1
|
Metternich JT, Patjoshi SK, Kistwal T, Kruss S. High-Throughput Approaches to Engineer Fluorescent Nanosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411067. [PMID: 39533494 PMCID: PMC11707575 DOI: 10.1002/adma.202411067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Optical sensors are powerful tools to identify and image (biological) molecules. Because of their optoelectronic properties, nanomaterials are often used as building blocks. To transduce the chemical interaction with the analyte into an optical signal, the interplay between surface chemistry and nanomaterial photophysics has to be optimized. Understanding these aspects promises major opportunities for tailored sensors with optimal performance. However, this requires methods to create and explore the many chemical permutations. Indeed, many current approaches are limited in throughput. This affects the chemical design space that can be studied, the application of machine learning approaches as well as fundamental mechanistic understanding. Here, an overview of selection-limited and synthesis-limited approaches is provided to create and identify molecular nanosensors. Bottlenecks are discussed and opportunities of non-classical recognition strategies are highlighted such as corona phase molecular recognition as well as the requirements for high throughput and scalability. Fluorescent carbon nanotubes are powerful building blocks for sensors and their huge chemical design space makes them an ideal platform for high throughput approaches. Therefore, they are the focus of this article, but the insights are transferable to any nanosensor system. Overall, this perspective aims to provide a fresh perspective to overcome current challenges in the nanosensor field.
Collapse
Affiliation(s)
- Justus T. Metternich
- Fraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Sujit K. Patjoshi
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Tanuja Kistwal
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Sebastian Kruss
- Fraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
- Center for Nanointegration Duisburg‐Essen (CENIDE)Carl‐Benz‐Strasse 19947057DuisburgGermany
| |
Collapse
|
2
|
Cohen Z, Williams RM. Single-Walled Carbon Nanotubes as Optical Transducers for Nanobiosensors In Vivo. ACS NANO 2024; 18:35164-35181. [PMID: 39696968 PMCID: PMC11697343 DOI: 10.1021/acsnano.4c13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) may serve as signal transducers for nanobiosensors. Recent studies have developed innovative methods of engineering molecularly specific sensors, while others have devised methods of deploying such sensors within live animals and plants. These advances may potentiate the use of implantable, noninvasive biosensors for continuous drug, disease, and contaminant monitoring based on the optical properties of single-walled carbon nanotubes (SWCNTs). Such tools have substantial potential to improve disease diagnostics, prognosis, drug safety, therapeutic response, and patient compliance. Outside of clinical applications, such sensors also have substantial potential in environmental monitoring or as research tools in the lab. However, substantial work remains to be done to realize these goals through further advances in materials science and engineering. Here, we review the current landscape of quantitative SWCNT-based optical biosensors that have been deployed in living plants and animals. Specifically, we focused this review on methods that have been developed to deploy SWCNT-based sensors in vivo as well as analytes that have been detected by SWCNTs in vivo. Finally, we evaluated potential future directions to take advantage of the promise outlined here toward field-deployable or implantable use in patients.
Collapse
Affiliation(s)
- Zachary Cohen
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
| | - Ryan M. Williams
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
- PhD
Program in Chemistry, The Graduate Center
of The City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Yuan H, Sun S, Hu H, Wang Y. Light-emitting probes for in situ sensing of plant information. TRENDS IN PLANT SCIENCE 2024; 29:1368-1382. [PMID: 39068067 DOI: 10.1016/j.tplants.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Monitoring plant physiological information for gaining a comprehensive understanding of plant growth and stress responses contributes to safeguarding plant health. Light-emitting probes - in terms of small-molecule, nanomaterials-based, and genetically protein-based probes - can be introduced into plants through foliar and root treatment or genetic transformation. These probes offer exciting opportunities for sensitive and in situ monitoring of dynamic plant chemical information - for example, reactive oxygen species (ROS), calcium ions, phytohormones - with spatiotemporal resolution. In this review we explore the sensing mechanisms of these light-emitting probes and their applications in monitoring various chemical information in plants in situ. These probes can be used as part of a sentinel plant approach to provide stress warning in the field or to explore plant signaling pathways.
