1
|
Guo J, Tuo J, Sun J, Li Z, Guo X, Chen Y, Cai R, Zhong J, Xu L. Stretchable Multimodal Photonic Sensor for Wearable Multiparameter Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412322. [PMID: 39670687 DOI: 10.1002/adma.202412322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Stretchable sensors that can conformally interface with the skins for wearable and real-time monitoring of skin deformations, temperature, and sweat biomarkers offer critical insights for early disease prediction and diagnosis. Integration of multiple modalities in a single stretchable sensor to simultaneously detect these stimuli would provide a more comprehensive understanding of human physiology, which, however, has yet to be achieved. Here, this work reports, for the first time, a stretchable multimodal photonic sensor capable of simultaneously detecting and discriminating strain deformations, temperature, and sweat pH. The multimodal sensing abilities are enabled by realization of multiple sensing mechanisms in a hydrogel-coated polydimethylsiloxane (PDMS) optical fiber (HPOF), featured with high flexibility, stretchability, and biocompatibility. The integrated mechanisms are designed to operate at distinct wavelengths to facilitate stimuli decoupling and employ a ratiometric detection strategy for improved robustness and accuracy. To simplify sensor interrogation, spectrally-resolved multiband emissions are generated upon the excitation of a single-wavelength laser, utilizing upconversion luminescence (UCL) and radiative energy transfer (RET) processes. As proof of concept, this work demonstrates the feasibility of simultaneous monitoring of the heartbeat, respiration, body temperature, and sweat pH of a person in real-time, with only a single sensor.
Collapse
Affiliation(s)
- Jingjing Guo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
- Ministry of Education Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Beijing, 100191, China
| | - Jialin Tuo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jiangtao Sun
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Zhuozhou Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Xiaoyan Guo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Yanyan Chen
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Rong Cai
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jing Zhong
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
- Ministry of Education Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Beijing, 100191, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
- Ministry of Education Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Beijing, 100191, China
| |
Collapse
|
2
|
Liang A, Liu W, Cui Y, Zhang P, Chen X, Zhai J, Dong W, Chen X. A pressure sensor made of laser-induced graphene@carbon ink in a waste sponge substrate using novel and simple fabricaing process for health monitoring. SENSING AND BIO-SENSING RESEARCH 2025; 47:100730. [DOI: 10.1016/j.sbsr.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
3
|
King B, Bruce N, Wagih M. Large-Area Conductor-Loaded PDMS Flexible Composites for Wireless and Chipless Electromagnetic Multiplexed Temperature Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412066. [PMID: 39874204 DOI: 10.1002/advs.202412066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/12/2024] [Indexed: 01/30/2025]
Abstract
Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.5% at 200 MHz for PDMS-CF capacitors. PDMS-CF capacitors are interrogated as a sensing element in wirelessly coupled chipless resonant coils tuned to 6.78 MHz with a response in the resonant frequency (fr) of the sensor, demonstrating an average sensitivity of 0.38% °C-1, a 40x improvement over a pristine PDMS capacitive sensor and outperforms state-of-the-art frequency-domain radio frequency temperature sensors. Exploiting its high sensitivity, the wireless sensing platform is interrogated using a low-cost, portable, and open-source NanoVNA demonstrating a relative response in fr of 48.5%, good agreement with instrumentation-grade vector network analyzers (VNAs) and negligible change in performance at a range of reading distances and humidities. Finally, a wireless tag is demonstrated with rapid, reversible dynamic response to changes in temperature, as well as the in the first scalable, multiplexed array of chipless sensors for spatial temperature detection.
Collapse
Affiliation(s)
- Benjamin King
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Nikolas Bruce
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mahmoud Wagih
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
4
|
Zhang Y, Mehrez JAA, Yang J, Ni W, Fan C, Quan W, Zhang K, Wang T, Zeng M, Hu N, Yang Z. Highly Sensitive Linear Triaxial Force Sensor Based on Multimodal Sensing for 3D Pose Reconstruction. SMALL METHODS 2025:e2401876. [PMID: 39748625 DOI: 10.1002/smtd.202401876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/25/2024] [Indexed: 01/04/2025]
Abstract
Flexible sensing offers real-time force monitoring, presenting a versatile and effective solution for dexterous manipulation, healthcare, environmental exploration, and perception of physical properties. Nonetheless, a limitation of many existing flexible force sensors stems from their isotropic structure or material properties, preventing them from simultaneously detecting both the direction and magnitude of the applied force. Herein, a high-performance 3D force sensor based on orthogonal multimodal sensing, the cancellation principle, and the strain effect is proposed. Finite element analysis further reveals the decoupling and anti-interference mechanisms of the innovative capacitor-resistance dual-mode sensing based on a solid mechanics and electrostatic multiphysics model. The sensor demonstrates the ability to measure both the magnitude and direction of normal and shear forces in any combination using the proposed decoupling and reconstruction algorithms, showing the potential for accurately reconstructing the posture of objects.
Collapse
Affiliation(s)
- Yongwei Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jaafar Abdul-Aziz Mehrez
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianhua Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wangze Ni
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Fan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjing Quan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Wang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zeng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nantao Hu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Ko JB, Kim SW, Kim HB, Jeong HY, Moon SY, Yang YJ. 3D-Printed Multi-Axis Alignment Airgap Dielectric Layer for Flexible Capacitive Pressure Sensor. MICROMACHINES 2024; 15:1347. [PMID: 39597156 PMCID: PMC11596244 DOI: 10.3390/mi15111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Flexible pressure sensors are increasingly recognized for their potential use in wearable electronic devices, attributed to their sensitivity and broad pressure response range. Introducing surface microstructures can notably enhance sensitivity; however, the pressure response range remains constrained by the limited volume of the compressible structure. To overcome this limitation, this study implements an aligned airgap structure fabricated using 3D printing technology. This structure, designed with a precisely aligned triaxial airgap configuration, offers high deformability under pressure, substantially broadening the pressure response range and improving sensitivity. This study analyzes the key structural parameters-the number of axes and pore size-that influence the compressibility and stability of the dielectric material. The results indicate that the capacitive pressure sensor with an aligned airgap structure, manufactured via 3D printing, exhibits a wide operating pressure range (50 Pa to 500 kPa), rapid response time (100 ms), wide limit of detection (50 Pa), and approximately 21 times enhancement in sensitivity (~0.019 kPa-1 within 100 kPa) compared with conventional bulk structures. Furthermore, foot pressure monitoring trials for wearable sensor applications demonstrated exceptional performance, indicating the sensor's suitability as a wearable device for detecting plantar pressure. These findings advocate for the potential of 3D printing technology to supplant traditional sensor manufacturing processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Young-Jin Yang
- Clean Energy Transition Group, Korea Institute of Industrial Technology (KITECH), Jeju 63243, Republic of Korea; (J.-B.K.); (S.-W.K.); (H.-B.K.); (H.-Y.J.); (S.-Y.M.)
| |
Collapse
|
6
|
Zhong Y, Liu K, Wu L, Ji W, Cheng G, Ding J. Flexible Tactile Sensors with Gradient Conformal Dome Structures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52966-52976. [PMID: 39295176 DOI: 10.1021/acsami.4c12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The trade-off between high sensitivity and wide detection range remains a challenge for flexible capacitive pressure sensors. Gradient structure can provide continuous deformation and lead to a wide sensing range. However, it simultaneously augments the distance between two electrodes, which diminishes the variation in the relative distance and results in a decreased sensitivity. Herein, a conformal design is introduced into the gradient structure to construct a flexible capacitive pressure sensor. The gradient conformal dome structure is fabricated by a simple reverse dome adsorption process. Taking advantage of the progressive deformation behavior of the gradient dielectric, and the significant improvement of relative distance variation between two electrodes from the conformal design, the sensor achieves a sensitivity of 0.214 kPa-1 in an ultrabroad linear range up to 200 kPa. It maintains high-pressure resolution under the preload of 10 and 100 kPa. Benefiting from the rapid response and excellent repeatability, the sensor can be used for physiological monitor and human motion detection, including arterial pulse, joint bending, and motion state. The gradient conformal design strategy may pave a promising avenue to develop pressure sensors with high sensitivity and wide linear range.
Collapse
Affiliation(s)
- Yan Zhong
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kunshan Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Longgang Wu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weixiang Ji
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianning Ding
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2205609. [PMID: 35951770 DOI: 10.1002/adma.202205609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Pressures generated by external forces or by internal body processes represent parameters of critical importance in diagnosing physiological health and in anticipating injuries. Examples span intracranial hypertension from traumatic brain injuries, high blood pressure from poor diet, pressure-induced skin ulcers from immobility, and edema from congestive heart failure. Pressures measured on the soft surfaces of vital organs or within internal cavities of the body can provide essential insights into patient status and progression. Challenges lie in the development of high-performance pressure sensors that can softly interface with biological tissues to enable safe monitoring for extended periods of time. This review focuses on recent advances in mechanically active materials and structural designs for classes of soft pressure sensors that have proven uses in these contexts. The discussions include applications of such sensors as implantable and wearable systems, with various unique capabilities in wireless continuous monitoring, minimally invasive deployment, natural degradation in biofluids, and/or multiplexed spatiotemporal mapping. A concluding section summarizes challenges and future opportunities for this growing field of materials and biomedical research.
