1
|
Freko S, Nikić M, Mayer D, Weiß LJK, Simmel FC, Wolfrum B. Digital CRISPR-Powered Biosensor Concept without Target Amplification Using Single-Impact Electrochemistry. ACS Sens 2024; 9:6197-6206. [PMID: 39435883 PMCID: PMC11590096 DOI: 10.1021/acssensors.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
The rapid and reliable detection and quantification of nucleic acids is crucial for various applications, including infectious disease and cancer diagnostics. While conventional methods, such as the quantitative polymerase chain reaction are widely used, they are limited to the laboratory environment due to their complexity and the requirement for sophisticated equipment. In this study, we present a novel amplification-free digital sensing strategy by combining the collateral cleavage activity of the Cas12a enzyme with single-impact electrochemistry. In doing so, we modified silver nanoparticles using a straightforward temperature-assisted cofunctionalization process to subsequently detect the collision events of particles released by the activated Cas12a as distinct current spikes on a microelectrode array. The functionalization resulted in stable DNA-AgNP conjugates, making them suitable for numerous biosensor applications. Thus, our study demonstrates the potential of clustered regularly interspaced short palindromic repeats-based diagnostics combined with impact-based digital sensing for a rapid and amplification-free quantification of nucleic acids.
Collapse
Affiliation(s)
- Sebastian Freko
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Marta Nikić
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Dirk Mayer
- Institute
of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lennart J. K. Weiß
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Friedrich C. Simmel
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Wolfrum
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
2
|
Gong Y, Han H, Ma Z. Ultrasensitive self-powered biosensor with facile chemical signal amplification strategy using hydrogen peroxide-triggered silver oxidation reaction. Talanta 2024; 279:126570. [PMID: 39018949 DOI: 10.1016/j.talanta.2024.126570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The amplification strategies used for self-powered biosensor based on biofuel cell (BFC-SPB) need to be further developed. Because the currently developed strategies utilized the complicated hybridization of DNA or poorly readable current signal of capacitors for amplification, which limits the practical application in public health emergencies. Here, we present a facile chemical amplification strategy for BFC-SPB. The 5-min amplification was triggered by simply adding H2O2 solution dropwise to the sensing cathode after the formation of the immune sandwich. The Ag NP of immunoprobe were oxidized to Ag(I), which can be served as the electron acceptor of the cathode. The amount of immunoprobe was positively correlated with that of the antigen, resulting in corresponding and high concentration of Ag(I) after the amplification, which enhanced the ability of the cathode as the electron acceptor. Meanwhile the glucose oxidation reaction (GOR) was performed on the bioanode modified with glucose oxidase (GOx). After assembling the bioanode and sensing cathode, the open circuit voltage of the BFC-SPB, measured by digital multimeter, distinctly rised with the elevated concentration of the antigen. To demonstrate the proof of concept, immunoglobulin G (IgG), selecting as a model analyte, was sensitively detected using this method. Result indicated that the limit of detection was 4.4 fg mL-1 (0.03 amol mL-1) in the linear range of 1 pg mL-1-10 μg mL-1. This work initiates a brand-new way of chemical amplification strategy for BFC-SPB, and offers a promising platform for practical applications.
Collapse
Affiliation(s)
- Yichen Gong
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
3
|
Regiart M, Fernández-Baldo MA, Navarrete BA, Morales García C, Gómez B, Tortella GR, Valero T, Ortega FG. Five years of advances in electrochemical analysis of protein biomarkers in lung cancer: a systematic review. Front Chem 2024; 12:1390050. [PMID: 38764920 PMCID: PMC11099832 DOI: 10.3389/fchem.2024.1390050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024] Open
Abstract
Lung cancer is the leading cause of cancer death in both men and women. It represents a public health problem that must be addressed through the early detection of specific biomarkers and effective treatment. To address this critical issue, it is imperative to implement effective methodologies for specific biomarker detection of lung cancer in real clinical samples. Electrochemical methods, including microfluidic devices and biosensors, can obtain robust results that reduce time, cost, and assay complexity. This comprehensive review will explore specific studies, methodologies, and detection limits and contribute to the depth of the discussion, making it a valuable resource for researchers and clinicians interested in lung cancer diagnosis.
