1
|
Rodrigues RO, Shin SR, Bañobre-López M. Brain-on-a-chip: an emerging platform for studying the nanotechnology-biology interface for neurodegenerative disorders. J Nanobiotechnology 2024; 22:573. [PMID: 39294645 PMCID: PMC11409741 DOI: 10.1186/s12951-024-02720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/12/2024] [Indexed: 09/21/2024] Open
Abstract
Neurological disorders have for a long time been a global challenge dismissed by drug companies, especially due to the low efficiency of most therapeutic compounds to cross the brain capillary wall, that forms the blood-brain barrier (BBB) and reach the brain. This has boosted an incessant search for novel carriers and methodologies to drive these compounds throughout the BBB. However, it remains a challenge to artificially mimic the physiology and function of the human BBB, allowing a reliable, reproducible and throughput screening of these rapidly growing technologies and nanoformulations (NFs). To surpass these challenges, brain-on-a-chip (BoC) - advanced microphysiological platforms that emulate key features of the brain composition and functionality, with the potential to emulate pathophysiological signatures of neurological disorders, are emerging as a microfluidic tool to screen new brain-targeting drugs, investigate neuropathogenesis and reach personalized medicine. In this review, the advance of BoC as a bioengineered screening tool of new brain-targeting drugs and NFs, enabling to decipher the intricate nanotechnology-biology interface is discussed. Firstly, the main challenges to model the brain are outlined, then, examples of BoC platforms to recapitulate the neurodegenerative diseases and screen NFs are summarized, emphasizing the current most promising nanotechnological-based drug delivery strategies and lastly, the integration of high-throughput screening biosensing systems as possible cutting-edge technologies for an end-use perspective is discussed as future perspective.
Collapse
Affiliation(s)
- Raquel O Rodrigues
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA
- CMEMS-UMinho, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Su-Ryon Shin
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA.
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal.
| |
Collapse
|
2
|
Meng L, Akhoundian M, Al Azawi A, Shoja Y, Chi PY, Meinander K, Suihkonen S, Franssila S. Ultrasensitive Monolithic Dopamine Microsensors Employing Vertically Aligned Carbon Nanofibers. Adv Healthc Mater 2024; 13:e2303872. [PMID: 38837670 DOI: 10.1002/adhm.202303872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/19/2024] [Indexed: 06/07/2024]
Abstract
Brain-on-Chip devices, which facilitate on-chip cultures of neurons to simulate brain functions, are receiving tremendous attention from both fundamental and clinical research. Consequently, microsensors are being developed to accomplish real-time monitoring of neurotransmitters, which are the benchmarks for neuron network operation. Among these, electrochemical sensors have emerged as promising candidates for detecting a critical neurotransmitter, dopamine. However, current state-of-the-art electrochemical dopamine sensors are suffering from issues like limited sensitivity and cumbersome fabrication. Here, a novel route in monolithically microfabricating vertically aligned carbon nanofiber electrochemical dopamine microsensors is reported with an anti-blistering slow cooling process. Thanks to the microfabrication process, microsensors is created with complete insulation and large surface areas. The champion device shows extremely high sensitivity of 4.52× 104 µAµM-1·cm-2, which is two-orders-of-magnitude higher than current devices, and a highly competitive limit of detection of 0.243 nM. These remarkable figures-of-merit will open new windows for applications such as electrochemical recording from a single neuron.
Collapse
Affiliation(s)
- Lingju Meng
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Maedeh Akhoundian
- Department of Electrical Engineering and Automation, Aalto University, Espoo, 02150, Finland
| | - Anas Al Azawi
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Yalda Shoja
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Pei-Yin Chi
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Kristoffer Meinander
- Department of Bioproducts and Biosystems, Aalto University, Espoo, 02150, Finland
| | - Sami Suihkonen
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
| | - Sami Franssila
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
3
|
Ugodnikov A, Persson H, Simmons CA. Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems. LAB ON A CHIP 2024; 24:3199-3225. [PMID: 38689569 DOI: 10.1039/d3lc01027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Biological barriers such as the blood-brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery - as such, it is important to create representative in vitro models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through in vitro barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.