Collapse
Affiliation(s)
- Hao Yuan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Shengchun Sun
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Hong Hu
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yixian Wang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China.
| |
Collapse
|
4
|
Wang J, Wu H, Wang Y, Ye W, Kong X, Yin Z. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1274-1294. [PMID: 38578151 DOI: 10.1111/jipb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.
Collapse
Affiliation(s)
- Jie Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wang
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
5
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
6
|
Cohen Z, Alpert DJ, Weisel AC, Ryan A, Roach A, Rahman S, Gaikwad PV, Nicoll SB, Williams RM. Noninvasive Injectable Optical Nanosensor-Hydrogel Hybrids Detect Doxorubicin in Living Mice. ADVANCED OPTICAL MATERIALS 2024; 12:2303324. [PMID: 39450264 PMCID: PMC11498898 DOI: 10.1002/adom.202303324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 10/26/2024]
Abstract
While the tissue-transparent fluorescence of single-walled carbon nanotubes (SWCNTs) imparts substantial potential for use in non-invasive biosensors, development of non-invasive systems is yet to be realized. Here, we investigated the functionality of a SWCNT-based nanosensor in several injectable SWCNT-hydrogel systems, ultimately finding SWCNT encapsulation in a sulfonated methylcellulose hydrogel optimal for detection of ions, small molecules, and proteins. We found that the hydrogel system and nanosensor signal were stable for several weeks in live mice. We then found that this system successfully detects local injections of the chemotherapeutic agent doxorubicin in mice. We anticipate future studies to adapt this device for detection of other analytes in animals and, ultimately, patients.
Collapse
Affiliation(s)
- Zachary Cohen
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Dave J Alpert
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Adam C Weisel
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Amelia Ryan
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Arantxa Roach
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Syeda Rahman
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Pooja V Gaikwad
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, The City University of New York, New York, NY, 10016
| | - Steven B Nicoll
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Ryan M Williams
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, The City University of New York, New York, NY, 10016
| |
Collapse
|
7
|
Qiu Q, Sun S, Yuan H, Zhang S, Feng Y, Wang F, Zhu Y, Zhou M, Wang Y. Second near-infrared fluorescent Metal-Organic framework sensors for in vivo extracellular adenosine triphosphate monitoring. Biosens Bioelectron 2024; 251:116114. [PMID: 38354495 DOI: 10.1016/j.bios.2024.116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Plant nanobionic sensors enable real-time monitoring of signaling molecules in plants by interfacing them with specifically designed nanoprobes, which have been acknowledged as species-independent analytical tools. In this study, we developed a plant nanobionic sensor for in vivo detection of extracellular adenosine triphosphate (eATP) in living plants by designing a novel second near-infrared (NIR-II) fluorescent metal-organic framework (MOF) nanoprobe. The NIR-II fluorescent nanoprobe (IR-1061 micelle@ZIF-90) with a sandwich structure was synthesized by successive encapsulation of the hydrophobic NIR-II dye IR-1061 with the amphipathic polymer DSPE-mPEG 2000 and MOF ZIF-90. Interestingly, coating ZIF-90 around IR-1061 micelles increased the NIR-II fluorescence 16.6-fold. Utilizing the ultrahigh NIR-II fluorescent emission of the designed nanoprobes and specific recognition of ZIF-90 to ATP, the nanoprobes were applied to spatial and temporal monitoring eATP in model and non-model plants under environmental stress.