Collapse
Affiliation(s)
- Matías Regiart
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, San Luis, Argentina
| | - Martín A. Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, San Luis, Argentina
| | - Bernardino Alcázar Navarrete
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Concepción Morales García
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Beatriz Gómez
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Teresa Valero
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Francisco Gabriel Ortega
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
- UGC Cartuja, Distrito Sanitario Granada Metropolitano, Granada, Spain
| |
Collapse
|
4
|
Zhang JH, Song DM, Zhou YG. Impact electrochemistry for biosensing: advances and future directions. Analyst 2024; 149:2498-2506. [PMID: 38629127 DOI: 10.1039/d4an00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Impact electrochemistry allows for the investigation of the properties of single entities, ranging from nanoparticles (NPs) to soft bio-particles. It has introduced a novel dimension in the field of biological analysis, enhancing researchers' ability to comprehend biological heterogeneity and offering a new avenue for developing novel diagnostic devices for quantifying biological analytes. This review aims to summarize the recent advancements in impact electrochemistry-based biosensing over the past two to three years and provide insights into the future directions of this field.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Dian-Mei Song
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, Guangdong Province, China
| |
Collapse
|
5
|
Ren X, Shao M, Xie Z, Li X, Ma H, Fan D, Zhao J, Wei Q. A Co-Reactive Immunosensor Based on Ti 3C 2T x MXene@TiO 2-MoS 2 Hybrids Promoting luminol@Au@Ni-Co NCs Electrochemiluminescence for CYFRA 21-1 Detection. ACS Sens 2024; 9:1992-1999. [PMID: 38536770 DOI: 10.1021/acssensors.3c02784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The construction of assays is capable of accurately detecting cytokeratin-19 (CYFRA 21-1), which is critical for the rapid diagnosis of nonsmall cell lung cancer. In this work, a novel electrochemiluminescence (ECL) immunosensor based on the co-reaction promotion of luminol@Au@Ni-Co nanocages (NCs) as ECL probe by Ti3C2Tx MXene@TiO2-MoS2 hybrids as co-reaction accelerator was proposed to detect CYFRA 21-1. Ni-Co NCs, as a derivative of Prussian blue analogs, can be loaded with large quantities of Au NPs, luminol, and CYFRA 21-1 secondary antibodies due to their high specific surface area. To further improve the sensitivity of the developed ECL immunosensor, Ti3C2Tx MXene@TiO2-MoS2 hybrids were prepared by in situ growth of TiO2 nanosheets on highly conductive Ti3C2Tx MXene, and MoS2 was homogeneously grown on Ti3C2Tx MXene@TiO2 surfaces by the hydrothermal method. Ti3C2Tx MXene@TiO2-MoS2 hybrids possess excellent catalytic performance on the electro-redox of H2O2 generating more O2·- and obtaining optimal ECL intensity of the luminol/H2O2 system. Under the appropriate experimental conditions, the quantitative detection range of CYFRA 21-1 was from 0.1 pg mL-1 to 100 ng mL-1, and the limit of detection (LOD) was 0.046 pg mL-1. The present sensor has a lower LOD with a wider linear range, which provides a new analytical assay for the early diagnosis of small-cell-type lung cancer labels.
Collapse
Affiliation(s)
- Xiang Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mingyue Shao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zuoxun Xie
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiaojian Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dawei Fan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinxiu Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Xu Y, Jiang WJ, Bai YY, Yang YJ, Zhang ZL. Artificial Intelligence-Assisted Multiparameter Size Discrimination of Silver Nanoparticles through Electrochemical Collision. Anal Chem 2024; 96:6195-6201. [PMID: 38607805 DOI: 10.1021/acs.analchem.3c05115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Single particle collision is an important tool for size analysis at the individual particle level; however, due to complex dynamic behaviors of nanoparticles on the surface of an electrode, the accuracy of size discrimination is limited. A silver (Ag) nanoparticle (NP) was chosen as the research target, and the dynamic behavior of Ag NPs was simplified by enhancing adsorption between Ag NP and Au ultramicroelectrode (UME) in alkaline media. Immediately after, accurate dynamic and thermodynamic information on single Ag NP was accurately extracted from collision events, including current intensity, transferred charge, and duration time. On the basis that there were differences between parameters of different-sized Ag NPs, multiparameter size discrimination was proposed, which improved the accuracy compared to single-parameter discrimination. More intriguingly, multiparameter analysis was combined with artificial intelligence, a tool adept at processing multidimensional data, for the first time. Finally, artificial intelligence-assisted multiparameter size discrimination was successfully used to intelligently distinguish mixed Ag NPs, with an optimal accuracy of more than 95%. To sum up, the artificial intelligence-assisted multiparameter method showed an excellent ability to quickly achieve the most accurate size discrimination of nanoparticles at the level of individual particle and provide an effective guidance for the application of nanoparticles.