Collapse
Affiliation(s)
- Alisa Ugodnikov
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Henrik Persson
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Craig A Simmons
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
4
|
Wang H, Li X, Shi P, You X, Zhao G. Establishment and evaluation of on-chip intestinal barrier biosystems based on microfluidic techniques. Mater Today Bio 2024; 26:101079. [PMID: 38774450 PMCID: PMC11107260 DOI: 10.1016/j.mtbio.2024.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
As a booming engineering technology, the microfluidic chip has been widely applied for replicating the complexity of human intestinal micro-physiological ecosystems in vitro. Biosensors, 3D imaging, and multi-omics have been applied to engineer more sophisticated intestinal barrier-on-chip platforms, allowing the improved monitoring of physiological processes and enhancing chip performance. In this review, we report cutting-edge advances in the microfluidic techniques applied for the establishment and evaluation of intestinal barrier platforms. We discuss different design principles and microfabrication strategies for the establishment of microfluidic gut barrier models in vitro. Further, we comprehensively cover the complex cell types (e.g., epithelium, intestinal organoids, endothelium, microbes, and immune cells) and controllable extracellular microenvironment parameters (e.g., oxygen gradient, peristalsis, bioflow, and gut-organ axis) used to recapitulate the main structural and functional complexity of gut barriers. We also present the current multidisciplinary technologies and indicators used for evaluating the morphological structure and barrier integrity of established gut barrier models in vitro. Finally, we highlight the challenges and future perspectives for accelerating the broader applications of these platforms in disease simulation, drug development, and personalized medicine. Hence, this review provides a comprehensive guide for the development and evaluation of microfluidic-based gut barrier platforms.
Collapse
Affiliation(s)
- Hui Wang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Xiangyang Li
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Pengcheng Shi
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS-Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
5
|
Palma-Florez S, Lagunas A, Mir M. Neurovascular unit on a chip: the relevance and maturity as an advanced in vitro model. Neural Regen Res 2024; 19:1165-1166. [PMID: 37905846 PMCID: PMC11467952 DOI: 10.4103/1673-5374.385863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Sujey Palma-Florez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
| | - Mònica Mir
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Liang Y, Yoon JY. Sensors for blood brain barrier on a chip. VITAMINS AND HORMONES 2024; 126:219-240. [PMID: 39029974 DOI: 10.1016/bs.vh.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The blood-brain barrier (BBB) is a highly selective membrane that regulates the passage of substances between the bloodstream and the brain, thus safeguarding the central nervous system. This chapter provides an overview of current experimental models and detection methods utilized to study the BBB, along with the implementation of sensors and biosensors in BBB research. We discuss static and dynamic BBB models, highlighting their respective advantages and limitations. Additionally, we examine various detection methods employed in BBB research, including those specific to static and dynamic models. Furthermore, we explore the applications of physical sensors and biosensors in BBB models, focusing on their roles in monitoring barrier integrity and function. We also discuss recent advancements in sensor integration, such as robotic interrogators and integrated electrochemical and optical biosensors. Finally, we present a brief conclusion and future outlook, emphasizing the importance of continued innovation in BBB research to advance our understanding of neurological disorders and drug development.