Collapse
Affiliation(s)
- Zhongyi Nie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Biomedical Engineering, Materials Science and Engineering, Neurological Surgery, Chemistry, and Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
8
|
Zhao Y, Zhou J, Jiang C, Xu T, Li K, Zhang D, Sheng B. Highly Sensitive and Flexible Capacitive Pressure Sensors Combined with Porous Structure and Hole Array Using Sacrificial Templates and Laser Ablation. Polymers (Basel) 2024; 16:2369. [PMID: 39204589 PMCID: PMC11359779 DOI: 10.3390/polym16162369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Flexible, wearable pressure sensors offer numerous benefits, including superior sensing capabilities, a lightweight and compact design, and exceptional conformal properties, making them highly sought after in various applications including medical monitoring, human-computer interactions, and electronic skins. Because of their excellent characteristics, such as simple fabrication, low power consumption, and short response time, capacitive pressure sensors have received widespread attention. As a flexible polymer material, polydimethylsiloxane (PDMS) is widely used in the preparation of dielectric layers for capacitive pressure sensors. The Young's modulus of the flexible polymer can be effectively decreased through the synergistic application of sacrificial template and laser ablation techniques, thereby improving the functionality of capacitive pressure sensors. In this study, a novel sensor was introduced. Its dielectric layer was developed through a series of processes, including the use of a sacrificial template method using NaCl microparticles and subsequent CO2 laser ablation. This porous PDMS dielectric layer, featuring an array of holes, was then sandwiched between two flexible electrodes to create a capacitive pressure sensor. The sensor demonstrates a sensitivity of 0.694 kPa-1 within the pressure range of 0-1 kPa and can effectively detect pressures ranging from 3 Pa to 200 kPa. The sensor demonstrates stability for up to 500 cycles, with a rapid response time of 96 ms and a recovery time of 118 ms, coupled with a low hysteresis of 6.8%. Furthermore, our testing indicates that the sensor possesses limitless potential for use in detecting human physiological activities and delivering signals.
Collapse
Affiliation(s)
- Yibin Zhao
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (J.Z.); (C.J.); (T.X.); (K.L.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Jingyu Zhou
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (J.Z.); (C.J.); (T.X.); (K.L.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Chenkai Jiang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (J.Z.); (C.J.); (T.X.); (K.L.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Tianlong Xu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (J.Z.); (C.J.); (T.X.); (K.L.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Kaixin Li
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (J.Z.); (C.J.); (T.X.); (K.L.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Dawei Zhang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (J.Z.); (C.J.); (T.X.); (K.L.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Bin Sheng
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (J.Z.); (C.J.); (T.X.); (K.L.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
9
|
Keshyagol K, Hiremath S, H. M. V, Kini U. A, Naik N, Hiremath P. Optimizing Capacitive Pressure Sensor Geometry: A Design of Experiments Approach with a Computer-Generated Model. SENSORS (BASEL, SWITZERLAND) 2024; 24:3504. [PMID: 38894295 PMCID: PMC11175090 DOI: 10.3390/s24113504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024]
Abstract
This study presents a comprehensive investigation into the design and optimization of capacitive pressure sensors (CPSs) for their integration into capacitive touch buttons in electronic applications. Using the Finite Element Method (FEM), various geometries of dielectric layers were meticulously modeled and analyzed for their capacitive and sensitivity parameters. The flexible elastomer polydimethylsiloxane (PDMS) is used as a diaphragm, and polyvinylidene fluoride (PVDF) is a flexible material that acts as a dielectric medium. The Design of Experiment (DoE) techniques, aided by statistical analysis, were employed to identify the optimal geometric shapes of the CPS model. From the prediction using the DoE approach, it is observed that the cylindrical-shaped dielectric medium has better sensitivity. Using this optimal configuration, the CPS was further examined across a range of dielectric layer thicknesses to determine the capacitance, stored electrical energy, displacement, and stress levels at uniform pressures ranging from 0 to 200 kPa. Employing a 0.1 mm dielectric layer thickness yields heightened sensitivity and capacitance values, which is consistent with theoretical efforts. At a pressure of 200 kPa, the sensor achieves a maximum capacitance of 33.3 pF, with a total stored electric energy of 15.9 × 10-12 J and 0.468 pF/Pa of sensitivity for 0.1 dielectric thickness. These findings underscore the efficacy of the proposed CPS model for integration into capacitive touch buttons in electronic devices and e-skin applications, thereby offering promising advancements in sensor technology.
Collapse
Affiliation(s)
- Kiran Keshyagol
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (K.K.); (S.H.)
| | - Shivashankarayya Hiremath
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (K.K.); (S.H.)
- Survivability Signal Intelligence Research Center, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Vishwanatha H. M.
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (V.H.M.); (A.K.U.); (N.N.)
| | - Achutha Kini U.
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (V.H.M.); (A.K.U.); (N.N.)
| | - Nithesh Naik
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (V.H.M.); (A.K.U.); (N.N.)
| | - Pavan Hiremath
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (V.H.M.); (A.K.U.); (N.N.)
| |
Collapse
|
10
|
Jin Q, Wang C, Wu H, Luo X, Li J, Ma G, Li Y, Luo C, Guo F, Long Y. 3D Printing of Capacitive Pressure Sensors with Tuned Wide Detection Range and High Sensitivity Inspired by Bio-Inspired Kapok Structures. Macromol Rapid Commun 2024; 45:e2300668. [PMID: 38325804 DOI: 10.1002/marc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Flexible pressure sensors have drawn considerable attention for their potential applications as electronic skins with both sensitivity and pressure response range. Although the introduction of surface microstructures effectively enhances sensitivity, the confined volume of their compressible structures results in a limited pressure response range. To address this issue, a biomimetic kapok structure is proposed and implemented for constructing the dielectric layer of flexible capacitive pressure sensors employing 3D printing technology. The structure is designed with easily deformable concave and rotational structures, enabling continuous deformation under pressure. This design results in a significant expansion of the pressure response range and improvement in sensitivity. Further, the study purposively analyses crucial parameters of the devised structure that affect its compressibility and stability. These include the concave angle θ, height ratio d1/d2, rotation angle α, and width k. As a result, the ultimate pressure sensors demonstrate remarkable features such as high sensitivity (≈2.38 kPa-1 in the range of 0-10 kPa), broad detection range (734 kPa), fast response time (23 ms), and outstanding pressure resolution (0.4% at 500 kPa). This study confirms the viability of bionic structures for flexible sensors, and their potential to expand the scope of wearable electronic devices.
Collapse
Affiliation(s)
- Qingxin Jin
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chengyun Wang
- College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha, Hunan, 410083, China
| | - Han Wu
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xin Luo
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaqi Li
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Guangmeng Ma
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Li
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chunyi Luo
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Fawei Guo
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Long
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
11
|
Castillo-López DN, Gómez-Pavón LDC, Gutíerrez-Nava A, Zaca-Morán P, Arriaga-Arriaga CA, Muñoz-Pacheco JM, Luis-Ramos A. Flexible Force Sensor Based on a PVA/AgNWs Nanocomposite and Cellulose Acetate. SENSORS (BASEL, SWITZERLAND) 2024; 24:2819. [PMID: 38732927 PMCID: PMC11086214 DOI: 10.3390/s24092819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially in force sensors, as well as the properties of a conductive filler such as silver nanowires (AgNWs). In this work, the fabrication of a force sensor using AgNWs synthesized via the polyol chemical technique is presented. The nanowires were deposited via drop-casting in polyvinyl alcohol (PVA) to form the active (electrode) and resistive (nanocomposite) sensor films, with both films separated by a cellulose acetate substrate. The dimensions of the resulting sensor are 35 mm × 40 mm × 0.1 mm. The sensor shows an applied force ranging from 0 to 3.92 N, with a sensitivity of 0.039 N. The sensor stand-off resistance, exceeding 50 MΩ, indicates a good ability to detect changes in applied force without an external force. Additionally, studies revealed a response time of 10 ms, stabilization of 9 s, and a degree of hysteresis of 1.9%. The voltage response of the sensor under flexion at an angle of 85° was measured, demonstrating its functionality over a prolonged period. The fabricated sensor can be used in applications that require measuring pressure on irregular surfaces or systems with limited space, such as for estimating movement in robot joints.