Collapse
Affiliation(s)
- Qiming Qiu
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, PR China
| | - Shengchun Sun
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, PR China
| | - Hao Yuan
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, PR China
| | - Shiyi Zhang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, PR China
| | - Yuyan Feng
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, PR China
| | - Fanghao Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, PR China
| | - Yihang Zhu
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, PR China
| | - Mingchuan Zhou
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, PR China
| | - Yixian Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, 310058, PR China.
| |
Collapse
|
8
|
Ang MCY, Saju JM, Porter TK, Mohaideen S, Sarangapani S, Khong DT, Wang S, Cui J, Loh SI, Singh GP, Chua NH, Strano MS, Sarojam R. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat Commun 2024; 15:2943. [PMID: 38580637 PMCID: PMC10997764 DOI: 10.1038/s41467-024-47082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jolly Madathiparambil Saju
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Thomas K Porter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Sayyid Mohaideen
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Sreelatha Sarangapani
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Song Wang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Suh In Loh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Nam-Hai Chua
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Rajani Sarojam
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
9
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Metternich JT, Hill B, Wartmann JAC, Ma C, Kruskop RM, Neutsch K, Herbertz S, Kruss S. Signal Amplification and Near-Infrared Translation of Enzymatic Reactions by Nanosensors. Angew Chem Int Ed Engl 2024; 63:e202316965. [PMID: 38100133 DOI: 10.1002/anie.202316965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 01/18/2024]
Abstract
Enzymatic reactions are used to detect analytes in a range of biochemical methods. To measure the presence of an analyte, the enzyme is conjugated to a recognition unit and converts a substrate into a (colored) product that is detectable by visible (VIS) light. Thus, the lowest enzymatic turnover that can be detected sets a limit on sensitivity. Here, we report that substrates and products of horseradish peroxidase (HRP) and β-galactosidase change the near-infrared (NIR) fluorescence of (bio)polymer modified single-walled carbon nanotubes (SWCNTs). They translate a VIS signal into a beneficial NIR signal. Moreover, the affinity of the nanosensors leads to a higher effective local concentration of the reactants. This causes a non-linear sensor-based signal amplification and translation (SENSAT). We find signal enhancement up to ≈120x for the HRP substrate p-phenylenediamine (PPD), which means that reactions below the limit of detection in the VIS can be followed in the NIR (≈1000 nm). The approach is also applicable to other substrates such as 3,3'-5,5'-tetramethylbenzidine (TMB). An adsorption-based theoretical model fits the observed signals and corroborates the sensor-based enhancement mechanism. This approach can be used to amplify signals, translate them into the NIR and increase sensitivity of biochemical assays.
Collapse
Affiliation(s)
- Justus T Metternich
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Björn Hill
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Janus A C Wartmann
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Chen Ma
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Rebecca M Kruskop
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Krisztian Neutsch
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Svenja Herbertz
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| |
Collapse
|
11
|
Li X, Chen C, Xu F, Liang Z, Xu G, Wei F, Yang J, Hu Q, Zou J, Cen Y. Novel dual-emission sulfur quantum dot sensing platform for quantitative monitoring of pesticide 2,4-dichlorophenoxyacetic acid. Talanta 2023; 260:124639. [PMID: 37156208 DOI: 10.1016/j.talanta.2023.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
In this work, a novel environment-friendly dual-emission Rhodamine B modified sulfur quantum dots (RhB-SQDs) sensing platform was established to economically monitor organochlorine pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) through regulating the activity of alkaline phosphatase (ALP). This dual emission RhB-SQDs exhibited excellent fluorescence and high photostability with emission wavelengths of 455 nm and 580 nm. ALP catalyzed the hydrolysis of the substrate p-nitrophenyl phosphate to p-nitrophenol, which quenched RhB-SQDs fluorescence at 455 nm due to the internal filtration effect, but had no effect the fluorescence intensity of RhB-SQDs at 580 nm. When 2,4-D was present, the activity of ALP was specifically inhibited and enzymatic reaction was interrupted, leading to the reduction of p-nitrophenol production, so the fluorescence of RhB-SQDs at 455 nm was restored. It demonstrated a good linear relationship between the concentration of 2,4-D and F455/F580 in the range of 0.050-0.500 μg mL-1, with a detection limit of 17.3 ng mL-1. The dual-emission fluorescent probe was successfully realized in the identification of 2,4-D in natural water samples and vegetables with the advantages of exceptional accuracy, immunity to interference, and selectivity. The platform offers a fresh look at pesticide monitoring and has the potential to prevent pesticide-related health issues.