Collapse
Affiliation(s)
- Yan Liang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, United States
| | - Jeong-Yeol Yoon
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
7
|
Thenuwara G, Javed B, Singh B, Tian F. Biosensor-Enhanced Organ-on-a-Chip Models for Investigating Glioblastoma Tumor Microenvironment Dynamics. SENSORS (BASEL, SWITZERLAND) 2024; 24:2865. [PMID: 38732975 PMCID: PMC11086276 DOI: 10.3390/s24092865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment. Conventional in vitro and in vivo models exhibit inherent limitations in accurately replicating the complex nature of glioblastoma progression. This review addresses the existing research gap by pioneering the integration of biosensor-enhanced OOC models, providing a comprehensive platform for investigating glioblastoma tumor microenvironment dynamics. The applications of this combined approach in studying glioblastoma dynamics are critically scrutinized, emphasizing its potential to bridge the gap between simplistic models and the intricate in vivo conditions. Furthermore, the article discusses the implications of biosensor-enhanced OOC models in elucidating the dynamic features of the tumor microenvironment, encompassing cell migration, proliferation, and interactions. By furnishing real-time insights, these models significantly contribute to unraveling the complex biology of glioblastoma, thereby influencing the development of more accurate diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Bilal Javed
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
8
|
Bag SP, Lee S, Song J, Kim J. Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review. BIOSENSORS 2024; 14:150. [PMID: 38534257 DOI: 10.3390/bios14030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Hydrogel-gated synaptic transistors offer unique advantages, including biocompatibility, tunable electrical properties, being biodegradable, and having an ability to mimic biological synaptic plasticity. For processing massive data with ultralow power consumption due to high parallelism and human brain-like processing abilities, synaptic transistors have been widely considered for replacing von Neumann architecture-based traditional computers due to the parting of memory and control units. The crucial components mimic the complex biological signal, synaptic, and sensing systems. Hydrogel, as a gate dielectric, is the key factor for ionotropic devices owing to the excellent stability, ultra-high linearity, and extremely low operating voltage of the biodegradable and biocompatible polymers. Moreover, hydrogel exhibits ionotronic functions through a hybrid circuit of mobile ions and mobile electrons that can easily interface between machines and humans. To determine the high-efficiency neuromorphic chips, the development of synaptic devices based on organic field effect transistors (OFETs) with ultra-low power dissipation and very large-scale integration, including bio-friendly devices, is needed. This review highlights the latest advancements in neuromorphic computing by exploring synaptic transistor developments. Here, we focus on hydrogel-based ionic-gated three-terminal (3T) synaptic devices, their essential components, and their working principle, and summarize the essential neurodegenerative applications published recently. In addition, because hydrogel-gated FETs are the crucial members of neuromorphic devices in terms of cutting-edge synaptic progress and performances, the review will also summarize the biodegradable and biocompatible polymers with which such devices can be implemented. It is expected that neuromorphic devices might provide potential solutions for the future generation of interactive sensation, memory, and computation to facilitate the development of multimodal, large-scale, ultralow-power intelligent systems.
Collapse
Affiliation(s)
- Sankar Prasad Bag
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Suyoung Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaeyoon Song
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Jinsink Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
9
|
Holzreuter MA, Segerink LI. Innovative electrode and chip designs for transendothelial electrical resistance measurements in organs-on-chips. LAB ON A CHIP 2024; 24:1121-1134. [PMID: 38165817 PMCID: PMC10898416 DOI: 10.1039/d3lc00901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
Many different epithelial and endothelial barriers in the human body ensure the proper functioning of our organs by controlling which substances can pass from one side to another. In recent years, organs-on-chips (OoC) have become a popular tool to study such barriers in vitro. To assess the proper functioning of these barriers, we can measure the transendothelial electrical resistance (TEER) which indicates how easily ions can cross the cell layer when a current is applied between electrodes on either side. TEER measurements are a convenient method to quantify the barrier properties since it is a non-invasive and label-free technique. Direct integration of electrodes for TEER measurements into OoC allows for continuous monitoring of the barrier, and fixed integration of the electrodes improves the reproducibility of the measurements. In this review, we will give an overview of different electrode and channel designs that have been used to measure the TEER in OoC. After giving some insight into why biological barriers are an important field of study, we will explain the theory and practice behind measuring the TEER in in vitro systems. Next, this review gives an overview of the state of the art in the field of integrated electrodes for TEER measurements in OoC, with a special focus on alternative chip and electrode designs. Finally, we outline some of the remaining challenges and provide some suggestions on how to overcome these challenges.