Collapse
Affiliation(s)
- Ying Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Wei-Jian Jiang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
- Department of Chemistry, Yuncheng University, Yuncheng 04400, People's Republic of China
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
7
|
Sheng X, Li X, Jia Y, Chen P, Liu Y, Ru G, Xu M, Liu L, Zhu X, Jin X, Liu Y, Zhao H, Li H. Electrochemical Biosensor for Protein Concentration Monitoring Using Natural Wood Evaporation for Power Generation. Anal Chem 2024; 96:917-925. [PMID: 38171538 DOI: 10.1021/acs.analchem.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A high-sensitivity, low-cost, self-powered biomass electrochemical biosensor based on the "evaporating potential" theory is developed for protein detection. The feasibility of experimental evaluation methods was verified with a probe protein of bovine serum albumin. The sensor was then used to detect lung cancer marker CYFRA21-1, and the potential of our sensor for clinical diagnosis was demonstrated by serum analysis. This work innovatively exploits the osmotic power generation capability of natural wood to construct a promising electrochemical biosensor that was driven by kinetics during testing. The detection methods used for this sensor, chronoamperometry and AC impedance, showed potential for quantitative analysis and specific detection, respectively. Furthermore, the sensor could facilitate new insights into the development of high-sensitivity, low-cost, and easy-to-use electrochemical biosensors.
Collapse
Affiliation(s)
- Xia Sheng
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Xu Li
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Yanfang Jia
- Department of Clinical Laboratory, People's Hospital of Henan University of Chinese Medicine, No. 33, Huanghe Road, Zhengzhou 450053, Henan, China
| | - Pengxun Chen
- Department of Clinical Laboratory, People's Hospital of Henan University of Chinese Medicine, No. 33, Huanghe Road, Zhengzhou 450053, Henan, China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangxin Ru
- College of Forestry, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Mengyi Xu
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Lijie Liu
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Xiuhong Zhu
- College of Forestry, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Xianchun Jin
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Hailiang Zhao
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
- School of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| | - Hongjuan Li
- Department of Clinical Laboratory, People's Hospital of Henan University of Chinese Medicine, No. 33, Huanghe Road, Zhengzhou 450053, Henan, China
| |
Collapse
|
8
|
Liu L, Peng M, Liang Z, Wu H, Yan H, Zhou YG. Sensitive quantification of mercury ions in real water systems based on an aggregation-collision electrochemical detection. Anal Chim Acta 2023; 1276:341638. [PMID: 37573116 DOI: 10.1016/j.aca.2023.341638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Nanoparticle impact electrochemistry (NIE) is an emerging electroanalytical technique that has been utilized to the sensitive detection of a wide range of biological species. So far, the NIE based trace ion detection is largely unexplored due to the lack of effective signal amplification strategies. We herein develop an NIE-based electrochemical sensing platform that utilizes T-Hg2+-T coordination induced AgNP aggregation to detect Hg2+ in aqueous solution. The proposed aggregation-collision strategy enables highly sensitive and selective detection. A dual-mode analysis based on the change in impact frequency and oxidative charge of the anodic oxidation of the AgNPs in NIE allows for more accurate self-validated quantification. Furthermore, the current NIE-based sensor demonstrates reliable analysis of Hg2+ of real water samples, showing great potential for practical environmental monitoring and point-of-care testing (POCT) applications.