Collapse
Affiliation(s)
- Xinyang Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Chen Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Zhigang Liang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
12
|
Boonyaves K, Ang MCY, Park M, Cui J, Khong DT, Singh GP, Koman VB, Gong X, Porter TK, Choi SW, Chung K, Chua NH, Urano D, Strano MS. Near-Infrared Fluorescent Carbon Nanotube Sensors for the Plant Hormone Family Gibberellins. NANO LETTERS 2023; 23:916-924. [PMID: 36651830 DOI: 10.1021/acs.nanolett.2c04128] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gibberellins (GAs) are a class of phytohormones, important for plant growth, and very difficult to distinguish because of their similarity in chemical structures. Herein, we develop the first nanosensors for GAs by designing and engineering polymer-wrapped single-walled carbon nanotubes (SWNTs) with unique corona phases that selectively bind to bioactive GAs, GA3 and GA4, triggering near-infrared (NIR) fluorescence intensity changes. Using a new coupled Raman/NIR fluorimeter that enables self-referencing of nanosensor NIR fluorescence with its Raman G-band, we demonstrated detection of cellular GA in Arabidopsis, lettuce, and basil roots. The nanosensors reported increased endogenous GA levels in transgenic Arabidopsis mutants that overexpress GA and in emerging lateral roots. Our approach allows rapid spatiotemporal detection of GA across species. The reversible sensor captured the decreasing GA levels in salt-treated lettuce roots, which correlated remarkably with fresh weight changes. This work demonstrates the potential for nanosensors to solve longstanding problems in plant biotechnology.
Collapse
Affiliation(s)
- Kulaporn Boonyaves
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Minkyung Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Thomas Koizumi Porter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Seo Woo Choi
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kwanghun Chung
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nam-Hai Chua
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Daisuke Urano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Son WK, Choi YS, Han YW, Shin DW, Min K, Shin J, Lee MJ, Son H, Jeong DH, Kwak SY. In vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of multiple stress signalling molecules in plants. NATURE NANOTECHNOLOGY 2023; 18:205-216. [PMID: 36522556 DOI: 10.1038/s41565-022-01274-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
When under stress, plants release molecules to activate their defense system. Detecting these stress-related molecules offers the possibility to address stress conditions and prevent the development of diseases. However, detecting endogenous signalling molecules in living plants remains challenging due to low concentrations of these analytes and interference with other compounds; additionally, many methods currently used are invasive and labour-intensive. Here we show a non-destructive surface-enhanced Raman scattering (SERS)-based nanoprobe for the real-time detection of multiple stress-related endogenous molecules in living plants. The nanoprobe, which is placed in the intercellular space, is optically active in the near-infrared region (785 nm) to avoid interferences from plant autofluorescence. It consists of a Si nanosphere surrounded by a corrugated Ag shell modified by a water-soluble cationic polymer poly(diallyldimethylammonium chloride), which can interact with multiple plant signalling molecules. We measure a SERS enhancement factor of 2.9 × 107 and a signal-to-noise ratio of up to 64 with an acquisition time of ~100 ms. To show quantitative multiplex detection, we adopted a binding model to interpret the SERS intensities of two different analytes bound to the SERS hot spot of the nanoprobe. Under either abiotic or biotic stress, our optical nanosensors can successfully monitor salicylic acid, extracellular adenosine triphosphate, cruciferous phytoalexin and glutathione in Nasturtium officinale, Triticum aestivum L. and Hordeum vulgare L.-all stress-related molecules indicating the possible onset of a plant disease. We believe that plasmonic nanosensor platforms can enable the early diagnosis of stress, contributing to a timely disease management of plants.