Collapse
Affiliation(s)
- Muriel A Holzreuter
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands.
| | - Loes I Segerink
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands.
| |
Collapse
|
10
|
Deli MA, Porkoláb G, Kincses A, Mészáros M, Szecskó A, Kocsis AE, Vigh JP, Valkai S, Veszelka S, Walter FR, Dér A. Lab-on-a-chip models of the blood-brain barrier: evolution, problems, perspectives. LAB ON A CHIP 2024; 24:1030-1063. [PMID: 38353254 DOI: 10.1039/d3lc00996c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A great progress has been made in the development and use of lab-on-a-chip devices to model and study the blood-brain barrier (BBB) in the last decade. We present the main types of BBB-on-chip models and their use for the investigation of BBB physiology, drug and nanoparticle transport, toxicology and pathology. The selection of the appropriate cell types to be integrated into BBB-on-chip devices is discussed, as this greatly impacts the physiological relevance and translatability of findings. We identify knowledge gaps, neglected engineering and cell biological aspects and point out problems and contradictions in the literature of BBB-on-chip models, and suggest areas for further studies to progress this highly interdisciplinary field. BBB-on-chip models have an exceptional potential as predictive tools and alternatives of animal experiments in basic and preclinical research. To exploit the full potential of this technique expertise from materials science, bioengineering as well as stem cell and vascular/BBB biology is necessary. There is a need for better integration of these diverse disciplines that can only be achieved by setting clear parameters for characterizing both the chip and the BBB model parts technically and functionally.
Collapse
Affiliation(s)
- Mária A Deli
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Gergő Porkoláb
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - András Kincses
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Mária Mészáros
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Anikó Szecskó
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - Anna E Kocsis
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Judit P Vigh
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - Sándor Valkai
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Szilvia Veszelka
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Fruzsina R Walter
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - András Dér
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| |
Collapse
|
11
|
Salmina AB, Alexandrova OP, Averchuk AS, Korsakova SA, Saridis MR, Illarioshkin SN, Yurchenko SO. Current progress and challenges in the development of brain tissue models: How to grow up the changeable brain in vitro? J Tissue Eng 2024; 15:20417314241235527. [PMID: 38516227 PMCID: PMC10956167 DOI: 10.1177/20417314241235527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.
Collapse
Affiliation(s)
- Alla B Salmina
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Olga P Alexandrova
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Anton S Averchuk
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | | | | | | | | |
Collapse
|
12
|
Rajarathinam T, Thirumalai D, Jayaraman S, Yang S, Ishigami A, Yoon JH, Paik HJ, Lee J, Chang SC. Glutamate oxidase sheets-Prussian blue grafted amperometric biosensor for the real time monitoring of glutamate release from primary cortical neurons. Int J Biol Macromol 2024; 254:127903. [PMID: 37939751 DOI: 10.1016/j.ijbiomac.2023.127903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Glutamate (GLU) is a primary excitatory neurotransmitter, and its dysregulation is associated with several neurodegenerative disorders. A major challenge in GLU estimation is the existence of other biomolecules in the brain that could directly get oxidized at the electrode. Hence, highly selective electroenzymatic biosensors that enable rapid estimation of GLU are needed. Initially, a copolymer, poly(2-dimethylaminoethyl methacrylate- styrene) was synthesized through reversible addition-fragmentation chain transfer polymerization to noncovalently functionalize reduced graphene oxide (rGO), named DS-rGO. Glutamate oxidase macromolecule immobilized DS-rGO formed enzyme nanosheets, which was drop-coated over Prussian blue electrodeposited disposable electrodes to fabricate the GLU biosensor. The interconnectivity between the enzyme nanosheets and the Prussian blue endows the biosensor with enhanced conductivity and electrochemical activity. The biosensor exhibited a linearity: 3.25-250 μM; sensitivity: 3.96 μA mM-1 cm-2, and a limit of detection: 0.96 μM for GLU in the Neurobasal Medium. The biosensor was applied to an in vitro primary rat cortical model to discriminate GLU levels in Neurobasal Medium, before and after KCl mediated depolarization, which provides new insights for elucidating neuronal functioning in the brain.