Collapse
Affiliation(s)
- Lizhen Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Meihong Peng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Zerong Liang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Hong Wu
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, 410000, China.
| | - Hailong Yan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China.
| |
Collapse
|
9
|
Fang H, Zhou Y, Ma Y, Chen Q, Tong W, Zhan S, Guo Q, Xiong Y, Tang BZ, Huang X. M13 Bacteriophage-Assisted Recognition and Signal Spatiotemporal Separation Enabling Ultrasensitive Light Scattering Immunoassay. ACS NANO 2023; 17:18596-18607. [PMID: 37698300 DOI: 10.1021/acsnano.3c07194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The demand for the ultrasensitive and rapid quantitative analysis of trace target analytes has become increasingly urgent. However, the sensitivity of traditional immunoassay-based detection methods is limited due to the contradiction between molecular recognition and signal amplification caused by the size effect of nanoprobes. To address this dilemma, we describe versatile M13 phage-assisted immunorecognition and signal transduction spatiotemporal separation that enable ultrasensitive light-scattering immunoassay systems for the quantitative detection of low-abundance target analytes. The newly developed immunoassay strategy combines the M13 phage-assisted light scattering signal fluctuations of gold nanoparticles (AuNPs) with gold in situ growth (GISG) technology. Given the synergy of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation, the practical detection capability of this strategy can achieve the ultrasensitive and rapid quantification of ochratoxin A and alpha-fetoprotein in real samples at the subfemtomolar level within 50 min, displaying about 4 orders of magnitude enhancement in sensitivity compared with traditional phage-based ELISA. To further improve the sensitivity of our immunoassay, the biotin-streptavidin amplification scheme is implemented to detect severe acute respiratory syndrome coronavirus 2 spike protein down to the attomolar range. Overall, this study offers a direction for ultrasensitive quantitative detection of target analytes by the synergistic combination of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yanbing Ma
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Qi Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Weipeng Tong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Shengnan Zhan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Qian Guo
- Jiangxi Province Centre for Disease Control and Prevention, Nanchang 330029, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang 330006, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang 330006, P. R. China
| |
Collapse
|
10
|
Qiu X, Dai Q, Tang H, Li Y. Multiplex Assays of MicroRNAs by Using Single Particle Electrochemical Collision in a Single Run. Anal Chem 2023; 95:13376-13384. [PMID: 37603691 DOI: 10.1021/acs.analchem.3c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
It is important to quantify multiple biomarkers in a single run due to the advantages of precious samples and diagnostic accuracy. Based on the distinguishability of two types of current signals from single particle electrochemical collision (SPEC), step-type current transients produced by Pt nanoparticles (PtNPs) catalyzed hydrazine oxidation and peak-type current transients produced by Ag nanoparticles (AgNPs) oxidation, a kind of multiplex immunoassay of target microRNAs (miRNA-21 and Let-7a) have been established during SPEC in a single run. When the single-stranded DNA (ssDNA1) that was perfectly complementary to miRNA-21 was coupled to the surface of PtNPs, the SPEC of PtNPs electrocatalysis was inhibited and the step-type current transients disappeared, while the single-stranded DNA (ssDNA2) that was perfectly complementary to Let-7a was coupled to the surface of AgNPs, the SPEC of AgNPs oxidation was inhibited, and the peak-type current transients disappeared, thus the signals were in the "off" state at this time. After that, miRNA-21 and Let-7a were added into solution, complementary base pairing disrupted the weak DNA-NP interaction and restored the electrocatalysis of PtNPs and the electrooxidation of AgNPs, and the step-type current signals and peak-type current signals were in the "on" state. Moreover, the frequencies from two different recovered signals (PtNPs catalysis and AgNPs oxidation) corresponded to the amount of added miRNA-21 and Let-7a, thus a multiplex immunoassay method for dual quantification of miRNA-21 and Let-7a in a single run was established.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Qingshan Dai