Collapse
Affiliation(s)
- Won Ki Son
- Department of Chemistry Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Yun Sik Choi
- Department of Chemistry Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Young Woo Han
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong Wook Shin
- Department of Chemistry Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Kyunghun Min
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jiyoung Shin
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Min Jeong Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, College of Education, Seoul National University, Seoul, Republic of Korea.
- Center for Educational Research, Seoul National University, Seoul, Republic of Korea.
| | - Seon-Yeong Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Ojeda-Rivera JO, Alejo-Jacuinde G, Nájera-González HR, López-Arredondo D. Prospects of genetics and breeding for low-phosphate tolerance: an integrated approach from soil to cell. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4125-4150. [PMID: 35524816 PMCID: PMC9729153 DOI: 10.1007/s00122-022-04095-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/31/2022] [Indexed: 05/04/2023]
Abstract
Improving phosphorus (P) crop nutrition has emerged as a key factor toward achieving a more resilient and sustainable agriculture. P is an essential nutrient for plant development and reproduction, and phosphate (Pi)-based fertilizers represent one of the pillars that sustain food production systems. To meet the global food demand, the challenge for modern agriculture is to increase food production and improve food quality in a sustainable way by significantly optimizing Pi fertilizer use efficiency. The development of genetically improved crops with higher Pi uptake and Pi-use efficiency and higher adaptability to environments with low-Pi availability will play a crucial role toward this end. In this review, we summarize the current understanding of Pi nutrition and the regulation of Pi-starvation responses in plants, and provide new perspectives on how to harness the ample repertoire of genetic mechanisms behind these adaptive responses for crop improvement. We discuss on the potential of implementing more integrative, versatile, and effective strategies by incorporating systems biology approaches and tools such as genome editing and synthetic biology. These strategies will be invaluable for producing high-yielding crops that require reduced Pi fertilizer inputs and to develop a more sustainable global agriculture.
Collapse
Affiliation(s)
- Jonathan Odilón Ojeda-Rivera
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Héctor-Rogelio Nájera-González
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Damar López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
15
|
Tataridas A, Jabran K, Kanatas P, Oliveira RS, Freitas H, Travlos I. Early detection, herbicide resistance screening, and integrated management of invasive plant species: a review. PEST MANAGEMENT SCIENCE 2022; 78:3957-3972. [PMID: 35510308 DOI: 10.1002/ps.6963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Invasive plant species (IPS) are often considered weeds that cause high yield losses in crops, negatively affect the environment, and disrupt certain ecosystem services. The negative impact of IPS on biodiversity is increasing and disturbing native vegetation. The management of plant invasions can be divided in two phases (before and after invasion). Prior to introduction it is crucial to develop the knowledge base (biology, ecology, distribution, impact, management) on IPS, prevention measures and risk assessment. After introduction if eradication fails, the monitoring and the integrated management of IPS are imperative to prevent the naturalization and further dispersal. This review uses two major invasive weed species (Amaranthus palmeri S. Wats. and Solanum elaeagnifolium Cav.) as case studies to propose a framework for early detection, rapid herbicide resistance screening, and integrated management. The holistic framework that is presented exploits recent: (i) novel detection tools, (ii) rapid tests and assays for herbicide resistance, and (iii) biology, ecology, distribution traits, and management tools for the IPS. Farmers, advisors, researchers, and policymakers need briefing on IPS growth dynamics, adaptability rates, and response to conventional and novel treatments to prevent new invasions, eradicate isolated stands, and mitigate the impact of invasive weed species in the long term. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandros Tataridas