Collapse
Affiliation(s)
- Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Dinakaran Thirumalai
- BIT Convergence-based Innovative Drug Development Targeting Metainflammation, Pusan National University, Busan 46241, Republic of Korea
| | - Sivaguru Jayaraman
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Jang-Hee Yoon
- Busan Center, Korea Basic Science Institute, Busan 46241, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
13
|
Marino A, Battaglini M, Lefevre MC, Ceccarelli MC, Ziaja K, Ciofani G. Sensorization of microfluidic brain-on-a-chip devices: Towards a new generation of integrated drug screening systems. Trends Analyt Chem 2023; 168:117319. [PMID: 37915756 PMCID: PMC7615229 DOI: 10.1016/j.trac.2023.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Brain-on-a-chip (BoC) devices show typical characteristics of brain complexity, including the presence of different cell types, separation in different compartments, tissue-like three-dimensionality, and inclusion of the extracellular matrix components. Moreover, the incorporation of a vascular system mimicking the blood-brain barrier (BBB) makes BoC particularly attractive, since they can be exploited to test the brain delivery of different drugs and nanoformulations. In this review, we introduce the main innovations in BoC and BBB-on-a-chip models, especially focusing sensorization: electrical, electrochemical, and optical biosensors permit the real-time monitoring of different biological phenomena and markers, such as the release of growth factors, the expression of specific receptors/biomarkers, the activation of immune cells, cell viability, cell-cell interactions, and BBB crossing of drugs and nanoparticles. The recent improvements in signal amplification, miniaturization, and multiplication of the sensors are discussed in an effort to highlight their benefits versus limitations and delineate future challenges in this field.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Marie Celine Lefevre
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- Scuola Superiore Sant’Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Kamil Ziaja
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- Scuola Superiore Sant’Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- University of Aveiro, Department of Chemistry, CICECO-Aveiro Institute of Materials, Rua de Calouste Gulbenkian 1, 3810-074, Aveiro, Portugal
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| |
Collapse
|
14
|
Zhao C, Wang Z, Tang X, Qin J, Jiang Z. Recent advances in sensor-integrated brain-on-a-chip devices for real-time brain monitoring. Colloids Surf B Biointerfaces 2023; 229:113431. [PMID: 37473652 DOI: 10.1016/j.colsurfb.2023.113431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Brain science has remained in the global spotlight as an important field of scientific and technological discovery. Numerous in vitro and in vivo animal studies have been performed to understand the pathological processes involved in brain diseases and develop strategies for their diagnosis and treatment. However, owing to species differences between animals and humans, several drugs have shown high rates of treatment failure in clinical settings, hindering the development of diagnostic and treatment modalities for brain diseases. In this scenario, microfluidic brain-on-a-chip (BOC) devices, which allow the direct use of human tissues for experiments, have emerged as novel tools for effectively avoiding species differences and performing screening for new drugs. Although microfluidic BOC technology has achieved significant progress in recent years, monitoring slight changes in neurochemicals, neurotransmitters, and environmental states in the brain has remained challenging owing to the brain's complex environment. Hence, the integration of BOC with new sensors that have high sensitivity and high selectivity is urgently required for the real-time dynamic monitoring of BOC parameters. As sensor-based technologies for BOC have not been summarized, here, we review the principle, fabrication process, and application-based classification of sensor-integrated BOC, and then summarize the opportunities and challenges for their development. Generally, sensor-integrated BOC enables real-time monitoring and dynamic analysis, accurately measuring minute changes in the brain and thus enabling the realization of in vivo brain analysis and drug development.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zihao Wang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jieling Qin
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Zhenqi Jiang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
15
|
