1
|
Ayvaz C, Sadikogullari BC, Gelir A, Özdemir Z, Koramaz İ, Karagoz B, Şahin ÜA, Üstündağ B. Determination of the sensing properties of the fluorescence-based sensor for atmospheric NO 2 gas. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124909. [PMID: 39146809 DOI: 10.1016/j.saa.2024.124909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Air pollution in urban areas poses a serious threat to human health and therefore the studies about the development of low cost and sensitive sensors to monitor the air quality with high spatial and low temporal resolution continue to be an extensive area in literature. In this study, oxime modified poly(4-(1-pyrenyl) styrene) (P(PySt)-NOX) probes were synthesized to use as a sensor to detect NO2 gas in ambient air. The structural characterization results showed that the probe was successfully synthesized. The sensitivity, selectivity, repeatability, and aging tests were performed during the study, and it was observed that P(PySt)-NOX loaded sensor is sensitive to NO2 for concentrations below 100 ppb. The selectivity measurements were performed against O3 and SO2 which are common interfering gases in ambient air, and it was shown that the sensor is selective to NO2. Additionally, according to the aging tests performed in laboratory for 23 days, it was observed that the sensor is stable in this time interval. The studies showed the sensor synthesized and designed in this study is suitable for NO2 concentration measurements in ambient air where the concentration levels of NO2 is below 100 ppb.
Collapse
Affiliation(s)
- Coşkun Ayvaz
- Environmental Engineering Department, Engineering Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | | | - Ali Gelir
- Engineering Physics Department, Istanbul Technical University, Turkiye.
| | - Zeynep Özdemir
- Environmental Engineering Department, Istanbul Technical University, Turkiye
| | - İlayda Koramaz
- Chemistry Department, Istanbul Technical University, Turkiye
| | | | - Ülkü Alver Şahin
- Environmental Engineering Department, Engineering Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | | |
Collapse
|
2
|
Tiwari MK, Kanwade AR, Rajore SM, Satrughna JAK, Ito Y, Lee H, Ohshita Y, Ogura A, Mali SS, Patil JV, Hong CK, Shirage PM. W 18O 49 Nanofibers Functionalized with Graphene as a Selective Sensing of NO 2 Gas at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49520-49532. [PMID: 39238174 DOI: 10.1021/acsami.4c10014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Recent trends in two-dimensional (2D) graphene have demonstrated significant potential for gas-sensing applications with significantly enhanced sensitivity even at room temperature. Herein, this study presents fabrication of distinctive gas sensor based on one-dimensional (1D) W18O49 nanofibers decorated 2D graphene, specifically coated on copper (Cu)-based interdigitated electrodes formed by DC sputtering, which can selectively detect NO2 gas at room temperature. The sensor device fabricated using W18O49/Gr1.5% (i.e., W18O49 nanofibers hybrid nanocomposite with 1.5 wt % graphene) displays excellent overall sensing performance at 27 °C (room temperature) with high response (∼150-160 times) to NO2 gas. The W18O49/Gr1.5%-based sensor device reflects the highly selective detection toward NO2 gas among various gases with quick response time of 3 s and speedy recovery in 6 s. The limit of detection of ∼0.3 ppm with excellent reproducibility and stability for 3 months in all weather conditions (tested in humidity conditions 20-97%) are superior features of the device under test. However, W18O49/Gr3% displayed higher selectivity for NO2 but resulted with comparatively reduced sensitivity than W18O49/Gr1.5% sensor. The enhanced sensing performance could be attributed to the graphene content to decorate the nanofibers on it, oxygen vacancies/defects, and the contacts between the sensing material and Cu. This favorable synthesis and properties of self-assembled hybrid composite materials provide a potential utilization for detecting NO2 gas in environmental safety inspection.