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| |
Collapse
|
11
|
Liu J, Jiang Y, Wen W, Zhang X, Wu Z, Wang S. Enhanced Single-Particle Collision Electrochemistry at Polysulfide-Functionalized Microelectrodes for SARS-CoV-2 Detection. ACS Sens 2023; 8:2011-2020. [PMID: 37083364 PMCID: PMC10157629 DOI: 10.1021/acssensors.3c00181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Single-particle collision electrochemistry (SPCE) has shown great promise in biosensing applications due to its high sensitivity, high flux, and fast response. However, a low effective collision frequency and a large number of interfering substances in complex matrices limit its broad application in clinical samples. Herein, a novel and universal SPCE biosensor was proposed to realize sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on the collision and oxidation of single silver nanoparticles (Ag NPs) on polysulfide-functionalized gold ultramicroelectrodes (Ps-Au UMEs). Taking advantage of the strong interaction of the Ag-S bond, collision and oxidation of Ag NPs on the Ps-Au UME surface could be greatly promoted to generate enhanced Faraday currents. Compared with bare Au UMEs, the collision frequency of Ps-Au UMEs was increased by 15-fold, which vastly improved the detection sensitivity and practicability of SPCE in biosensing. By combining magnetic separation, liposome encapsulation release, and DNAzyme-assisted signal amplification, the SPCE biosensor provided a dynamic range of 5 orders of magnitude for spike proteins with a detection limit of 6.78 fg/mL and a detection limit of 21 TCID50/mL for SARS-CoV-2. Furthermore, SARS-CoV-2 detection in nasopharyngeal swab samples of infected patients was successfully conducted, indicating the potential of the SPCE biosensor for use in clinically relevant diagnosis.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease
Control and Prevention, Wuhan 430079, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| |
Collapse
|
12
|
Zheng X, Wu Y, Zuo H, Chen W, Wang K. Metal Nanoparticles as Novel Agents for Lung Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206624. [PMID: 36732908 DOI: 10.1002/smll.202206624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/31/2022] [Indexed: 05/04/2023]
Abstract
Lung cancer is one of the most common malignancies worldwide and contributes to most cancer-related morbidity and mortality cases. During the past decades, the rapid development of nanotechnology has provided opportunities and challenges for lung cancer diagnosis and therapeutics. As one of the most extensively studied nanostructures, metal nanoparticles obtain higher satisfaction in biomedical applications associated with lung cancer. Metal nanoparticles have enhanced almost all major imaging strategies and proved great potential as sensor for detecting cancer-specific biomarkers. Moreover, metal nanoparticles could also improve therapeutic efficiency via better drug delivery, improved radiotherapy, enhanced gene silencing, and facilitated photo-driven treatment. Herein, the recently advanced metal nanoparticles applied in lung cancer therapy and diagnosis are summarized. Future perspective on the direction of metal-based nanomedicine is also discussed. Stimulating more research interests to promote the development of metal nanoparticles in lung cancer is devoted.
Collapse
Affiliation(s)
- Xinjie Zheng
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Yuan Wu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| |
Collapse
|
13
|
Zhang JH, Liu M, Zhou F, Yan HL, Zhou YG. Homogeneous Electrochemical Immunoassay Using an Aggregation-Collision Strategy for Alpha-Fetoprotein Detection. Anal Chem 2023; 95:3045-3053. [PMID: 36692355 DOI: 10.1021/acs.analchem.2c05193] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homogeneous immunoassays represent an attractive alternative to traditional heterogeneous assays due to their simplicity and high efficiency. Homogeneous electrochemical assays, however, are not commonly accessed due to the requirement of electrode immobilization of the recognition elements. Herein, we demonstrate a new homogeneous electrochemical immunoassay based on the aggregation-collision strategy for the quantification of tumor protein biomarker alpha-fetoprotein (AFP). The detection principle relies on the aggregation of AgNPs induced by the molecular biorecognition between AFP