Mármol I, Abizanda-Campo S, Ayuso JM, Ochoa I, Oliván S. Towards Novel Biomimetic In Vitro Models of the Blood-Brain Barrier for Drug Permeability Evaluation. Bioengineering (Basel) 2023; 10:bioengineering10050572. [PMID: 37237642 DOI: 10.3390/bioengineering10050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Current available animal and in vitro cell-based models for studying brain-related pathologies and drug evaluation face several limitations since they are unable to reproduce the unique architecture and physiology of the human blood-brain barrier. Because of that, promising preclinical drug candidates often fail in clinical trials due to their inability to penetrate the blood-brain barrier (BBB). Therefore, novel models that allow us to successfully predict drug permeability through the BBB would accelerate the implementation of much-needed therapies for glioblastoma, Alzheimer's disease, and further disorders. In line with this, organ-on-chip models of the BBB are an interesting alternative to traditional models. These microfluidic models provide the necessary support to recreate the architecture of the BBB and mimic the fluidic conditions of the cerebral microvasculature. Herein, the most recent advances in organ-on-chip models for the BBB are reviewed, focusing on their potential to provide robust and reliable data regarding drug candidate ability to reach the brain parenchyma. We point out recent achievements and challenges to overcome in order to advance in more biomimetic in vitro experimental models based on OOO technology. The minimum requirements that should be met to be considered biomimetic (cellular types, fluid flow, and tissular architecture), and consequently, a solid alternative to in vitro traditional models or animals.
Collapse
Affiliation(s)
- Inés Mármol
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Sara Abizanda-Campo
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Department of Dermatology, Department of Biomedical Engineering, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jose M Ayuso
- Department of Dermatology, Department of Biomedical Engineering, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sara Oliván
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
16
|
Palma-Florez S, López-Canosa A, Moralez-Zavala F, Castaño O, Kogan MJ, Samitier J, Lagunas A, Mir M. BBB-on-a-chip with integrated micro-TEER for permeability evaluation of multi-functionalized gold nanorods against Alzheimer's disease. J Nanobiotechnology 2023; 21:115. [PMID: 36978078 PMCID: PMC10053726 DOI: 10.1186/s12951-023-01798-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/27/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The lack of predictive models that mimic the blood-brain barrier (BBB) hinders the development of effective drugs for neurodegenerative diseases. Animal models behave differently from humans, are expensive and have ethical constraints. Organ-on-a-chip (OoC) platforms offer several advantages to resembling physiological and pathological conditions in a versatile, reproducible, and animal-free manner. In addition, OoC give us the possibility to incorporate sensors to determine cell culture features such as trans-endothelial electrical resistance (TEER). Here, we developed a BBB-on-a-chip (BBB-oC) platform with a TEER measurement system in close distance to the barrier used for the first time for the evaluation of the permeability performance of targeted gold nanorods for theranostics of Alzheimer's disease. GNR-PEG-Ang2/D1 is a therapeutic nanosystem previously developed by us consisting of gold nanorods (GNR) functionalized with polyethylene glycol (PEG), angiopep-2 peptide (Ang2) to overcome the BBB and the D1 peptide as beta amyloid fibrillation inhibitor, finally obtaining GNR-PEG-Ang2/D1 which showed to be useful for disaggregation of the amyloid in in vitro and in vivo models. In this work, we evaluated its cytotoxicity, permeability, and some indications of its impact on the brain endothelium by employing an animal-free device based on neurovascular human cells. RESULTS In this work, we fabricated a BBB-oC with human astrocytes, pericytes and endothelial cells and a TEER measuring system (TEER-BBB-oC) integrated at a micrometric distance of the endothelial barrier. The characterization displayed a neurovascular network and the expression of tight junctions in the endothelium. We produced GNR-PEG-Ang2/D1 and determined its non-cytotoxic range (0.05-0.4 nM) for plated cells included in the BBB-oC and confirmed its harmless effect at the highest concentration (0.4 nM) in the microfluidic device. The permeability assays revealed that GNR-PEG-Ang2/D1 cross the BBB and this entry is facilitated by Ang2 peptide. Parallel to the permeability analysis of GNR-PEG-Ang2/D1, an interesting behavior of the TJs expression was observed after its administration probably related to the ligands on the nanoparticle surface. CONCLUSIONS BBB-oC with a novel TEER integrated setup which allow a correct read-out and cell imaging monitoring was proven as a functional and throughput platform to evaluate the brain permeability performance of nanotherapeutics in a physiological environment with human cells, putting forward a viable alternative to animal experimentation.