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Khawar Jabran
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | | | - Rui S Oliveira
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Helena Freitas
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ilias Travlos
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
16
|
Ang MCY, Lew TTS. Non-destructive Technologies for Plant Health Diagnosis. FRONTIERS IN PLANT SCIENCE 2022; 13:884454. [PMID: 35712566 PMCID: PMC9197209 DOI: 10.3389/fpls.2022.884454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 06/01/2023]
Abstract
As global population grows rapidly, global food supply is increasingly under strain. This is exacerbated by climate change and declining soil quality due to years of excessive fertilizer, pesticide and agrichemical usage. Sustainable agricultural practices need to be put in place to minimize destruction to the environment while at the same time, optimize crop growth and productivity. To do so, farmers will need to embrace precision agriculture, using novel sensors and analytical tools to guide their farm management decisions. In recent years, non-destructive or minimally invasive sensors for plant metabolites have emerged as important analytical tools for monitoring of plant signaling pathways and plant response to external conditions that are indicative of overall plant health in real-time. This will allow precise application of fertilizers and synthetic plant growth regulators to maximize growth, as well as timely intervention to minimize yield loss from plant stress. In this mini-review, we highlight in vivo electrochemical sensors and optical nanosensors capable of detecting important endogenous metabolites within the plant, together with sensors that detect surface metabolites by probing the plant surface electrophysiology changes and air-borne volatile metabolites. The advantages and limitations of each kind of sensing tool are discussed with respect to their potential for application in high-tech future farms.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive and Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
17
|
Ehrlich R, Wulf V, Hendler-Neumark A, Kagan B, Bisker G. Super-Resolution Radial Fluctuations (SRRF) nanoscopy in the near infrared. OPTICS EXPRESS 2022; 30:1130-1142. [PMID: 35209279 DOI: 10.1364/oe.440441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Super resolution microscopy methods have been designed to overcome the physical barrier of the diffraction limit and push the resolution to nanometric scales. A recently developed super resolution technique, super-resolution radial fluctuations (SRRF) [Nature communications, 7, 12471 (2016)10.1038/ncomms12471], has been shown to super resolve images taken with standard microscope setups without fluorophore localization. Herein, we implement SRRF on emitters in the near-infrared (nIR) range, single walled carbon nanotubes (SWCNTs), whose fluorescence emission overlaps with the biological transparency window. Our results open the path for super-resolving SWCNTs for biomedical imaging and sensing applications.
Collapse
|
18
|
Nißler R, Müller AT, Dohrman F, Kurth L, Li H, Cosio EG, Flavel BS, Giraldo JP, Mithöfer A, Kruss S. Detection and Imaging of the Plant Pathogen Response by Near-Infrared Fluorescent Polyphenol Sensors. Angew Chem Int Ed Engl 2022; 61:e202108373. [PMID: 34608727 PMCID: PMC9298901 DOI: 10.1002/anie.202108373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/28/2021] [Indexed: 12/17/2022]
Abstract
Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near-infrared (NIR) fluorescent single-wall carbon nanotubes (SWCNTs). We identified polyethylene glycol-phospholipids that render (6,5)-SWCNTs sensitive (Kd =90 nM) to plant polyphenols (tannins, flavonoids, …), which red-shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen-induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion.