and AgNPs-anti-AFP probes, which leads to an increased AgNP size and decreased AgNP concentration, allowing an accurate self-validated dual-mode immunoassay by performing nanoimpact electrochemistry (NIE) of the oxidation of AgNPs. The intrinsic one-by-one analytical capability of NIE as well as the participation of all of the atoms of the AgNPs in signal transduction greatly elevates the detection sensitivity. Accordingly, the current sensor enables a limit of detection (LOD) of 5 pg/mL for AFP analysis with high specificity and efficiency. More importantly, reliable detection of AFP in diluted human sera of hepatocellular carcinoma (HCC) patients is successfully achieved, indicating that the NIE-based homogeneous immunoassay shows great potential in HCC liquid biopsy.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, Shandong, China
| | - Meijuan Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Feng Zhou
- Personalized Prescribing Inc., Suite 500, 150 Ferrand Dr, Toronto, Ontario M3C 3E5, Canada
| | - Hai-Long Yan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Zhan Y, Zhang R, Guo Y, Cao S, Chen G, Tian B. Recent advances in tumor biomarker detection by lanthanide upconversion nanoparticles. J Mater Chem B 2023; 11:755-771. [PMID: 36606393 DOI: 10.1039/d2tb02017c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early tumor diagnosis could reliably predict the behavior of tumors and significantly reduce their mortality. Due to the response to early cancerous changes at the molecular or cellular level, tumor biomarkers, including small molecules, proteins, nucleic acids, exosomes, and circulating tumor cells, have been employed as powerful tools for early cancer diagnosis. Therefore, exploring new approaches to detect tumor biomarkers has attracted a great deal of research interest. Lanthanide upconversion nanoparticles (UCNPs) provide numerous opportunities for bioanalytical applications. When excited by low-energy near-infrared light, UCNPs exhibit several unique properties, such as large anti-Stoke shifts, sharp emission lines, long luminescence lifetimes, resistance to photobleaching, and the absence of autofluorescence. Based on these excellent properties, UCNPs have demonstrated great sensitivity and selectivity in detecting tumor biomarkers. In this review, an overview of recent advances in tumor biomarker detection using UCNPs has been presented. The key aspects of this review include detection mechanisms, applications in vitro and in vivo, challenges, and perspectives of UCNP-based tumor biomarker detection.
Collapse
Affiliation(s)
- Ying Zhan
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Runchi Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yi Guo
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
Li J, Liang X, Zhong R, Liu M, Liu X, Yan HL, Zhou YG. Clinically Applicable Homogeneous Assay for Serological Diagnosis of Alpha-Fetoprotein by Impact Electrochemistry. ACS Sens 2022; 7:3216-3222. [PMID: 36240195 DOI: 10.1021/acssensors.2c01887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor protein quantification with high specificity, sensitivity, and efficiency is of great significance to enable early diagnosis and effective treatment. The existing methods for protein analysis usually suffer from high cost, time-consuming operation, and insufficient sensitivity, making them not clinically friendly. In this work, a label-free homogeneous sensor based on the nano-impact electroanalytic (NIE) technique was proposed for the detection of tumor protein marker alpha-fetoprotein (AFP). The detection principle is based on the recovery of current of single PtNP catalyzed hydrazine oxidation due to the release of the pre-adsorbed passivating aptamers on PtNPs from the competition of the stronger binding between the specific interaction of the AFP aptamer and AFP. The intrinsic one-by-one analytical ability of NIE allows highly sensitive detection, which can be further improved by reducing the reaction/incubation volume. Meanwhile, the current sensor avoids a laborious labeling procedure as well as the separation and washing steps due to the in situ characteristic of NIE. Accordingly, the current sensor enables efficient, highly sensitive, and specific AFP analysis. More importantly, the reliable detection of AFP in diluted real sera from hepatocellular carcinoma (HCC) patients is successfully achieved, indicating that the impact electrochemistry-based sensing platform has great potential to be applied in point-of-care devices for HCC liquid biopsy.