Collapse
Affiliation(s)
- Manish Kumar Tiwari
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Archana R Kanwade
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Shraddha M Rajore
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Jena Akash Kumar Satrughna
- Department of Physics, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Yuta Ito
- Meiji Renewable Energy Laboratory and School of Science Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Hyunju Lee
- Meiji Renewable Energy Laboratory and School of Science Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Yoshio Ohshita
- Semiconductors Research Lab, Toyota Technological Institute, 2-12-1 Hisakata, Tempaki-ku, Nagoya 468-811, Japan
| | - Atsushi Ogura
- Meiji Renewable Energy Laboratory and School of Science Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Sawanta S Mali
- Polymer Energy Materials Laboratory, School of Chemical Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Jyoti V Patil
- Polymer Energy Materials Laboratory, School of Chemical Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Chang Kook Hong
- Polymer Energy Materials Laboratory, School of Chemical Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Parasharam M Shirage
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
3
|
Lin X, Cheng M, Chen X, Zhang J, Zhao Y, Ai B. Unlocking Predictive Capability and Enhancing Sensing Performances of Plasmonic Hydrogen Sensors via Phase Space Reconstruction and Convolutional Neural Networks. ACS Sens 2024; 9:3877-3888. [PMID: 38741258 DOI: 10.1021/acssensors.3c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This study innovates plasmonic hydrogen sensors (PHSs) by applying phase space reconstruction (PSR) and convolutional neural networks (CNNs), overcoming previous predictive and sensing limitations. Utilizing a low-cost and efficient colloidal lithography technique, palladium nanocap arrays are created and their spectral signals are transformed into images using PSR and then trained using CNNs for predicting the hydrogen level. The model achieves accurate predictions with average accuracies of 0.95 for pure hydrogen and 0.97 for mixed gases. Performance improvements observed are a reduction in response time by up to 3.7 times (average 2.1 times) across pressures, SNR increased by up to 9.3 times (average 3.9 times) across pressures, and LOD decreased from 16 Pa to an extrapolated 3 Pa, a 5.3-fold improvement. A practical application of remote hydrogen sensing without electronics in hydrogen environments is actualized and achieves a 0.98 average test accuracy. This methodology reimagines PHS capabilities, facilitating advancements in hydrogen monitoring technologies and intelligent spectrum-based sensing.
Collapse
Affiliation(s)
- Xiangxin Lin
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China
| | - Mingyu Cheng
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China
| | - Xinyi Chen
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China
| | - Jinglan Zhang
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602 , United States
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China
| |
Collapse
|
4
|
Rossi A, Spagnoli E, Tralli F, Marzocchi M, Guidi V, Fabbri B. New Approach for the Detection of Sub-ppm Limonene: An Investigation through Chemoresistive Metal-Oxide Semiconductors. SENSORS (BASEL, SWITZERLAND) 2023; 23:6291. [PMID: 37514586 PMCID: PMC10383529 DOI: 10.3390/s23146291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
R-(+)-limonene, one of the major constituents of citrus oils, is a monoterpene that is widely used as a fragrance additive in cosmetics, foods, and industrial solvents. Nowadays, its detection mainly relies on bulky and expensive analytical methods and only a few research works proved its revelation through affordable and portable sensors, such as electrochemical and quartz crystal microbalance sensors. In response to the demand for effective miniaturized sensing devices to be integrated into Internet of Things systems, this study represents a pioneering investigation of chemoresistive gas sensor capabilities addressed to R-(+)-limonene detection. An array of seven metal-oxide sensors was exploited to perform a complete electrical characterization of the target analyte. The experimental evidence allowed us to identify the WO3-based sensor as the most promising candidate for R-(+)-limonene detection. The material was highly sensitive already at sub-ppm concentrations (response of 2.5 at 100 ppb), consistent with applicative parameters, and it resulted in selective vs. different gases at a lower operating temperature (200 °C) than the other sensors tested. Furthermore, it exhibited a humidity-independent behavior under real-life conditions (relative humidity > 20%). Finally, the WO3 sensor also demonstrated a remarkable cross-selectivity, thus enabling its exploitation in cutting-edge applications.
Collapse
Affiliation(s)
- Arianna Rossi
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy
| | - Elena Spagnoli
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy
| | - Francesco Tralli
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy
| | - Marco Marzocchi
- Sacmi Imola S.C., Olfactory Systems, Via Selice Prov.le, 17/a, 40026 Imola, Italy
| | - Vincenzo Guidi
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy
| | - Barbara Fabbri
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy
| |
Collapse
|
5
|
Lim H, Kwon H, Kang H, Jang JE, Kwon HJ. Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO 2 monitoring. Nat Commun 2023; 14:3114. [PMID: 37253737 DOI: 10.1038/s41467-023-38918-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Due to rapid urbanization worldwide, monitoring the concentration of nitrogen dioxide (NO2), which causes cardiovascular and respiratory diseases, has attracted considerable attention. Developing real-time sensors to detect parts-per-billion (ppb)-level NO2 remains challenging due to limited sensitivity, response, and recovery characteristics. Herein, we report a hybrid structure of Cu3HHTP2, 2D semiconducting metal-organic frameworks (MOFs), and laser-induced graphene (LIG) for high-performance NO2 sensing. The unique hierarchical pore architecture of LIG@Cu3HHTP2 promotes mass transport of gas molecules and takes full advantage of the large surface area and porosity of MOFs, enabling highly rapid and sensitive responses to NO2. Consequently, LIG@Cu3HHTP2 shows one of the fastest responses and lowest limit of detection at room temperature compared with state-of-the-art NO2 sensors. Additionally, by employing LIG as a growth platform, flexibility and patterning strategies are achieved, which are the main challenges for MOF-based electronic devices. These results provide key insight into applying MOFtronics as high-performance healthcare devices.
