1
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
2
|
Liu F, Tong J, Xu Z, Ge K, Ruan J, Cui L, Zhai T. Electrically Tunable Polymer Whispering-Gallery-Mode Laser. MATERIALS 2022; 15:ma15144812. [PMID: 35888278 PMCID: PMC9317815 DOI: 10.3390/ma15144812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023]
Abstract
Microlasers hold great promise for the development of photonics and optoelectronics. At present, tunable microcavity lasers, especially regarding in situ dynamic tuning, are still the focus of research. In this study, we combined a 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) piezoelectric crystal with a Poly [9,9-dioctylfluorenyl-2,7-diyl] (PFO) microring cavity to realize a high-quality, electrically tunable, whispering-gallery-mode (WGM) laser. The dependence of the laser properties on the diameter of the microrings, including the laser spectrum and quality (Q) value, was investigated. It was found that with an increase in microring diameter, the laser emission redshifted, and the Q value increased. In addition, the device effectively achieved a blueshift under an applied electric field, and the wavelength tuning range was 0.71 nm. This work provides a method for in situ dynamic spectral modulation of microcavity lasers, and is expected to provide inspiration for the application of integrated photonics technology.
Collapse
Affiliation(s)
- Fangyuan Liu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
| | - Junhua Tong
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Zhiyang Xu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
| | - Kun Ge
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
| | - Jun Ruan
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
| | - Libin Cui
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
- Correspondence: (L.C.); (T.Z.)
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
- Correspondence: (L.C.); (T.Z.)
| |
Collapse
|
3
|
Cao S, Shang X, Yu H, Shi L, Zhang L, Wang N, Qiu M. Two-photon direct laser writing of micro Fabry-Perot cavity on single-mode fiber for refractive index sensing. OPTICS EXPRESS 2022; 30:25536-25543. [PMID: 36237081 DOI: 10.1364/oe.464210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Using the two-photon polymerization (TPP) lithography, here we propose and experimentally demonstrate a fiber-tipped Fabry-Perot interferometer (FPI) for liquid refractive index (RI) measurement. To fit the aqueous environment, the FPI is designed as an open-cell microstructure consisting of well-crafted surfaces together with supporting rods, where the major spectral interference occurs between the waveguide's facet and the printed surface. Subsequently, the sensing performances of the fiber FPI are comprehensively studied under various RI as well as temperature configurations. The RI sensitivity is obtained to be ∼1058 nm/RIU with a low detection limit of 4.5× 10-6 RIU, which is comparable to that of previous reported FPIs. And the temperature cross-sensitivity reaches a value of 8.2 × 10-5 RIU/°C, indicating the good reliability for RI monitoring. Compared to other fiber FPIs, our sensor exhibits substantial advantages such as ease of fabrication, highly smooth cavity surfaces, and sufficient mechanical strength, providing a practical and competitive solution for chemical and biological sensing.
Collapse
|
4
|
Shan H, Dai H, Chen X. Monitoring Various Bioactivities at the Molecular, Cellular, Tissue, and Organism Levels via Biological Lasers. SENSORS (BASEL, SWITZERLAND) 2022; 22:3149. [PMID: 35590841 PMCID: PMC9102053 DOI: 10.3390/s22093149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The laser is considered one of the greatest inventions of the 20th century. Biolasers employ high signal-to-noise ratio lasing emission rather than regular fluorescence as the sensing signal, directional out-coupling of lasing and excellent biocompatibility. Meanwhile, biolasers can also be micro-sized or smaller lasers with embedded/integrated biological materials. This article presents the progress in biolasers, focusing on the work done over the past years, including the molecular, cellular, tissue, and organism levels. Furthermore, biolasers have been utilized and explored for broad applications in biosensing, labeling, tracking, bioimaging, and biomedical development due to a number of unique advantages. Finally, we provide the possible directions of biolasers and their applications in the future.
Collapse
Affiliation(s)
- Hongrui Shan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Hailang Dai
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
5
|
Su D, Zhai T, Ge K, Zhang S, Xu Z, Tong J, Li H, Sun S, Zhang Y, Wang X. WGM lasing in irregular cavities with arbitrary boundaries. NANOSCALE 2021; 13:18349-18355. [PMID: 34729576 DOI: 10.1039/d1nr03938e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because of its limited light field mode and high Q value, the whispering-gallery-mode (WGM) cavity has been widely studied. In this study, we propose a simple, rapid, low-cost and no-manufacturing technology method that we call the drip-coating method to obtain an irregular cavity with arbitrary boundaries. By using polyvinyl alcohol (PVA) solution doped with rhodamine 6G, the irregular cavity with arbitrary boundaries was drip-coated on a high-reflection mirror, forming a WGM laser. The sample was pumped with a 532 nm pulsed laser, and the single-mode WGM and multi-WGM lasing were obtained. All WGMs are the vertical oscillation modes, which originate from both the total internal reflection of the PVA/air interface and vertical reflection of the PVA/mirror interface. The other boundaries of the cavity were not involved in the reflection and could have any shape. The mechanism of producing single-mode lasing is due to the action of the loss-gain cavity. Multi-WGM lasing is attributed to at least two groups of different WGMs existing in an irregular cavity. This can be confirmed by using a microsphere model and intensity correlation method. These results may provide an alternative for the design of WGM lasers.
Collapse
Affiliation(s)
- Dan Su
- College of Mechanical and Electronic Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Tianrui Zhai
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Kun Ge
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Shuai Zhang
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Zhiyang Xu
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Junhua Tong
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Hongzhao Li
- College of Mechanical and Electronic Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Shiju Sun
- College of Mechanical and Electronic Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Ying Zhang
- College of Mechanical and Electronic Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Xiaolei Wang
- Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|