Collapse
Affiliation(s)
- Jiebin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China.,College of Biology, Hunan University, Changsha410082, P. R. China
| | - Xianghui Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha410008, P. R. China
| | - Rui Zhong
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Meijuan Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Xuan Liu
- Research Center, Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing210003, P. R. China
| | - Hai-Long Yan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
16
|
Liang Z, Li J, Zhou Y. From Nanoparticle Ensembles to Single Nanoparticles: Techniques for the Investigation of Plasmon Enhanced Electrochemistry. Chemistry 2022; 28:e202201489. [DOI: 10.1002/chem.202201489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Zerong Liang
- Institute of Chemical Biology and Nanomedicine (ICBN) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Jian Li
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yi‐Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| |
Collapse
|
17
|
Yang J, He J, Mi L, Han F, Wen W, Zhang X, Wang S, Wu Z. Magnetic Rolling Circle Amplification-Assisted Single-Particle Collision Immunosensor for Ultrasensitive Detection of Cardiac Troponin I. Anal Chem 2022; 94:12514-12522. [PMID: 36049116 DOI: 10.1021/acs.analchem.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Owing to its simplicity, high throughput, and ultrasensitivity, single-particle collision electrochemistry (SPCE) has attracted great attention in biosensing, especially labeled SPCE. However, the low signal conversion efficiency and much interference from complex samples limit its wide application. Here, a new and robust SPCE immunosensor was proposed for ultrasensitive cardiac troponin I (cTnI) detection by combining target-driven rolling circle amplification (RCA) with magnetic beads (MBs). Antibody-modified MBs have good stability, dispersity, and magnetic response capacity in complex samples, enabling efficient capture and separation of cTnI with high specificity and anti-interference ability. The presence of cTnI could specifically drive the formation of magnetic immunocomplexes followed by triggering RCA and enzyme digestion reaction. By using Pt nanoparticles (Pt NPs)-modified ssDNA as signal probes, one cTnI molecule could induce the release of 4.5 × 104 Pt NPs for collision experiments, greatly enhancing signal conversion efficiency and detection sensitivity. Based on the integration of MBs with RCA, the SPCE immunosensor realized 0.57 fg/mL cTnI detection with a wide linear range of 1 fg/mL to 50 ng/mL. Furthermore, cTnI detection in serum samples of myocardial infarction patients was successfully performed, demonstrating great application prospect of the SPCE immunosensor in clinical diagnosis.
Collapse
Affiliation(s)
- Jie Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Juan He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Long Mi
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Feng Han
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
18
|
Yang YJ, Bai YY, Huangfu YY, Yang XY, Tian YS, Zhang ZL. Single-Nanoparticle Collision Electrochemistry Biosensor Based on an Electrocatalytic Strategy for Highly Sensitive and Specific Detection of H7N9 Avian Influenza Virus. Anal Chem 2022; 94:8392-8398. [DOI: 10.1021/acs.analchem.2c00913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yue-Yue Huangfu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Shen Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
19
|
Wang D, Bao L, Li H, Guo X, Liu W, Wang X, Hou X, He B. Polydopamine stabilizes silver nanoparticles as a SERS substrate for efficient detection of myocardial infarction. NANOSCALE 2022; 14:6212-6219. [PMID: 35403650 DOI: 10.1039/d2nr00091a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and accurate detection of myocardial infarction (MI) can boost the patient's chance of survival. Surface enhanced Raman scattering (SERS) is an outstanding diagnostic technique because of its strong light stability, high resolution, and qualitative and quantitative analysis based on the characteristic fingerprint. However, its reliability, stability and specificity remain to be improved, especially in the quantitative analysis of serum samples. In this study, we developed in situ silver nanoparticles (Ag NPs) on the surface of polydopamine (PDA) as a SERS substrate and found that PDA could act as a reducing agent to support the nucleation and growth of Ag NPs and control the distance and aggregation of Ag NPs to stabilize the Raman signal. In a standard phosphate buffered saline (PBS) environment, PDA@Ag could reach a low detection limit of 0.01 ng mL-1 cardiac troponin I (cTn I) with a good linear relationship. At the same time, the PDA@Ag substrate also possessed excellent stability, specificity and biocompatibility for cTn I detection. In addition, we verified the application potentiality of PDA@Ag in real serum samples and found that the performance of SERS was almost the same as that in PBS. This excellent detection performance of PDA@Ag could be attributed to both the enhanced electromagnetic field and the increased Raman cross-section, dominated by the gap distance between Ag NPs, reaction force between the antigen and the antibody and excellent biocompatibility and reducibility of PDA. In conclusion, this work may provide a new perspective for the in situ synthesis and growth of a uniform SERS substrate on the carrier to achieve the stability and specificity of SERS-based biological detection of MI.