Collapse
Affiliation(s)
- Robert Nißler
- Physical Chemistry IIBochum UniversityUniversitätsstrasse 15044801BochumGermany
- Institute of Physical ChemistryGeorg-August Universität GöttingenTammannstrasse 637077GöttingenGermany
| | - Andrea T. Müller
- Research Group Plant Defense PhysiologyMax Planck Institute for Chemical EcologyHans-Knöll-Strasse 807745JenaGermany
| | - Frederike Dohrman
- Institute of Physical ChemistryGeorg-August Universität GöttingenTammannstrasse 637077GöttingenGermany
| | - Larissa Kurth
- Institute of Physical ChemistryGeorg-August Universität GöttingenTammannstrasse 637077GöttingenGermany
| | - Han Li
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)76344Eggenstein-LeopoldshafenGermany
| | - Eric G. Cosio
- Institute for Nature Earth and Energy (INTE-PUCP)Pontifical Catholic University of PeruAv. Universitaria 1801, San Miguel15088LimaPeru
| | - Benjamin S. Flavel
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)76344Eggenstein-LeopoldshafenGermany
| | - Juan Pablo Giraldo
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCA92507USA
| | - Axel Mithöfer
- Research Group Plant Defense PhysiologyMax Planck Institute for Chemical EcologyHans-Knöll-Strasse 807745JenaGermany
| | - Sebastian Kruss
- Physical Chemistry IIBochum UniversityUniversitätsstrasse 15044801BochumGermany
- Institute of Physical ChemistryGeorg-August Universität GöttingenTammannstrasse 637077GöttingenGermany
- Fraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| |
Collapse
|
19
|
Nißler R, Müller AT, Dohrman F, Kurth L, Li H, Cosio EG, Flavel BS, Giraldo JP, Mithöfer A, Kruss S. Detektion und Visualisierung der Pflanzen‐Pathogen‐Response durch Nah‐Infrarot‐fluoreszente Polyphenolsensoren. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Robert Nißler
- Physikalische Chemie II Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
- Institut für Physikalische Chemie Georg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
| | - Andrea T. Müller
- Research Group Plant Defense Physiology Max-Planck-Institut für Chemische Ökologie Hans-Knöll-Straße 8 07745 Jena Deutschland
| | - Frederike Dohrman
- Institut für Physikalische Chemie Georg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
| | - Larissa Kurth
- Institut für Physikalische Chemie Georg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
| | - Han Li
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Deutschland
| | - Eric G. Cosio
- Institute for Nature Earth and Energy (INTE-PUCP) Pontifical Catholic University of Peru Av. Universitaria 1801, San Miguel 15088 Lima Peru
| | - Benjamin S. Flavel
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Deutschland
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences University of California Riverside CA 92507 USA
| | - Axel Mithöfer
- Research Group Plant Defense Physiology Max-Planck-Institut für Chemische Ökologie Hans-Knöll-Straße 8 07745 Jena Deutschland
| | - Sebastian Kruss
- Physikalische Chemie II Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
- Institut für Physikalische Chemie Georg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
- Fraunhofer-Institut für Mikroelektronische Schaltungen Finkenstraße 61 47057 Duisburg Deutschland
| |
Collapse
|
20
|
Hendler-Neumark A, Wulf V, Bisker G. In vivo imaging of fluorescent single-walled carbon nanotubes within C. elegans nematodes in the near-infrared window. Mater Today Bio 2021; 12:100175. [PMID: 34927042 PMCID: PMC8649898 DOI: 10.1016/j.mtbio.2021.100175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Caenorhabditis elegans (C. elegans) nematodes serve as a model organism for eukaryotes, especially due to their genetic similarity. Although they have many advantages like their small size and transparency, their autofluorescence in the entire visible wavelength range poses a challenge for imaging and tracking fluorescent proteins or dyes using standard fluorescence microscopy. Herein, near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) are utilized for in vivo imaging within the gastrointestinal track of C. elegans. The SWCNTs are biocompatible, and do not affect the worms' viability nor their reproduction ability. The worms do not show any autofluorescence in the NIR range, thus enabling the spectral separation between the SWCNT NIR fluorescence and the strong autofluorescence of the worm gut granules. The worms are fed with ssDNA-SWCNT which are visualized mainly in the intestine lumen. The NIR fluorescence is used in vivo to track the contraction and relaxation in the area of the pharyngeal valve at the anterior of the terminal bulb. These biocompatible, non-photobleaching, NIR fluorescent nanoparticles can advance in vivo imaging and tracking within C. elegans and other small model organisms by overcoming the signal-to-noise challenge stemming from the wide-range visible autofluorescence.
Collapse
Affiliation(s)
- Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Center for Light Matter Interaction, Tel-Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|