Collapse
Affiliation(s)
- Dulce Natalia Castillo-López
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| | - Luz del Carmen Gómez-Pavón
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| | - Alfredo Gutíerrez-Nava
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| | - Placido Zaca-Morán
- Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla, Puebla 72960, Mexico;
| | - Cesar Augusto Arriaga-Arriaga
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| | - Jesús Manuel Muñoz-Pacheco
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| | - Arnulfo Luis-Ramos
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| |
Collapse
|
12
|
Kim S, Jeon H, Koo JM, Oh DX, Park J. Practical Applications of Self-Healing Polymers Beyond Mechanical and Electrical Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302463. [PMID: 38361378 DOI: 10.1002/advs.202302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/15/2023] [Indexed: 02/17/2024]
Abstract
Self-healing polymeric materials, which can repair physical damage, offer promising prospects for protective applications across various industries. Although prolonged durability and resource conservation are key advantages, focusing solely on mechanical recovery may limit the market potential of these materials. The unique physical properties of self-healing polymers, such as interfacial reduction, seamless connection lines, temperature/pressure responses, and phase transitions, enable a multitude of innovative applications. In this perspective, the diverse applications of self-healing polymers beyond their traditional mechanical strength are emphasized and their potential in various sectors such as food packaging, damage-reporting, radiation shielding, acoustic conservation, biomedical monitoring, and tissue regeneration is explored. With regards to the commercialization challenges, including scalability, robustness, and performance degradation under extreme conditions, strategies to overcome these limitations and promote successful industrialization are discussed. Furthermore, the potential impacts of self-healing materials on future research directions, encompassing environmental sustainability, advanced computational techniques, integration with emerging technologies, and tailoring materials for specific applications are examined. This perspective aims to inspire interdisciplinary approaches and foster the adoption of self-healing materials in various real-life settings, ultimately contributing to the development of next-generation materials.
Collapse
Affiliation(s)
- Semin Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
13
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
14
|
Bu Y, Wu J, Zhang Z, Wei Q, Su B, Wang Y. Design and Analysis of Porous Elastomeric Polymer Based on Electro-Mechanical Coupling Characteristics for Flexible Pressure Sensor. Polymers (Basel) 2024; 16:701. [PMID: 38475384 DOI: 10.3390/polym16050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Elastomeric polymers have gained significant attention in the field of flexible electronics. The investigation of the electro-mechanical response relationship between polymer structure and flexible electronics is in increasing demand. This study investigated the factors that affect the performance of flexible capacitive pressure sensors using the finite element method (FEM). The sensor employed a porous elastomeric polymer as the dielectric layer. The results indicate that the sensor's performance was influenced by both the structural and material characteristics of the porous elastomeric polymer. In terms of structural characteristics, porosity was the primary factor influencing the performance of sensors. At a porosity of 76%, the sensitivity was 42 times higher than at a porosity of 1%. In terms of material properties, Young's modulus played a crucial role in influencing the performance of the sensors. In particular, the influence on the sensor became more pronounced when Young's modulus was less than 1 MPa. Furthermore, porous polydimethylsiloxane (PDMS) with porosities of 34%, 47%, 67%, and 72% was fabricated as the dielectric layer for the sensor using the thermal expansion microsphere method, followed by sensing capability testing. The results indicate that the sensor's sensitivity was noticeably influenced within the high porosity range, aligning with the trend observed in the simulation.
Collapse
Affiliation(s)
- Yingxuan Bu
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Jian Wu
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
| | - Zheming Zhang
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Qiandiao Wei
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Benlong Su
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
| | - Youshan Wang
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Zhang T, Zhao M, Zhai M, Wang L, Ma X, Liao S, Wang X, Liu Y, Chen D. Improving the Resolution of Flexible Large-Area Tactile Sensors through Machine-Learning Perception. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11013-11025. [PMID: 38353218 DOI: 10.1021/acsami.3c17880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Industrial robots are the main piece of equipment of intelligent manufacturing, and array-type tactile sensors are considered to be the core devices for their active sensing and understanding of the production environment. A great challenge for existing array-type tactile sensors is the wiring of sensing units in a limited area, the contradiction between a small number of sensing units and high resolution, and the deviation of the overall output pattern due to the difference in the performance of each sensing unit itself. Inspired by the human somatosensory processing hierarchy, we combine tactile sensors with artificial intelligence algorithms to simplify the sensor architecture while achieving tactile resolution capabilities far greater than the number of signal channels. The prepared 8-electrode carbon-based conductive network achieves high-precision identification of 32 regions with 97% classification accuracy assisted by a quadratic discriminant analysis algorithm. Notably, the output of the sensor remains unchanged after 13,000 cycles at 60 kPa, indicating its excellent durability performance. Moreover, the large-area skin-like continuous conductive network is simple to fabricate, cost-effective, and can be easily scaled up/down depending on the application. This work may address the increasing need for simple fabrication, rapid integration, and adaptable geometry tactile sensors for use in industrial robots.
Collapse
Affiliation(s)
- Tong Zhang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Minghui Zhao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Mingxuan Zhai
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Lisha Wang
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, Shandong 266000, China
| | - Xingyu Ma
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Shengmei Liao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Xiaona Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Yijian Liu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Da Chen
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| |
Collapse
|
16
|
Zhang H, Zhang Y. Rational Design of Flexible Mechanical Force Sensors for Healthcare and Diagnosis. MATERIALS (BASEL, SWITZERLAND) 2023; 17:123. [PMID: 38203977 PMCID: PMC10780056 DOI: 10.3390/ma17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Over the past decade, there has been a significant surge in interest in flexible mechanical force sensing devices and systems. Tremendous efforts have been devoted to the development of flexible mechanical force sensors for daily healthcare and medical diagnosis, driven by the increasing demand for wearable/portable devices in long-term healthcare and precision medicine. In this review, we summarize recent advances in diverse categories of flexible mechanical force sensors, covering piezoresistive, capacitive, piezoelectric, triboelectric, magnetoelastic, and other force sensors. This review focuses on their working principles, design strategies and applications in healthcare and diagnosis, with an emphasis on the interplay among the sensor architecture, performance, and application scenario. Finally, we provide perspectives on the remaining challenges and opportunities in this field, with particular discussions on problem-driven force sensor designs, as well as developments of novel sensor architectures and intelligent mechanical force sensing systems.
Collapse
Affiliation(s)
- Hang Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Xia H, Wang L, Zhang H, Wang Z, Zhu L, Cai H, Ma Y, Yang Z, Zhang D. MXene/PPy@PDMS sponge-based flexible pressure sensor for human posture recognition with the assistance of a convolutional neural network in deep learning. MICROSYSTEMS & NANOENGINEERING 2023; 9:155. [PMID: 38116450 PMCID: PMC10728160 DOI: 10.1038/s41378-023-00605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 12/21/2023]
Abstract
The combination of flexible sensors and deep learning has attracted much attention as an efficient method for the recognition of human postures. In this paper, an in situ polymerized MXene/polypyrrole (PPy) composite is dip-coated on a polydimethylsiloxane (PDMS) sponge to fabricate an MXene/PPy@PDMS (MPP) piezoresistive sensor. The sponge sensor achieves ultrahigh sensitivity (6.8925 kPa-1) at 0-15 kPa, a short response/recovery time (100/110 ms), excellent stability (5000 cycles) and wash resistance. The synergistic effect of PPy and MXene improves the performance of the composite materials and facilitates the transfer of electrons, making the MPP sponge at least five times more sensitive than sponges based on each of the individual single materials. The large-area conductive network allows the MPP sensor to maintain excellent electrical performance over a large-scale pressure range. The MPP sensor can detect a variety of human body activity signals, such as radial artery pulse and different joint movements. The detection and analysis of human motion data, which is assisted by convolutional neural network (CNN) deep learning algorithms, enable the recognition and judgment of 16 types of human postures. The MXene/PPy flexible pressure sensor based on a PDMS sponge has broad application prospects in human motion detection, intelligent sensing and wearable devices.
Collapse
Affiliation(s)
- Hui Xia
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Lin Wang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd, Qingdao, 266071 China
| | - Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Zihu Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Liang Zhu
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd, Qingdao, 266071 China
| | - Haolin Cai
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Yanhua Ma
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| | - Zhe Yang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd, Qingdao, 266071 China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 China
| |
Collapse
|
18
|
Yu H, Liu Y, Zhou G, Peng M. Multilayer Perceptron Algorithm-Assisted Flexible Piezoresistive PDMS/Chitosan/cMWCNT Sponge Pressure Sensor for Sedentary Healthcare Monitoring. ACS Sens 2023; 8:4391-4401. [PMID: 37939316 DOI: 10.1021/acssensors.3c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Recently, the health problems faced by sedentary workers have received increasing attention. In this study, a pressure sensor based on a poly(dimethylsiloxane) (PDMS)/carboxylated chitosan (CCS)/carboxylated multiwalled carbon nanotube (cMWCNT) sponge was prepared to realize a portable, sensitive, comfortable, and noninvasive healthcare monitoring system for sedentary workers. The proposed piezoresistive pressure sensor exhibited exceptional sensing performances with high sensitivity (147.74 kPa-1), an ultrawide detection range (22 Pa to 1.42 MPa), and reliable stability (over 3000 cycles). Furthermore, the obtained sensor displayed superior capability in detecting various human motion signals. Based on the 4 × 4 sensing array and multilayer perceptron (MLP) algorithm model, a smart cushion was developed to recognize five types of sitting postures and supply timely reminders to sedentary workers. The piezoresistive sponge pressure sensor proposed in this study reveals promising potential in the fields of wearable electronics, healthcare monitoring, and human-machine interface applications.