Collapse
Affiliation(s)
- Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Liping Bao
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
| | - Huijun Li
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
| | - Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Weizhuo Liu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xianying Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xumin Hou
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
20
|
Enzymatic biosensor for nitrite detection based on direct electron transfer by CPO-ILEMB/Au@MoS2/GC. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Liu J, Ma C, Shi S, Liu H, Wen W, Zhang X, Wu Z, Wang S. A general controllable release amplification strategy of liposomes for single-particle collision electrochemical biosensing. Biosens Bioelectron 2022; 207:114182. [PMID: 35305388 PMCID: PMC8925861 DOI: 10.1016/j.bios.2022.114182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
As an important component of the COVID-19 mRNA vaccines, liposomes play a key role in the efficient protection and delivery of mRNA to cells. Herein, due to the controllable release amplification strategy of liposomes, a reliable and robust single-particle collision electrochemical (SPCE) biosensor was constructed for H9N2 avian influenza virus (H9N2 AIV) detection by combining liposome encapsulation-release strategy with immunomagnetic separation. The liposomes modified with biotin and loaded with platinum nanoparticles (Pt NPs) were used as signal probes for the first time. Biotin facilitated the coupling of biomolecules (DNA or antibodies) through the specific reaction of biotin-streptavidin. Each liposome can encapsulate multiple Pt NPs, which were ruptured under the presence of 1 × PBST (phosphate buffer saline with 0.05% Tween-20) within 2 min, and the encapsulated Pt NPs were released for SPCE experiment. The combination of immunomagnetic separation not only improved the anti-interference capabilities but also avoided the agglomeration of Pt NPs, enabling the SPCE biosensor to realize ultrasensitive detection of 18.1 fg/mL H9N2 AIV. Furthermore, the reliable SPCE biosensor was successfully applied in specific detection of H9N2 AIV in complex samples (chicken serum, chicken liver and chicken lung), which promoted the universality of SPCE biosensor and its application prospect in early diagnosis of diseases.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Chong Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Siwei Shi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Heng Liu
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
22
|
Pensa E, Bogawat Y, Simmel FC, Santiago I. Single DNA Origami Detection by Nanoimpact Electrochemistry. ChemElectroChem 2022; 9:e202101696. [PMID: 35875253 PMCID: PMC9302979 DOI: 10.1002/celc.202101696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Indexed: 11/19/2022]
Abstract
DNA has emerged as the material of choice for producing supramolecular building blocks of arbitrary geometry from the 'bottom up'. Characterisation of these structures via electron or atomic force microscopy usually requires their surface immobilisation. In this work, we developed a nanoimpact electrochemistry platform to detect DNA self-assembled origami structures in solution, using the intercalator methylene blue as a redox probe. Here, we report the electrochemical detection of single DNA origami collisions at Pt microelectrodes. Our work paves the way towards the characterisation of DNA nanostructures in solution via nanoimpact electrochemistry.
Collapse
Affiliation(s)
- Evangelina Pensa
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Yash Bogawat
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Friedrich C Simmel
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Ibon Santiago
- Physics Department and ZNN Technische Universität München Am Coulombwall 4a 85748 Garching Germany
| |
Collapse
|
23
|
Zhao XH, Zhou YG. Rapid and Accurate Data Processing for Silver Nanoparticle Oxidation in Nano-Impact Electrochemistry. Front Chem 2021; 9:718000. [PMID: 34381763 PMCID: PMC8350773 DOI: 10.3389/fchem.2021.718000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
In recent years, nano-impact electrochemistry (NIE) has attracted widespread attention as a new electroanalytical approach for the analysis and characterization of single nanoparticles in solution. The accurate analysis of the large volume of the experimental data is of great significance in improving the reliability of this method. Unfortunately, the commonly used data analysis approaches, mainly based on manual processing, are often time-consuming and subjective. Herein, we propose a spike detection algorithm for automatically processing the data from the direct oxidation of sliver nanoparticles (AgNPs) in NIE experiments, including baseline extraction, spike identification and spike area integration. The resulting size distribution of AgNPs is found to agree very well with that from transmission electron microscopy (TEM), showing that the current algorithm is promising for automated analysis of NIE data with high efficiency and accuracy.
Collapse
Affiliation(s)
- Xi-Han Zhao
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|