Collapse
Affiliation(s)
- Sujey Palma-Florez
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Adrián López-Canosa
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Francisco Moralez-Zavala
- Department of Pharmacology and Toxicology, Faculty of Chemistry and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 8380494, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile
| | - Oscar Castaño
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Marcelo J Kogan
- Department of Pharmacology and Toxicology, Faculty of Chemistry and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 8380494, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile
| | - Josep Samitier
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain.
| | - Mònica Mir
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain.
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
| |
Collapse
|
17
|
Su SH, Song Y, Stephens A, Situ M, McCloskey MC, McGrath JL, Andjelkovic AV, Singer BH, Kurabayashi K. A tissue chip with integrated digital immunosensors: In situ brain endothelial barrier cytokine secretion monitoring. Biosens Bioelectron 2023; 224:115030. [PMID: 36603283 PMCID: PMC10401069 DOI: 10.1016/j.bios.2022.115030] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Organ-on-a-chip platforms have potential to offer more cost-effective, ethical, and human-resembling models than animal models for disease study and drug discovery. Particularly, the Blood-Brain-Barrier-on-a-chip (BBB-oC) has emerged as a promising tool to investigate several neurological disorders since it promises to provide a model of the multifunctional tissue working as an important node to control pathogen entry, drug delivery and neuroinflammation. A comprehensive understanding of the multiple physiological functions of the tissue model requires biosensors detecting several tissue-secreted substances in a BBB-oC system. However, current sensor-integrated BBB-oC platforms are only available for tissue membrane integrity characterization based on permeability measurement. Protein secretory pathways are closely associated with the tissue's various diseased conditions. At present, no biosensor-integrated BBB-oC platform exists that permits in situ tissue protein secretion analysis over time, which prohibits researchers from fully understanding the time-evolving pathology of a tissue barrier. Herein, the authors present a platform named "Digital Tissue-BArrier-CytoKine-counting-on-a-chip (DigiTACK)," which integrates digital immunosensors into a tissue chip system and demonstrates on-chip multiplexed, ultrasensitive, longitudinal cytokine secretion profiling of cultured brain endothelial barrier tissues. The integrated digital sensors utilize a novel beadless microwell format to perform an ultrafast "digital fingerprinting" of the analytes while achieving a low limit of detection (LoD) around 100-500 fg/mL for mouse MCP1 (CCL2), IL-6 and KC (CXCL1). The DigiTACK platform is extensively applicable to profile temporal cytokine secretion of other barrier-related organ-on-a-chip systems and can provide new insight into the secretory dynamics of the BBB by sequentially controlled experiments.
