciferase substrate addition or any specialized reagents that result in increased assay costs. In the current manuscript, we report a mutant NLuc that possesses a stable and prolonged bioluminescence activity, albeit lower than the wild-type NLuc, and envisage a wider application of the mutant NLuc in designing biosensors for monitoring slower biological and biomedical events.
Collapse
Affiliation(s)
- Wesam S Ahmed
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Anupriya M Geethakumari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asfia Sultana
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Angelin M Philip
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - S M Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
5
|
Yu J, Zhao K, Zhang Z, Zhang Y, Zhang X, Ren H. Development of a bioluminescence resonance energy transfer Quenchbody sensor for the detection of organophosphorus pesticides in water bodies. WATER RESEARCH 2024; 250:121051. [PMID: 38157605 DOI: 10.1016/j.watres.2023.121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Rapid and precise quantification of organophosphorus pesticides (OPPs) in environmental water bodies is crucial for evaluating ecological risks and safeguarding human health. Traditional instrumental methods are complex, time-consuming, and expensive, while enzyme-based biosensors suffer from instability and require a constant supply of substrates. Hence, there is an urgent need for a fast, simple, and sensitive biosensor for OPPs. In this study, we developed a novel non-enzymatic biosensor for the detection of methyl parathion (MP) by employing the bioluminescence resonance energy transfer (BRET) Q-body strategy. Optimizing the spacer arm and screening fluorescent dyes identified the R6G BRET MP Q-body sensor with the best performance. Key parameters affecting the sensor's detection performance were optimized by using single-factor experiments. Under optimal conditions, the detection exhibited a detection limit of 5.09 ng·mL-1 and a linear range of 16.21-848.81 ng·mL-1. The sensor's accuracy was validated using standard recovery experiments, yielding a recovery rate of 84.47 %-102.08 % with a standard deviation of 1.93 %-9.25 %. The detection results of actual water samples demonstrate that this fast, simple, and highly sensitive BRET Q-body sensor holds great promise for practical water quality monitoring.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kanglin Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhanao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Sakama A, Orioka M, Hiruta Y. Current advances in the development of bioluminescent probes toward spatiotemporal trans-scale imaging. Biophys Physicobiol 2024; 21:e211004. [PMID: 39175853 PMCID: PMC11338684 DOI: 10.2142/biophysico.bppb-v21.s004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024] Open
Abstract
Bioluminescence imaging has recently attracted great attention as a highly sensitive and non-invasive analytical method. However, weak signal and low chemical stability of the luciferin are conventional drawbacks of bioluminescence imaging. In this review article, we describe the recent progress on the development and applications of bioluminescent probes for overcoming the aforementioned limitations, thereby enabling spatiotemporal trans-scale imaging. The detailed molecular design for manipulation of their luminescent properties and functions enabled a variety of applications, including in vivo deep tissue imaging, long-term imaging, and chemical sensor.
Collapse
Affiliation(s)
- Akihiro Sakama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mariko Orioka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
7
|
Guirguis N, Bertrand A, Rose CF, Matoori S. 175 Years of Bilirubin Testing: Ready for Point-of-Care? Adv Healthc Mater 2023; 12:e2203380. [PMID: 37035945 PMCID: PMC11468846 DOI: 10.1002/adhm.202203380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/26/2023] [Indexed: 04/11/2023]
Abstract
Bilirubin was first detected in blood in 1847 and since then has become one of the most widely used biomarkers for liver disease. Clinical routine bilirubin testing is performed at the hospital laboratory, and the gold standard colorimetric test is prone to interferences. The absence of a bedside test for bilirubin delays critical clinical decisions for patients with liver disease. This clinical care gap has motivated the development of a new generation of bioengineered point-of-care bilirubin assays. In this Perspective, recently developed bilirubin assays are critically discussed, and their translational potential evaluated.