Collapse
Affiliation(s)
- He Yu
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yubing Liu
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Guanya Zhou
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Mugen Peng
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
19
|
Hong W, Guo X, Zhang T, Liu Y, Yan Z, Zhang A, Qian Z, Wang J, Zhang X, Jin C, Zhao J, Liu T, Hong Q, Xu Y, Xia Y, Zhao Y. Bioinspired Engineering of Fillable Gradient Structure into Flexible Capacitive Pressure Sensor Toward Ultra-High Sensitivity and Wide Working Range. Macromol Rapid Commun 2023; 44:e2300420. [PMID: 37775102 DOI: 10.1002/marc.202300420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Indexed: 10/01/2023]
Abstract
Tactile sensing is required for electronic skin and intelligent robots to function properly. However, the dielectric layer's poor structural compressibility in conventional pressure sensors results in a limited pressure sensing range and low sensitivity. To solve this issue, a flexible pressure sensor with a crocodile-inspired fillable gradient structure is provided. The fillable gradient structure and grooves in the pressure sensor accommodate the deformed microstructure that permits the enhancement of the media layer compressibility via COMSOL finite element simulation and optimization. The pressure sensor exhibits a high sensitivity of up to 0.97 k Pa-1 (0-4 kPa), a wide pressure detection range (7 Pa-380 kPa), and outstanding repeatability. The sensor can detect Morse code, robotic grabbing, and human motion monitoring. As a result, flexible sensors with a bionic fillable gradient structure pave the way for wearable devices and offer a novel method for achieving highly precise tactile perception.
Collapse
Affiliation(s)
- Weiqiang Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaohui Guo
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Tianxu Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Yiyang Liu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Zihao Yan
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Anqi Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Zhibin Qian
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Junyi Wang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Xinyi Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Chengchao Jin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Jingji Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Tiancheng Liu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Qi Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Yaohua Xu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
| | - Yun Xia
- Bengbu Zhengyuan Electronics Technology Co. Ltd, Bengbu, 233000, P. R. China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei, 230601, P. R. China
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
20
|
Kim H, Lim M, Jang B, Park SW, Park JY, Shen H, Koo K, Cho HB, Choa YH. Enhanced capacitive pressure sensing performance by charge generation from filler movement in thin and flexible PVDF-GNP composite films. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2260301. [PMID: 37854120 PMCID: PMC10580860 DOI: 10.1080/14686996.2023.2260301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
This study introduces an approach to overcome the limitations of conventional pressure sensors by developing a thin and lightweight composite film specifically tailored for flexible capacitive pressure sensors, with a particular emphasis on the medium and high pressure range. To accomplish this, we have engineered a composite film by combining polyvinylidene fluoride (PVDF) and graphite nanoplatelets (GNP) derived from expanded graphite (Ex-G). A uniform sized GNPs with an average lateral size of 2.55av and an average thickness of 33.74 av with narrow size distribution was obtained with a gas-induced expansion of expandable graphite (EXP-G) combined with tip sonication in solvent. By this precisely controlled GNP within the composite film, a remarkable improvement in sensor sensitivity has been achieved, surpassing 4.18 MPa-1 within the pressure range of 0.1 to 1.6 MPa. This enhancement can be attributed to the generation of electric charge from the movement of GNP in the polymer matrix. Additionally, stability testing has demonstrated the reliable operation of the composite film over 1000 cycles. Notably, the composite film exhibits exceptional continuous pressure sensing capabilities with a rapid response time of approximately 100 milliseconds. Experimental validation using a 3 × 3 sensor array has confirmed the accurate detection of specific contact points, thus highlighting the potential of the composite film in selective pressure sensing. These findings signify an advancement in the field of flexible capacitive pressure sensors that offer enhanced sensitivity, consistent operation, rapid response time, and the unique ability to selectively sense pressure.
Collapse
Affiliation(s)
- Han Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Minseob Lim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Byungkwon Jang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Si-woo Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Ji Young Park
- Institute of Environmental and Energy Technology, Hanyang University, Ansan, Republic of Korea
| | - Haishan Shen
- Institute of Environmental and Energy Technology, Hanyang University, Ansan, Republic of Korea
| | - Kangmo Koo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Hong-Baek Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Yong-Ho Choa
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
21
|
Wu S, Yang C, Hu J, Pan M, Meng W, Liu Y, Li P, Peng J, Zhang Q, Chen P, Wang H. Normal-Direction Graded Hemispheres for Ionic Flexible Sensors with a Record-High Linearity in a Wide Working Range. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47733-47744. [PMID: 37782111 DOI: 10.1021/acsami.3c09580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Flexible pressure sensors developed rapidly with increased sensitivity, a fast response time, high stability, and excellent deformability. These progresses have expanded the application of wearable electronics under high-pressure backgrounds while also bringing new challenges. In particular, the nonlinearity and narrow working range lead to a gradually insensitive response, principally because the microstructure deforms inconsistently on the device interfaces in the whole working range. Herein, we report an ionic flexible sensor with a record-high linearity (R2 = 0.99994) in a wide working range (up to 600 kPa). The linearity response comes from the normal-direction graded hemisphere (GH) microstructure. It is prepared from poly(dimethylsiloxane) (PDMS)/carbon nanotubes (CNTs)/Au into flexible and deformable electrodes, and its geometry is precisely designed from the linear elastic theory and optimized through finite element simulation. The sensor can achieve a high sensitivity of S = 165.5 kPa-1, a response-relaxation time of <30 ms, and superb consistency, allowing the device to detect vibration signals. Our sensor has been assembled with circuits and capsulation in order to monitor the function state of players in underwater sports in the frequency domain. This work deepens the theory of linearized design of microstructures and provides a strategy to make flexible pressure sensors that have combined the performances of ultrahigh linearity, high sensitivity, and a wide working range.
Collapse
Affiliation(s)
- Shaowei Wu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Chengxiu Yang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Jiafei Hu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Mengchun Pan
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Weize Meng
- State Key Laboratory of CEMEE, College of Electronic Science and Technology, National University of Defense Technology, Deya Road 109, Changsha 410073, China
| | - Yan Liu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Peisen Li
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Junping Peng
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Qi Zhang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Pengteng Chen
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Haomiao Wang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| |
Collapse
|
22
|
Li X, Zhang W, Nie L, Zhao X, Li X, Zhang W. A dual-module co-regulated stable pressure sensor for human activity monitoring. Dalton Trans 2023; 52:13808-13814. [PMID: 37727931 DOI: 10.1039/d3dt02587j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Flexible pressure sensors have received significant attention for applications in wearable devices and human health monitoring in healthcare. Nevertheless, the preparation of pressure sensors with a wide operating range and high sensitivity remains a huge challenge. Herein, a piezoresistive sensor with a porous microstructure is prepared by using a sandpaper and salt dual-template method. Carbon black and carbon nanotubes are used as conductive fillers and the pressure sensor shows a high sensitivity (58.33 kPa-1) and extremely fast response and recovery times (3 and 10 ms, respectively). Furthermore, this CNT/PDMS/CB sensor shows a high detection limit of 400 kPa and excellent cycling stability of over 20 000 cycles. This high-performance pressure sensor is promising for many applications such as wearable electronics and health monitoring.
Collapse
Affiliation(s)
- Xiang Li
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding, 071002, China.
| | - Wanzhihan Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Lanzhen Nie
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Xiaohui Zhao
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Xiaoting Li
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding, 071002, China.
| | - Wenming Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| |
Collapse
|
23
|
Liu YF, Wang W, Chen XF. Progress and prospects in flexible tactile sensors. Front Bioeng Biotechnol 2023; 11:1264563. [PMID: 37829569 PMCID: PMC10565956 DOI: 10.3389/fbioe.2023.1264563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Flexible tactile sensors have the advantages of large deformation detection, high fault tolerance, and excellent conformability, which enable conformal integration onto the complex surface of human skin for long-term bio-signal monitoring. The breakthrough of flexible tactile sensors rather than conventional tactile sensors greatly expanded application scenarios. Flexible tactile sensors are applied in fields including not only intelligent wearable devices for gaming but also electronic skins, disease diagnosis devices, health monitoring devices, intelligent neck pillows, and intelligent massage devices in the medical field; intelligent bracelets and metaverse gloves in the consumer field; as well as even brain-computer interfaces. Therefore, it is necessary to provide an overview of the current technological level and future development of flexible tactile sensors to ease and expedite their deployment and to make the critical transition from the laboratory to the market. This paper discusses the materials and preparation technologies of flexible tactile sensors, summarizing various applications in human signal monitoring, robotic tactile sensing, and human-machine interaction. Finally, the current challenges on flexible tactile sensors are also briefly discussed, providing some prospects for future directions.