Collapse
Affiliation(s)
- Shiuan-Haur Su
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yujing Song
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Stephens
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Muyu Situ
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Molly C McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Anuska V Andjelkovic
- Department of Pathology and Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin H Singer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Liu N, Zhu Y, Yu K, Gu Z, Lv S, Chen Y, He C, Fu J, He Y. Functional Blood-Brain Barrier Model with Tight Connected Minitissue by Liquid Substrates Culture. Adv Healthc Mater 2023; 12:e2201984. [PMID: 36394091 DOI: 10.1002/adhm.202201984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/02/2022] [Indexed: 11/19/2022]
Abstract
The functional blood-brain barrier (BBB) model can provide a reliable tool for better understanding BBB transport mechanisms and in vitro preclinical experimentation. However, recapitulating microenvironmental complexities and physiological functions in an accessible approach remains a major challenge. Here, a new BBB model with a high-cell spatial density and tightly connected biomimetic minitissue is presented. The minitissue, pivotal functional structure of the BBB model, is fabricated by a novel and easy-to-use liquid substrate culture (LSC) method, which allows cells to self-assemble and self-heal into macrosized, tightly connected membranous minitissue. The minitissue with uniform thickness can be easily harvested in their entirety with extracellular matrix. Attributed to the tightly connected minitissue formed by LSC, the fabricated BBB biomimetic model has 1 to 2 orders of magnitude higher transendothelial electric resistance than the commonly reported BBB model. It also better prevents the transmission of large molecular substances, recapitulating the functional features of BBB. Furthermore, the BBB biomimetic model provides feedback regarding BBB-destructive drugs, exhibits selective transmission, and shows efflux pump activity. Overall, this model can serve as an accessible tool for life science or clinical medical researchers to enhance the understanding of human BBB and expedite the development of new brain-permeable drugs.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanbo Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zeming Gu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaofan He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
19
|
Mou L, Mandal K, Mecwan MM, Hernandez AL, Maity S, Sharma S, Herculano RD, Kawakita S, Jucaud V, Dokmeci MR, Khademhosseini A. Integrated biosensors for monitoring microphysiological systems. LAB ON A CHIP 2022; 22:3801-3816. [PMID: 36074812 PMCID: PMC9635816 DOI: 10.1039/d2lc00262k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microphysiological systems (MPSs), also known as organ-on-a-chip models, aim to recapitulate the functional components of human tissues or organs in vitro. Over the last decade, with the advances in biomaterials, 3D bioprinting, and microfluidics, numerous MPSs have emerged with applications to study diseased and healthy tissue models. Various organs have been modeled using MPS technology, such as the heart, liver, lung, and blood-brain barrier. An important aspect of in vitro modeling is the accurate phenotypical and functional characterization of the modeled organ. However, most conventional characterization methods are invasive and destructive and do not allow continuous monitoring of the cells in culture. On the other hand, microfluidic biosensors enable in-line, real-time sensing of target molecules with an excellent limit of detection and in a non-invasive manner, thereby effectively overcoming the limitation of the traditional techniques. Consequently, microfluidic biosensors have been increasingly integrated into MPSs and used for in-line target detection. This review discusses the state-of-the-art microfluidic biosensors by providing specific examples, detailing their main advantages in monitoring MPSs, and highlighting current developments in this field. Finally, we describe the remaining challenges and potential future developments to advance the current state-of-the-art in integrated microfluidic biosensors.
Collapse
Affiliation(s)
- Lei Mou
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong, P. R. China
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Marvin Magan Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ana Lopez Hernandez
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14801-902, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| |
Collapse
|
20
|
Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071065. [PMID: 35888153 PMCID: PMC9323215 DOI: 10.3390/life12071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
Currently, Chlamydia trachomatis still possesses a significant impact on public health, with more than 130 million new cases each year, alongside a high prevalence of asymptomatic infections (approximately 80% in women and 50% in men). C. trachomatis infection involves a wide range of different cell types, from cervical epithelial cells, testicular Sertoli cells to Synovial cells, leading to a broad spectrum of pathologies of varying severity both in women and in men. Several two-dimensional in vitro cellular models have been employed for investigating C. trachomatis host–cell interaction, although they present several limitations, such as the inability to mimic the complex and dynamically changing structure of in vivo human host-tissues. Here, we present a brief overview of the most cutting-edge three-dimensional cell-culture models that mimic the pathophysiology of in vivo human tissues and organs for better translating experimental findings into a clinical setting. Future perspectives in the field of C. trachomatis research are also provided.
Collapse
|