Collapse
Affiliation(s)
- Natalie Guirguis
- Faculté de PharmacieUniversité de MontréalMontrealQCH3T 1J4Canada
| | | | - Christopher F. Rose
- Hepato‐Neuro LaboratoryCentre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQCH2X 0A9Canada
- Department of MedicineUniversité de MontréalMontrealQCH3T 1J4Canada
| | - Simon Matoori
- Faculté de PharmacieUniversité de MontréalMontrealQCH3T 1J4Canada
| |
Collapse
|
8
|
Li J, Wang N, Xiong M, Dai M, Xie C, Wang Q, Quan K, Zhou Y, Qing Z. A Reaction-Based Ratiometric Bioluminescent Platform for Point-of-Care and Quantitative Detection Using a Smartphone. Anal Chem 2023; 95:7142-7149. [PMID: 37122064 DOI: 10.1021/acs.analchem.2c05422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fluorescent probes have emerged as powerful tools for the detection of different analytes by virtue of structural tenability. However, the requirement of an excitation source largely hinders their applicability in point-of-care detection, as well as causing autofluorescence interference in complex samples. Herein, based on bioluminescence resonance energy transfer (BRET), we developed a reaction-based ratiometric bioluminescent platform, which allows the excitation-free detection of analytes. The platform has a modular design consisting of a NanoLuc-HaloTag fusion as an energy donor, to which a synthetic fluorescent probe is bioorthogonally labeled as recognition moiety and energy acceptor. Once activated by the target, the fluorescent probe can be excited by NanoLuc to generate a remarkable BRET signal, resulting in obvious color changes of luminescence, which can be easily recorded and quantitatively analyzed by a smartphone. As a proof of concept, a fluorescent probe for HOCl was synthesized to construct the bioluminescent system. Results demonstrated the system showed a constant blue/red emission ratio which is independent to the signal intensity, allowing the quantification of HOCl concentration with high sensitivity (limit of detection (LOD) = 13 nM) and accuracy. Given the universality, this reaction-based bioluminescent platform holds great potential for point-of-care and quantitative detection of reactive species.
Collapse
Affiliation(s)
- Junbin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Na Wang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Min Dai
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Cheng Xie
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Qianqian Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ke Quan
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| |
Collapse
|
9
|
Yu J, Zhang Y, Zhao Y, Zhang X, Ren H. Highly Sensitive and Selective Detection of Inorganic Phosphates in the Water Environment by Biosensors Based on Bioluminescence Resonance Energy Transfer. Anal Chem 2023; 95:4904-4913. [PMID: 36942460 DOI: 10.1021/acs.analchem.2c04748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The accurate detection of phosphate in water is very important to prevent water eutrophication and ensure the health of water quality. However, traditional phosphomolybdenum blue spectrophotometry is not sensitive, is time-consuming, and demands large amounts of chemical reagents. Therefore, highly sensitive, rapid, and environmentally friendly Pi detection methods are urgently needed. Here, we developed a bioluminescence resonance energy transfer (BRET)-based biosensor, which can detect Pi in water quickly, highly sensitively, and highly selectively. The NanoLuc and the Venus fluorescent protein were selected as the bioluminescence donor and energy acceptor, respectively. The best-performing BRET sensor variant, VenusΔC10-PΔC12-ΔN4Nluc, was identified by Pi-specific binding protein (PiBP) screening and systematic truncation. Single-factor experiments optimized the key parameters affecting the detection performance of the sensor. Under the optimal detection conditions, the detection limit of this method was 1.3 μg·L-1, the detection range was 3.3-434 μg·L-1, and it had excellent selectivity, repeatability, and stability. This low-cost and environment-friendly BRET sensor showed a good application prospect in real water quality detection.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yanping Zhao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
10
|
Lakshmi Devi A, Resmi PE, Pradeep A, Suneesh PV, Nair BG, Satheesh Babu TG. A paper-based point-of-care testing device for the colourimetric estimation of bilirubin in blood sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122045. [PMID: 36327811 DOI: 10.1016/j.saa.2022.122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
A paper-based colourimetric assay for the Point-of-Care Testing (PoCT) of bilirubin has been developed based on the formation of a green-coloured copper-bilirubin complex from a blue-coloured tetraamminecopper(II) sulphate complex. The reaction was studied and optimized by UV-Visible absorption spectroscopy and translated onto a paper strip. Hydrophobic circular well patterns on Whatman chromatography paper were created by wax printing. The tetraamminecopper(II) sulphate complex was drop cast and dried on the reagent zones in the wax-patterned paper. The images of reagent zones captured using a scanner were analyzed using ImageJ software. Bilirubin spiked blood serum was tested in the concentration range of 1.2 to 950 µM. The PAD exhibited sensitivities of 0.4197 a.u/μM and 0.1040 a.u/μM for concentration ranges of bilirubin 1.2 to 96 μM and 105 to 950 μM respectively and a low detection limit of 0.799 µM. The method is highly selective to bilirubin, even in the presence of other biomarkers in serum. A plasma separation membrane incorporated PAD was fabricated for the final testing and quantification of bilirubin from whole blood.