Collapse
Affiliation(s)
- Hyeongtae Lim
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea
| | - Hyeokjin Kwon
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea
| | - Hongki Kang
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
| | - Jae Eun Jang
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
| | - Hyuk-Jun Kwon
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea.
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea.
| |
Collapse
|
6
|
Güntner AT, Schenk FM. Environmental formaldehyde sensing at room temperature by smartphone-assisted and wearable plasmonic nanohybrids. NANOSCALE 2023; 15:3967-3977. [PMID: 36723208 PMCID: PMC9949580 DOI: 10.1039/d2nr06599a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Formaldehyde is a toxic and carcinogenic indoor air pollutant. Promising for its routine detection are gas sensors based on localized surface plasmon resonance (LSPR). Such sensors trace analytes by converting tiny changes in the local dielectric environment into easily readable, optical signals. Yet, this mechanism is inherently non-selective to volatile organic compounds (like formaldehyde) and yields rarely detection limits below parts-per-million concentrations. Here, we reveal that chemical reaction-mediated LSPR with nanohybrids of Ag/AgOx core-shell clusters on TiO2 enables highly selective formaldehyde sensing down to 5 parts-per-billion (ppb). Therein, AgOx is reduced by the formaldehyde to metallic Ag resulting in strong plasmonic signal changes, as measured by UV/Vis spectroscopy and confirmed by X-ray diffraction. This interaction is highly selective to formaldehyde over other aldehydes, alcohols, ketones, aromatic compounds (as confirmed by high-resolution mass spectrometry), inorganics, and quite robust to relative humidity changes. Since this sensor works at room temperature, such LSPR nanohybrids are directly deposited onto flexible wristbands to quantify formaldehyde between 40-500 ppb at 50% RH, even with a widely available smartphone camera (Pearson correlation coefficient r = 0.998). Such chemoresponsive coatings open new avenues for wearable devices in environmental, food, health and occupational safety applications, as demonstrated by an early field test in the pathology of a local hospital.
Collapse
Affiliation(s)
- Andreas T Güntner
- Human-centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zürich, Switzerland
| | - Florian M Schenk
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
7
|
Xie L, Chen T, Dong X, Liu G, Wang H, Xiao X. High switching ratio and inorganic gas sensing performance in BeN 4based nanodevice: a first-principles study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:465302. [PMID: 36108620 DOI: 10.1088/1361-648x/ac9269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Recently, Dirac material BeN4has been synthesized by using laser-heated diamond anvil-groove technology (Bykovet al2021Phys. Rev. Lett.126175501). BeN4layer, i.e. beryllonitrene, represents a qualitatively class of two-dimensional (2D) materials that can be built of a metal atom and polymeric nitrogen chains, and hosts anisotropic Dirac fermions. Enlighten by this discovered material, we study the electronic structure, anisotropic transport properties and gas sensitivity of 2D BeN4using the density functional theory combined with non-equilibrium Green's function method. The results manifest that the 2D BeN4shows a typical semi-metallic property. The electronic transport properties of the intrinsic BeN4devices show a strong anisotropic behavior since electrons transmitting along the armchair direction is much easier than that along the zigzag direction. It directly results in an obvious switching characteristic with the switching ratio up to 105. Then the adsorption characteristics indicate that H2S, CO, CO2and H2molecules are physisorption, while the NH3, NO, NO2, SO2molecules are chemisorption. Among these chemisorption cases, the 2D gas sensor devices show an extremely high response for SO2recognition, and the high anisotropy of the original 2D BeN4device still maintains after adsorbing gas molecules. Finally, high switching ratio and inorganic gas sensing performance of BeN4monolayer could be clearly understood with local density of states, bias-dependent spectra, scattered state distribution. In general, the results indicate that the designed BeN4devices have potential practical application in high-ratio switching devices and high gas-sensing molecular devices.
Collapse
Affiliation(s)
- Luzhen Xie
- School of Energy and Mechanical Engineering, Energy Materials Computing Center, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
| | - Tong Chen
- School of Energy and Mechanical Engineering, Energy Materials Computing Center, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiansheng Dong
- School of Energy and Mechanical Engineering, Energy Materials Computing Center, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
| | - Guogang Liu
- School of Energy and Mechanical Engineering, Energy Materials Computing Center, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
| | - Haipeng Wang
- School of Energy and Mechanical Engineering, Energy Materials Computing Center, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
| | - Xianbo Xiao
- School of Computer Science, Jiangxi University of Chinese Medicine, Nanchang 330004, People's Republic of China
| |
Collapse
|