Collapse
Affiliation(s)
- Ya-Feng Liu
- College of Artificial Intelligence, Southwest University, Chongqing, China
- College of Aerospace Engineering, Chongqing University, Chongqing, China
- Chongqing 2D Materials Institute, Chongqing, China
| | - Wei Wang
- College of Artificial Intelligence, Southwest University, Chongqing, China
| | - Xu-Fang Chen
- College of Artificial Intelligence, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Ayyanu R, Arul A, Song N, Anand Babu Christus A, Li X, Tamilselvan G, Bu Y, Kavitha S, Zhang Z, Liu N. Wearable sensor platforms for real-time monitoring and early warning of metabolic disorders in humans. Analyst 2023; 148:4616-4636. [PMID: 37712440 DOI: 10.1039/d3an01085f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Nowadays, the prevalence of metabolic syndromes (MSs) has attracted increasing concerns as it is closely related to overweight and obesity, physical inactivity and overconsumption of energy, making the diagnosis and real-time monitoring of the physiological range essential and necessary for avoiding illness due to defects in the human body such as higher risk of cardiovascular disease, diabetes, stroke and diseases related to artery walls. However, the current sensing techniques are inconvenient and do not continuously monitor the health status of humans. Alternatively, the use of recent wearable device technology is a preferable method for the prevention of these diseases. This can enable the monitoring of the health status of humans in different health domains, including environment and structure. The use wearable devices with the purpose of facilitating rapid treatment and real-time monitoring can decrease the prevalence of MS and long-time monitor the health status of patients. This review highlights the recent advances in wearable sensors toward continuous monitoring of blood pressure and blood glucose, and further details the monitoring of abnormal obesity, triglycerides and HDL. We also discuss the challenges and future prospective of monitoring MS in humans.
Collapse
Affiliation(s)
- Ravikumar Ayyanu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Amutha Arul
- Department of Chemistry, Francis Xavier Engineering College, Tirunelveli 627003, India
| | - Ninghui Song
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - A Anand Babu Christus
- Department Chemistry, SRM Institute of Science and Technology, Ramapuram Campus, Ramapuram-600089, Chennai, Tamil Nadu, India
| | - Xuesong Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - G Tamilselvan
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - S Kavitha
- Department of Chemistry, The M.D.T Hindu college (Affiliated to Manonmanium Sundaranar University), Tirunelveli-627010, Tamil Nadu, India
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Nan Liu
- Institute of Environment and Health, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China.
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
25
|
Abdellatif SO, Moustafa A, Khalid A, Ghannam R. Integration of Capacitive Pressure Sensor-on-Chip with Lead-Free Perovskite Solar Cells for Continuous Health Monitoring. MICROMACHINES 2023; 14:1676. [PMID: 37763839 PMCID: PMC10536692 DOI: 10.3390/mi14091676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The increasing prevalence of hypertension necessitates continuous blood pressure monitoring. This can be safely and painlessly achieved using non-invasive wearable electronic devices. However, the integration of analog, digital, and power electronics into a single system poses significant challenges. Therefore, we demonstrated a comprehensive multi-scale simulation of a sensor-on-chip that was based on a capacitive pressure sensor. Two analog interfacing circuits were proposed for a full-scale operation ranging from 0 V to 5 V, enabling efficient digital data processing. We also demonstrated the integration of lead-free perovskite solar cells as a mechanism for self-powering the sensor. The proposed system exhibits varying sensitivity from 1.4 × 10-3 to 0.095 (kPa)-1, depending on the pressure range of measurement. In the most optimal configuration, the system consumed 50.5 mW, encompassing a 6.487 mm2 area for the perovskite cell and a CMOS layout area of 1.78 × 1.232 mm2. These results underline the potential for such sensor-on-chip designs in future wearable health-monitoring technologies. Overall, this paper contributes to the field of wearable health-monitoring technologies by presenting a novel approach to self-powered blood pressure monitoring through the integration of capacitive pressure sensors, analog interfacing circuits, and lead-free perovskite solar cells.
Collapse
Affiliation(s)
- Sameh O. Abdellatif
- The Electrical Engineering Department, Faculty of Engineering and FabLab, Centre for Emerging Learning Technologies (CELT), The British University in Egypt (BUE), Cairo 11387, Egypt; (S.O.A.); (A.M.); (A.K.)
| | - Afaf Moustafa
- The Electrical Engineering Department, Faculty of Engineering and FabLab, Centre for Emerging Learning Technologies (CELT), The British University in Egypt (BUE), Cairo 11387, Egypt; (S.O.A.); (A.M.); (A.K.)
| | - Ahmed Khalid
- The Electrical Engineering Department, Faculty of Engineering and FabLab, Centre for Emerging Learning Technologies (CELT), The British University in Egypt (BUE), Cairo 11387, Egypt; (S.O.A.); (A.M.); (A.K.)
| | - Rami Ghannam
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
26
|
Nan X, Xu Z, Cao X, Hao J, Wang X, Duan Q, Wu G, Hu L, Zhao Y, Yang Z, Gao L. A Review of Epidermal Flexible Pressure Sensing Arrays. BIOSENSORS 2023; 13:656. [PMID: 37367021 DOI: 10.3390/bios13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In recent years, flexible pressure sensing arrays applied in medical monitoring, human-machine interaction, and the Internet of Things have received a lot of attention for their excellent performance. Epidermal sensing arrays can enable the sensing of physiological information, pressure, and other information such as haptics, providing new avenues for the development of wearable devices. This paper reviews the recent research progress on epidermal flexible pressure sensing arrays. Firstly, the fantastic performance materials currently used to prepare flexible pressure sensing arrays are outlined in terms of substrate layer, electrode layer, and sensitive layer. In addition, the general fabrication processes of the materials are summarized, including three-dimensional (3D) printing, screen printing, and laser engraving. Subsequently, the electrode layer structures and sensitive layer microstructures used to further improve the performance design of sensing arrays are discussed based on the limitations of the materials. Furthermore, we present recent advances in the application of fantastic-performance epidermal flexible pressure sensing arrays and their integration with back-end circuits. Finally, the potential challenges and development prospects of flexible pressure sensing arrays are discussed in a comprehensive manner.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Qikai Duan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Liangwei Hu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
27
|
Elnemr YE, Abu-Libdeh A, Raj GCA, Birjis Y, Nazemi H, Munirathinam P, Emadi A. Multi-Transduction-Mechanism Technology, an Emerging Approach to Enhance Sensor Performance. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094457. [PMID: 37177661 PMCID: PMC10181588 DOI: 10.3390/s23094457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Conventional sensor systems employ single-transduction technology where they respond to an input stimulus and transduce the measured parameter into a readable output signal. As such, the technology can only provide limited corresponding data of the detected parameters due to relying on a single transformed output signal for information acquisition. This limitation commonly results in the need for utilizing sensor array technology to detect targeted parameters in complex environments. Multi-transduction-mechanism technology, on the other hand, may combine more than one transduction mechanism into a single structure. By employing this technology, sensors can be designed to simultaneously distinguish between different input signals from complex environments for greater degrees of freedom. This allows a multi-parameter response, which results in an increased range of detection and improved signal-to-noise ratio. In addition, utilizing a multi-transduction-mechanism approach can achieve miniaturization by reducing the number of required sensors in an array, providing further miniaturization and enhanced performance. This paper introduces the concept of multi-transduction-mechanism technology by exploring different candidate combinations of fundamental transduction mechanisms such as piezoresistive, piezoelectric, triboelectric, capacitive, and inductive mechanisms.