Collapse
Affiliation(s)
- A Lakshmi Devi
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biosensor Research Lab, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India.
| | - P E Resmi
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biosensor Research Lab, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India.
| | - Aarathi Pradeep
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biosensor Research Lab, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India.
| | - P V Suneesh
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biosensor Research Lab, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India.
| | - Bipin G Nair
- Amrita Biomedical Engineering Centre, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri 690 525, India.
| | - T G Satheesh Babu
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biosensor Research Lab, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biomedical Engineering Centre, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India.
| |
Collapse
|
11
|
Qi S, He X, Zhang S, Xu P, Su M, Dong B, Song B. Turn-off near-infrared fluorescent probe for free bilirubin detection constructed by enhanced excimer emission. Anal Chim Acta 2022; 1238:340657. [DOI: 10.1016/j.aca.2022.340657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
|
12
|
Bao L, Liu S. A dual-emission polymer carbon nanoparticles for ratiometric and visual detection of pH value and bilirubin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120513. [PMID: 34695677 DOI: 10.1016/j.saa.2021.120513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Herein, we prepared a novel fluorescent polymer carbon nanoparticles by polymerizing dopamine (DA) and o-phenylenediamine (OPD) through oxidation of hydrogen peroxide. In a neutral environment, the synthesized fluorescent polymer carbon nanoparticles (PDA-OPD) exhibited two emission peaks at 460 nm and 540 nm with 400 nm excitation wavelength. In an acidic environment, the fluorescence emission peaks of PDA-OPD at 540 nm showed an obvious fluorescence quenching, and there existed a good linear relationship between the fluorescence ratio F540/F460 and environment pH value. In an alkaline environment, the fluorescence emission peak at 460 nm showed obvious fluorescence quenching after the addition of bilirubin, while a novel fluorescence emission peak at 560 nm emerged gradually. The PDA-OPD could be also used to detect bilirubin in the range of 0-400 μmol·L-1.
Collapse
Affiliation(s)
- Lijun Bao
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China.
| |
Collapse
|
13
|
Hattori M, Itoh Y, Nagai T. Method for Measuring Bioactive Molecules in Blood by a Smartphone Using Bioluminescent Ratiometric Indicators. Methods Mol Biol 2022; 2525:219-226. [PMID: 35836071 DOI: 10.1007/978-1-0716-2473-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioluminescent indicators facilitate determination of bioactive molecules in blood samples with high sensitivity. Using a bright luciferase, its bioluminescence (BL) can be easily detected by conventional light sensing devices. In this chapter, we describe a protocol to measure bioactive molecules in blood by taking the BL images with a smartphone camera. We exemplify the measurement of unconjugated bilirubin (UCBR) concentration in the blood of mice using a ratiometric bioluminescent UCBR indicator, BABI (bilirubin assessment with a bioluminescent indicator), and a smartphone camera. We show the UCBR concentration is easily determined through measuring the variance in the BL color with a smartphone camera. This method provides a practical method to lead to future point-of-care diagnosis with quick and simple procedures.
Collapse
Affiliation(s)
- Mitsuru Hattori
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Yukino Itoh
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
14
|
Hattori M, Sugiura N, Wazawa T, Matsuda T, Nagai T. Ratiometric Bioluminescent Indicator for a Simple and Rapid Measurement of Thrombin Activity Using a Smartphone. Anal Chem 2021; 93:13520-13526. [PMID: 34570461 DOI: 10.1021/acs.analchem.1c02396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemostasis is an essential function that repairs tissues and maintains the survival of living organisms. To prevent diseases caused by the abnormality of the blood coagulation mechanism, it is important to carry out a blood test periodically by a method that is convenient and less burdensome for examiners. Thrombin is a protease that catalyzes the conversion of fibrinogen, and its cleavage activity can be an index of coagulation activity. Here, we developed a ratiometric bioluminescent indicator, Thrombastor (thrombin activity sensing indicator), which reflects the thrombin cleavage activity in blood by changing the emission color from green to blue. Compared to the current thrombin activity indicator, the rapid color change of the emission indicated a 2.5-fold decrease in the Km for thrombin, and the cleavage rate was more than two times faster. By improving the absolute bioluminescence intensity, detection from a small amount of plasma could be achieved with a smartphone camera. Using Thrombastor and a versatile device, an effective diagnosis for preventing coagulation disorders can be provided.
Collapse
Affiliation(s)
- Mitsuru Hattori
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Nae Sugiura
- Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Tomoki Matsuda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
15
|
Nishihara R, Kurita R. Mix-and-read bioluminescent copper detection platform using a caged coelenterazine analogue. Analyst 2021; 146:6139-6144. [PMID: 34486602 DOI: 10.1039/d1an01292d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Serum copper levels are biomarkers for copper-related diseases. Quantification of levels of free copper (not bound to proteins) in serum is important for diagnosing Wilson's disease, in which the free copper concentration is elevated. Bioluminescence is commonly used in point-of-care diagnostics, but these assays require genetically engineered luciferase. Here, we developed a luciferase-independent copper detection platform. A luminogenic caged coelenterazine analogue (TPA-H1) was designed and synthesized to detect copper ions in human serum. TPA-H1 was developed by introducing a tris[(2-pyridyl)-methyl]amine (TPA) ligand, which is a Cu+ cleavable caging group, to the carbonyl group at the C-3 position of the imidazopyrazinone scaffold. The luciferin, named HuLumino1, is the product of the cleavage reaction of TPA-H1 with a copper ion and displays "turn-on" bioluminescence signals specifically with human serum albumin, which can be used to quantitatively analyse copper ions. TPA-H1 exhibited a fast cleavage of the protective group, high specificity, and high sensitivity for copper over other metal ions. This novel caged coelenterazine derivative, TPA-H1, can detect free copper ions in serum in a simple "mix-and-read" manner.
Collapse
Affiliation(s)
- Ryo Nishihara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. .,DAILAB, DBT-AIST International Centre for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.,Japan Science and Technology Agency (JST), PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ryoji Kurita
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. .,DAILAB, DBT-AIST International Centre for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
16
|
Hidayat AS, Horino H, Rzeznicka II. Smartphone-Enabled Quantification of Potassium in Blood Plasma. SENSORS 2021; 21:s21144751. [PMID: 34300494 PMCID: PMC8309773 DOI: 10.3390/s21144751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
This work describes a new method for determining K+ concentration, [K+], in blood plasma using a smartphone with a custom-built optical attachment. The method is based on turbidity measurement of blood plasma solutions in the presence of sodium tetraphenylborate, a known potassium precipitating reagent. The images obtained by a smartphone camera are analyzed by a custom image-processing algorithm which enables the transformation of the image data from RGB to HSV color space and calculation of a mean value of the light-intensity component (V). Analysis of images of blood plasma containing different amounts of K+ reveal a correlation between V and [K+]. The accuracy of the method was confirmed by comparing the results with the results obtained using commercial ion-selective electrode device (ISE) and atomic absorption spectroscopy (AAS). The accuracy of the method was within ± 0.18 mM and precision ± 0.27 mM in the [K+] range of 1.5–7.5 mM when using treated blood plasma calibration. Spike tests on a fresh blood plasma show good correlation of the data obtained by the smartphone method with ISE and AAS. The advantage of the method is low cost and integration with a smartphone which offers possibility to measure [K+] on demand and in remote areas where access to hospitals is limited.
Collapse
Affiliation(s)
- Achmad Syarif Hidayat
- Shibaura Institute of Technology, Graduate School of Engineering and Science, 3-7-5 Koto-ku, Tokyo 135-8548, Japan;
| | - Hideyuki Horino
- Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 982-8577, Japan;
| | - Izabela I. Rzeznicka
- Shibaura Institute of Technology, Graduate School of Engineering and Science, 3-7-5 Koto-ku, Tokyo 135-8548, Japan;
- Correspondence:
| |
Collapse
|