Collapse
Affiliation(s)
- Youssef Ezzat Elnemr
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Aya Abu-Libdeh
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Gian Carlo Antony Raj
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Yumna Birjis
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Haleh Nazemi
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Pavithra Munirathinam
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Arezoo Emadi
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
28
|
Bakker E. Wearable Sensors. ACS Sens 2023; 8:1368-1370. [PMID: 36942872 DOI: 10.1021/acssensors.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
|
29
|
De Fazio R, Mastronardi VM, De Vittorio M, Visconti P. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23041856. [PMID: 36850453 PMCID: PMC9965388 DOI: 10.3390/s23041856] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 05/03/2023]
Abstract
A quantitative evaluation of kinetic parameters, the joint's range of motion, heart rate, and breathing rate, can be employed in sports performance tracking and rehabilitation monitoring following injuries or surgical operations. However, many of the current detection systems are expensive and designed for clinical use, requiring the presence of a physician and medical staff to assist users in the device's positioning and measurements. The goal of wearable sensors is to overcome the limitations of current devices, enabling the acquisition of a user's vital signs directly from the body in an accurate and non-invasive way. In sports activities, wearable sensors allow athletes to monitor performance and body movements objectively, going beyond the coach's subjective evaluation limits. The main goal of this review paper is to provide a comprehensive overview of wearable technologies and sensing systems to detect and monitor the physiological parameters of patients during post-operative rehabilitation and athletes' training, and to present evidence that supports the efficacy of this technology for healthcare applications. First, a classification of the human physiological parameters acquired from the human body by sensors attached to sensitive skin locations or worn as a part of garments is introduced, carrying important feedback on the user's health status. Then, a detailed description of the electromechanical transduction mechanisms allows a comparison of the technologies used in wearable applications to monitor sports and rehabilitation activities. This paves the way for an analysis of wearable technologies, providing a comprehensive comparison of the current state of the art of available sensors and systems. Comparative and statistical analyses are provided to point out useful insights for defining the best technologies and solutions for monitoring body movements. Lastly, the presented review is compared with similar ones reported in the literature to highlight its strengths and novelties.
Collapse
Affiliation(s)
- Roberto De Fazio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Facultad de Ingeniería, Universidad Panamericana, Aguascalientes 20290, Mexico
- Correspondence: (R.D.F.); (V.M.M.); Tel.: +39-08-3229-7334 (R.D.F.)
| | - Vincenzo Mariano Mastronardi
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Italian Technology Institute IIT, 73010 Arnesano, Italy
- Correspondence: (R.D.F.); (V.M.M.); Tel.: +39-08-3229-7334 (R.D.F.)
| | - Massimo De Vittorio
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Italian Technology Institute IIT, 73010 Arnesano, Italy
| | - Paolo Visconti
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Italian Technology Institute IIT, 73010 Arnesano, Italy
| |
Collapse
|
30
|
Cao UMN, Zhang Y, Chen J, Sayson D, Pillai S, Tran SD. Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication. Int J Mol Sci 2023; 24:3232. [PMID: 36834645 PMCID: PMC9966054 DOI: 10.3390/ijms24043232] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Organ-on-A-chip (OoAC) devices are miniaturized, functional, in vitro constructs that aim to recapitulate the in vivo physiology of an organ using different cell types and extracellular matrix, while maintaining the chemical and mechanical properties of the surrounding microenvironments. From an end-point perspective, the success of a microfluidic OoAC relies mainly on the type of biomaterial and the fabrication strategy employed. Certain biomaterials, such as PDMS (polydimethylsiloxane), are preferred over others due to their ease of fabrication and proven success in modelling complex organ systems. However, the inherent nature of human microtissues to respond differently to surrounding stimulations has led to the combination of biomaterials ranging from simple PDMS chips to 3D-printed polymers coated with natural and synthetic materials, including hydrogels. In addition, recent advances in 3D printing and bioprinting techniques have led to the powerful combination of utilizing these materials to develop microfluidic OoAC devices. In this narrative review, we evaluate the different materials used to fabricate microfluidic OoAC devices while outlining their pros and cons in different organ systems. A note on combining the advances made in additive manufacturing (AM) techniques for the microfabrication of these complex systems is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
31
|
Samarentsis AG, Makris G, Spinthaki S, Christodoulakis G, Tsiknakis M, Pantazis AK. A 3D-Printed Capacitive Smart Insole for Plantar Pressure Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:9725. [PMID: 36560095 PMCID: PMC9782173 DOI: 10.3390/s22249725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Gait analysis refers to the systematic study of human locomotion and finds numerous applications in the fields of clinical monitoring, rehabilitation, sports science and robotics. Wearable sensors for real-time gait monitoring have emerged as an attractive alternative to the traditional clinical-based techniques, owing to their low cost and portability. In addition, 3D printing technology has recently drawn increased interest for the manufacturing of sensors, considering the advantages of diminished fabrication cost and time. In this study, we report the development of a 3D-printed capacitive smart insole for the measurement of plantar pressure. Initially, a novel 3D-printed capacitive pressure sensor was fabricated and its sensing performance was evaluated. The sensor exhibited a sensitivity of 1.19 MPa−1, a wide working pressure range (<872.4 kPa), excellent stability and durability (at least 2.280 cycles), great linearity (R2=0.993), fast response/recovery time (142−160 ms), low hysteresis (DH<10%) and the ability to support a broad spectrum of gait speeds (30−70 steps/min). Subsequently, 16 pressure sensors were integrated into a 3D-printed smart insole that was successfully applied for dynamic plantar pressure mapping and proven able to distinguish the various gait phases. We consider that the smart insole presented here is a simple, easy to manufacture and cost-effective solution with the potential for real-world applications.
Collapse
Affiliation(s)
- Anastasios G. Samarentsis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
| | - Georgios Makris
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
| | - Sofia Spinthaki
- Department of Physics, University of Crete, 70013 Heraklion, Greece
| | - Georgios Christodoulakis
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Manolis Tsiknakis
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Alexandros K. Pantazis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
| |
Collapse
|
32
|
Shin YK, Shin Y, Lee JW, Seo MH. Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications. BIOSENSORS 2022; 12:952. [PMID: 36354461 PMCID: PMC9687959 DOI: 10.3390/bios12110952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The interest in biodegradable pressure sensors in the biomedical field is growing because of their temporary existence in wearable and implantable applications without any biocompatibility issues. In contrast to the limited sensing performance and biocompatibility of initially developed biodegradable pressure sensors, device performances and functionalities have drastically improved owing to the recent developments in micro-/nano-technologies including device structures and materials. Thus, there is greater possibility of their use in diagnosis and healthcare applications. This review article summarizes the recent advances in micro-/nano-structured biodegradable pressure sensor devices. In particular, we focus on the considerable improvement in performance and functionality at the device-level that has been achieved by adapting the geometrical design parameters in the micro- and nano-meter range. First, the material choices and sensing mechanisms available for fabricating micro-/nano-structured biodegradable pressure sensor devices are discussed. Then, this is followed by a historical development in the biodegradable pressure sensors. In particular, we highlight not only the fabrication methods and performances of the sensor device, but also their biocompatibility. Finally, we intoduce the recent examples of the micro/nano-structured biodegradable pressure sensor for biomedical applications.
Collapse
Affiliation(s)
- Yoo-Kyum Shin
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| | - Yujin Shin
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Min-Ho Seo
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| |
Collapse
|
33
|
Kim SW, Oh GY, Lee KI, Yang YJ, Ko JB, Kim YW, Hong YS. A Highly Sensitive and Flexible Capacitive Pressure Sensor Based on Alignment Airgap Dielectric. SENSORS (BASEL, SWITZERLAND) 2022; 22:7390. [PMID: 36236486 PMCID: PMC9571520 DOI: 10.3390/s22197390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Flexible capacitive pressure sensors with a simple structure and low power consumption are attracting attention, owing to their wide range of applications in wearable electronic devices. However, it is difficult to manufacture pressure sensors with high sensitivity, wide detection range, and low detection limits. We developed a highly sensitive and flexible capacitive pressure sensor based on the porous Ecoflex, which has an aligned airgap structure and can be manufactured by simply using a mold and a micro-needle. The existence of precisely aligned airgap structures significantly improved the sensor sensitivity compared to other dielectric structures without airgaps. The proposed capacitive pressure sensor with an alignment airgap structure supports a wide range of working pressures (20-100 kPa), quick response time (≈100 ms), high operational stability, and low-pressure detection limit (20 Pa). Moreover, we also studied the application of pulse wave monitoring in wearable sensors, exhibiting excellent performance in wearable devices that detect pulse waves before and after exercise. The proposed pressure sensor is applicable in electronic skin and wearable medical assistive devices owing to its excellent functional features.
Collapse
Affiliation(s)
- Soo-Wan Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju 63243, Korea
| | - Geum-Yoon Oh
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju 63243, Korea
| | - Kang-In Lee
- Institute of Advanced Technology Development, Hyundai Motor Co., Seongnam 13529, Korea
| | - Young-Jin Yang
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju 63243, Korea
| | - Jeong-Beom Ko
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju 63243, Korea
| | - Young-Woo Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju 63243, Korea
| | - Young-Sun Hong
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju 63243, Korea
| |
Collapse
|
34
|
Yu H, Guo C, Ye X, Pan Y, Tu J, Wu Z, Chen Z, Liu X, Huang J, Ren Q, Li Y. Wide-Range Flexible Capacitive Pressure Sensors Based on Dielectrics with Various Porosity. MICROMACHINES 2022; 13:mi13101588. [PMID: 36295942 PMCID: PMC9611044 DOI: 10.3390/mi13101588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/02/2023]
Abstract
Wide-range flexible pressure sensors are in difficulty in research while in demand in application. In this paper, a wide-range capacitive flexible pressure sensor is developed with the foaming agent ammonium bicarbonate (NH4HCO3). By controlling the concentration of NH4HCO3 doped in the polydimethylsiloxane (PDMS) and repeating the curing process, pressure-sensitive dielectrics with various porosity are fabricated to expand the detection range of the capacitive pressure sensor. The shape and the size of each dielectric is defined by the 3D printed mold. To improve the dielectric property of the dielectric, a 1% weight ratio of multi-walled carbon nanotubes (MWCNTs) are doped into PDMS liquid. Besides that, a 5% weight ratio of MWCNTs is dispersed into deionized water and then coated on the electrodes to improve the contact state between copper electrodes and the dielectric. The laminated dielectric layer and two electrodes are assembled and tested. In order to verify the effectiveness of this design, some reference devices are prepared, such as sensors based on the dielectric with uniform porosity and a sensor with common copper electrodes. According to the testing results of these sensors, it can be seen that the sensor based on the dielectric with various porosity has higher sensitivity and a wider pressure detection range, which can detect the pressure range from 0 kPa to 1200 kPa and is extended to 300 kPa compared with the dielectric with uniform porosity. Finally, the sensor is applied to the fingerprint, finger joint, and knee bending test. The results show that the sensor has the potential to be applied to human motion detection.
Collapse
Affiliation(s)
- Huiyang Yu
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Chengxi Guo
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Xin Ye
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Yifei Pan
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Jiacheng Tu
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Zhe Wu
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Zefang Chen
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Xueyang Liu
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Jianqiu Huang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Qingying Ren
- College of Electronic and Optical Engineering & College of Flexible Electronic (Future Technology), Nanjing University of Posts and Telecommunication; Nanjing 210023, China
| | - Yifeng Li
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
35
|
Yu B, Luo Y, Li J, Ye H, Li KH. Interface Engineering in Chip-Scale GaN Optical Devices for Near-Hysteresis-Free Hydraulic Pressure Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38351-38357. [PMID: 35951558 DOI: 10.1021/acsami.2c09291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a compact, near-hysteresis-free hydraulic pressure sensor is presented through interface engineering in a GaN chip-scale optical device. The sensor consists of a monolithic GaN-on-sapphire device responsible for light emission and detection and a multilevel microstructured polydimethylsiloxane (PDMS) film prepared through a low-cost molding process using sandpaper as a template. The micro-patterned PDMS film functions as a pressure-sensing medium to effectively modulate the reflectance properties at the sapphire interface during pressure loading and unloading. The interface engineering endows the GaN optical device with near-hysteresis-free performance over a wide pressure range of up to 0-800 kPa. Verified by a series of experimental measurements on its dynamic responses, the tiny hydraulic sensor exhibits superior performance in hysteresis, stability, repeatability, and response time, indicating its considerable potential for a broad range of practical applications.
Collapse
Affiliation(s)
- Binlu Yu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yumeng Luo
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaiyu Ye
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kwai Hei Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
36
|
Minimizing the wiring in distributed strain sensing using a capacitive sensor sheet with variable-resistance electrodes. Sci Rep 2022; 12:13950. [PMID: 35978095 PMCID: PMC9385860 DOI: 10.1038/s41598-022-18265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Strain mapping over a large area usually requires an array of sensors, necessitating extensive and complex wiring. Our solution is based on creating multiple sensing regions within the area of a single capacitive sensor body by considering the sensor as an analogical transmission line, reducing the connections to only two wires and simplifying the electronic interface. We demonstrate the technology by using piezoresistive electrodes in a parallel plate capacitor that create varying proportions of electromagnetic wave dissipation through the sensor length according to the interrogation frequency. We demonstrate, by a sensor divided into four virtual zones, that our cracked capacitive sensor can simultaneously record strain in each separated zone by measuring the sensor capacitance at a high frequency. Moreover, we confirm that by changing the frequency from high to low, our sensor is able to measure the local strain amplitudes. This sensor is unique in its ability to monitor strain continuously over a large area with promoted spatial resolution. This sensing technology with a reduced number of wires and a simple electronic interface will increase the reliability of sensing while reducing its cost and complexity.
Collapse
|
37
|
Ma Y, He Z, Liao Z, Han Y, Zhang J, Zhu M. Porous structure contained polyimide film with enhanced dielectric properties upon high temperature. J Appl Polym Sci 2022. [DOI: 10.1002/app.52936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingyi Ma
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Zian He
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Ziwei Liao
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Yuhang Han
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Junming Zhang
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Min Zhu
- School of Electrical Engineering and Automation Harbin Institute of Technology Harbin China
| |
Collapse
|
38
|
Wu D, Cheng X, Chen Z, Xu Z, Zhu M, Zhao Y, Zhu R, Lin L. A flexible tactile sensor that uses polyimide/graphene oxide nanofiber as dielectric membrane for vertical and lateral force detection. NANOTECHNOLOGY 2022; 33:405205. [PMID: 35617936 DOI: 10.1088/1361-6528/ac73a4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 05/27/2023]
Abstract
Flexible force sensors are of great interest in the fields of healthcare, physiological signals, and aircraft smart skin applications because of their compatibility with curved surfaces. However, the simultaneous detection of multidirectional forces remains an engineering challenge, despite the great progress made in recent years. Herein, we present the development of a flexible capacitive force sensor capable of efficiently distinguishing normal and sliding shear forces. A two-layer electrospun polyimide/graphene oxide (PI/GO) nanofiber membrane is used as the dielectric layer, which is sandwiched between one top electrode and four symmetrically distributed bottom electrodes. This composite membrane has an improved dielectric constant, a reduced friction coefficient, and good compressibility, leading to superior performance that includes high sensitivity over a wide operational range with measured results of 3 MPa-1for 0-242 kPa (0-2.2 N) and 0.92 MPa-1for 242-550 kPa (2.2-5 N) in the normal direction; and better than 1 N-1for 0-3 N in thex- andy-axis directions. The system also has a low detection limit of 10 Pa, fast response and recovery times of 39 ms and 13 ms, respectively, a good cyclic stability of 10,000 cycles at a pressure of 176 kPa, and promising potential for use in high-temperature environments (200 °C). Moreover, a prototype 4 × 4 sensor array has been fabricated and successfully used in a robotic system to grasp objects and operate a wireless toy car. As such, the proposed system could offer superior capabilities in simultaneous multidirectional force sensing for applications such as intelligent robots, human-machine interaction, and smart skin.
Collapse
Affiliation(s)
- Dezhi Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Xianshu Cheng
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Zhuo Chen
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Zhenjin Xu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Minjie Zhu
- Sensor and Network Control Center, Instrumentation Technology and Economy Institute, Beijing, People's Republic of China
| | - Yang Zhao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Rui Zhu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Liwei Lin
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, United States of America
| |
Collapse
|
39
|
Su M, Li P, Liu X, Wei D, Yang J. Textile-Based Flexible Capacitive Pressure Sensors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1495. [PMID: 35564203 PMCID: PMC9103991 DOI: 10.3390/nano12091495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Flexible capacitive pressure sensors have been widely used in electronic skin, human movement and health monitoring, and human-machine interactions. Recently, electronic textiles afford a valuable alternative to traditional capacitive pressure sensors due to their merits of flexibility, light weight, air permeability, low cost, and feasibility to fit various surfaces. The textile-based functional layers can serve as electrodes, dielectrics, and substrates, and various devices with semi-textile or all-textile structures have been well developed. This paper provides a comprehensive review of recent developments in textile-based flexible capacitive pressure sensors. The latest research progresses on textile devices with sandwich structures, yarn structures, and in-plane structures are introduced, and the influences of different device structures on performance are discussed. The applications of textile-based sensors in human wearable devices, robotic sensing, and human-machine interaction are then summarized. Finally, evolutionary trends, future directions, and challenges are highlighted.
Collapse
Affiliation(s)
- Min Su
- School of Science, Chongqing University of Technology, Chongqing 400054, China; (M.S.); (X.L.); (D.W.)
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
| | - Pei Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
| | - Xueqin Liu
- School of Science, Chongqing University of Technology, Chongqing 400054, China; (M.S.); (X.L.); (D.W.)
| | - Dapeng Wei
- School of Science, Chongqing University of Technology, Chongqing 400054, China; (M.S.); (X.L.); (D.W.)
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
| | - Jun Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
| |
Collapse
|
40
|
Xu J, Li X, Chang H, Zhao B, Tan X, Yang Y, Tian H, Zhang S, Ren TL. Electrooculography and Tactile Perception Collaborative Interface for 3D Human-Machine Interaction. ACS NANO 2022; 16:6687-6699. [PMID: 35385249 DOI: 10.1021/acsnano.2c01310] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The human-machine interface (HMI) previously relied on a single perception interface that cannot realize three-dimensional (3D) interaction and convenient and accurate interaction in multiple scenes. Here, we propose a collaborative interface including electrooculography (EOG) and tactile perception for fast and accurate 3D human-machine interaction. The EOG signals are mainly used for fast, convenient, and contactless 2D (XY-axis) interaction, and the tactile sensing interface is mainly utilized for complex 2D movement control and Z-axis control in the 3D interaction. The honeycomb graphene electrodes for the EOG signal acquisition and tactile sensing array are prepared by a laser-induced process. Two pairs of ultrathin and breathable honeycomb graphene electrodes are attached around the eyes for monitoring nine different eye movements. A machine learning algorithm is designed to train and classify the nine different eye movements with an average prediction accuracy of 92.6%. Furthermore, an ultrathin (90 μm), stretchable (∼1000%), and flexible tactile sensing interface assembled by a pair of 4 × 4 planar electrode arrays is attached to the arm for 2D movement control and Z-axis interaction, which can realize single-point, multipoint and sliding touch functions. Consequently, the tactile sensing interface can achieve eight directions control and even more complex movement trajectory control. Meanwhile, the flexible and ultrathin tactile sensor exhibits an ultrahigh sensitivity of 1.428 kPa-1 in the pressure range 0-300 Pa with long-term response stability and repeatability. Therefore, the collaboration between EOG and the tactile perception interface will play an important role in rapid and accurate 3D human-machine interaction.
Collapse
Affiliation(s)
- Jiandong Xu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiaoshi Li
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Hao Chang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Bingchen Zhao
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xichao Tan
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - He Tian
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Sheng Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Zhang Y, Zhang T, Huang Z, Yang J. A New Class of Electronic Devices Based on Flexible Porous Substrates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105084. [PMID: 35038244 PMCID: PMC8895116 DOI: 10.1002/advs.202105084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Indexed: 05/03/2023]
Abstract
With the advent of the Internet of Things era, the connection between electronic devices and humans is getting closer and closer. New-concept electronic devices including e-skins, nanogenerators, brain-machine interfaces, and implantable medical devices, can work on or inside human bodies, calling for wearing comfort, super flexibility, biodegradability, and stability under complex deformations. However, conventional electronics based on metal and plastic substrates cannot effectively meet these new application requirements. Therefore, a series of advanced electronic devices based on flexible porous substrates (e.g., paper, fabric, electrospun nanofibers, wood, and elastic polymer sponge) is being developed to address these challenges by virtue of their superior biocompatibility, breathability, deformability, and robustness. The porous structure of these substrates can not only improve device performance but also enable new functions, but due to their wide variety, choosing the right porous substrate is crucial for preparing high-performance electronics for specific applications. Herein, the properties of different flexible porous substrates are summarized and their basic principles of design, manufacture, and use are highlighted. Subsequently, various functionalization methods of these porous substrates are briefly introduced and compared. Then, the latest advances in flexible porous substrate-based electronics are demonstrated. Finally, the remaining challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Tengyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Zhandong Huang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Jun Yang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
- Shenzhen Institute for Advanced StudyUniversity of Electronic Science and Technology of ChinaShenzhen518000P. R. China
| |
Collapse
|
42
|
Bose AK, Beaver CL, Maddipatla D, Rossbach S, Atashbar MZ. In-vitro Analysis of Thin-Film Microplasma Discharge Devices for Surface Sterilization. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2022.3147468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Zhou S, Qian S, Wang W, Ni Z, Yu J. Fabrication of a Hydrophilic Low-Friction Poly(hydroxyethyl methacrylate) Coating on Silicon Rubber. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13493-13500. [PMID: 34724617 DOI: 10.1021/acs.langmuir.1c02254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silicon rubber has been widely used in the biomedical field due to its excellent mechanical properties and physiological inertia. However, the hydrophobic properties of silicon rubber surfaces limit their further application. Therefore, constructing a silicon rubber coating with hydrophilic and low-friction surface properties would be highly significant. Existing methods to achieve such coatings, including grafting polymer brushes and the deposition of hydrophilic materials, suffer from several deficiencies such as complicated coating processes and insufficient coating firmness. In this paper, we report a hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) coating that can easily coat the surface of silicon rubber to provide low-friction performance. Sample silicon rubber was treated with benzophenone and hydroxyethyl methacrylate monomer solution in turn. The as-prepared coating was characterized by infrared spectroscopy, X-ray photoelectron spectroscopy, white light interference, and MFT-5000 wear test. The results indicated that the PHEMA coating had excellent hydrophilic properties (with a low contact angle of 9.39°) compared to uncoated silicon rubber. As the concentration of glycerol in the monomer solution was increased, the thickness and surface roughness of the as-prepared coating gradually decreased. The coating was firmly adsorbed on the substrate, and it had a zero-class bonding strength. In addition, the as-prepared coating demonstrated good friction-reduced properties, with the coefficient of friction being reduced by 98.0% compared with the uncoated silicon rubber in simulated blood. In summary, a hydrophilic and low-friction coating was successfully prepared using a simple method, and the results reported herein provide valuable insight into the surface design of similar soft materials.
Collapse
Affiliation(s)
- Shuaishuai Zhou
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanhua Qian
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Wang
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zifeng Ni
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinghu Yu
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
44
|
Ju B, Kim I, Li BM, Knowles CG, Mills A, Grace L, Jur JS. Inkjet Printed Textile Force Sensitive Resistors for Wearable and Healthcare Devices. Adv Healthc Mater 2021; 10:e2100893. [PMID: 34212513 PMCID: PMC8542615 DOI: 10.1002/adhm.202100893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Indexed: 01/21/2023]
Abstract
Pressure sensors for wearable healthcare devices, particularly force sensitive resistors (FSRs) are widely used to monitor physiological signals and human motions. However, current FSRs are not suitable for integration into wearable platforms. This work presents a novel technique for developing textile FSRs (TFSRs) using a combination of inkjet printing of metal-organic decomposition silver inks and heat pressing for facile integration into textiles. The insulating void by a thermoplastic polyurethane (TPU) membrane between the top and bottom textile electrodes creates an architectured piezoresistive structure. The structure functions as a simple logic switch where under a threshold pressure the electrodes make contact to create conductive paths (on-state) and without pressure return to the prior insulated condition (off-state). The TFSR can be controlled by arranging the number of layers and hole diameters of the TPU spacer to specify a wide range of activation pressures from 4.9 kPa to 7.1 MPa. For a use-case scenario in wearable healthcare technologies, the TFSR connected with a readout circuit and a mobile app shows highly stable signal acquisition from finger movement. According to the on/off state of the TFSR with LED bulbs by different weights, it can be utilized as a textile switch showing tactile feedback.
Collapse
Affiliation(s)
- Beomjun Ju
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Inhwan Kim
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Braden M Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Caitlin G Knowles
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Amanda Mills
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Landon Grace
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jesse S Jur
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
45
|
Ji B, Zhou Q, Lei M, Ding S, Song Q, Gao Y, Li S, Xu Y, Zhou Y, Zhou B. Gradient Architecture-Enabled Capacitive Tactile Sensor with High Sensitivity and Ultrabroad Linearity Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103312. [PMID: 34585504 DOI: 10.1002/smll.202103312] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The sensitivity and linearity are critical parameters that can preserve the high pressure-resolution across a wide range and simplify the signal processing process of flexible tactile sensors. Although extensive micro-structured dielectrics have been explored to improve the sensitivity of capacitive sensors, the attenuation of sensitivity with increasing pressure is yet to be fully resolved. Herein, a novel dielectric layer based on the gradient micro-dome architecture (GDA) is presented to simultaneously realize the high sensitivity and ultrabroad linearity range of capacitive sensors. The gradient micro-dome pixels with rationally collocated amount and height can effectively regulate the contact area and hence enable the linear variation in effective dielectric constant of the GDA dielectric layer under varying pressures. With systematical optimization, the sensor exhibits the high sensitivity of 0.065 kPa-1 in an ultrabroad linearity range up to 1700 kPa, which is first reported. Based on the excellent sensitivity and linearity, the high pressure-resolution can be preserved across the full scale of pressure spectrum. Therefore, potential applications such as all-round physiological signal detection in diverse scenarios, control instruction transmission with combinatorial force inputs, and convenient Morse code communication with non-overlapping capacitance signals are successfully demonstrated through a single sensor device.
Collapse
Affiliation(s)
- Bing Ji
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Qian Zhou
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Ming Lei
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Qi Song
- Shenzhen Shineway Technology Corporation, Shenzhen, Guangdong, 518000, China
| | - Yibo Gao
- Shenzhen Shineway Technology Corporation, Shenzhen, Guangdong, 518000, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology College of Optoelectronics Engineering, Chongqing University, Chongqing, 400044, China
| | - Yi Xu
- Key Laboratory of Optoelectronic Technology and Systems Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology College of Optoelectronics Engineering, Chongqing University, Chongqing, 400044, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|