1
|
Zhu T, Hu Y, Cui H, Cui H. 3D Multispheroid Assembly Strategies towards Tissue Engineering and Disease Modeling. Adv Healthc Mater 2024; 13:e2400957. [PMID: 38924326 DOI: 10.1002/adhm.202400957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Cell spheroids (esp. organoids) as 3D culture platforms are popular models for representing cell-cell and cell-extracellular matrix (ECM) interactions, bridging the gap between 2D cell cultures and natural tissues. 3D cell models with spatially organized multiple cell types are preferred for gaining comprehensive insights into tissue pathophysiology and constructing in vitro tissues and disease models because of the complexities of natural tissues. In recent years, an assembly strategy using cell spheroids (or organoids) as living building blocks has been developed to construct complex 3D tissue models with spatial organization. Here, a comprehensive overview of recent advances in multispheroid assembly studies is provided. The different mechanisms of the multispheroid assembly techniques, i.e., automated directed assembly, noncontact remote assembly, and programmed self-assembly, are introduced. The processing steps, advantages, and technical limitations of the existing methodologies are summarized. Applications of the multispheroid assembly strategies in disease modeling, drug screening, tissue engineering, and organogenesis are reviewed. Finally, this review concludes by emphasizing persistent issues and future perspectives, encouraging researchers to adopt multispheroid assembly techniques for generating advanced 3D cell models that better resemble real tissues.
Collapse
Affiliation(s)
- Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
2
|
Wu Y, Gai J, Zhao Y, Liu Y, Liu Y. Acoustofluidic Actuation of Living Cells. MICROMACHINES 2024; 15:466. [PMID: 38675277 PMCID: PMC11052308 DOI: 10.3390/mi15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Acoutofluidics is an increasingly developing and maturing technical discipline. With the advantages of being label-free, non-contact, bio-friendly, high-resolution, and remote-controllable, it is very suitable for the operation of living cells. After decades of fundamental laboratory research, its technical principles have become increasingly clear, and its manufacturing technology has gradually become popularized. Presently, various imaginative applications continue to emerge and are constantly being improved. Here, we introduce the development of acoustofluidic actuation technology from the perspective of related manipulation applications on living cells. Among them, we focus on the main development directions such as acoustofluidic sorting, acoustofluidic tissue engineering, acoustofluidic microscopy, and acoustofluidic biophysical therapy. This review aims to provide a concise summary of the current state of research and bridge past developments with future directions, offering researchers a comprehensive overview and sparking innovation in the field.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Junyang Gai
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Yuwen Zhao
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671000, China
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| |
Collapse
|
3
|
Fabiano L, Pandey S, Brischwein M, Hasanzadeh Kafshgari M, Hayden O. Continuous Perfusion Experiments on 3D Cell Proliferation in Acoustic Levitation. MICROMACHINES 2024; 15:436. [PMID: 38675247 PMCID: PMC11051894 DOI: 10.3390/mi15040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
An acoustofluidic trap is used for accurate 3D cell proliferation and cell function analysis in levitation. The prototype trap can be integrated with any microscope setup, allowing continuous perfusion experiments with temperature and flow control under optical inspection. To describe the trap function, we present a mathematical and FEM-based COMSOL model for the acoustic mode that defines the nodal position of trapped objects in the spherical cavity aligned with the microscope field of view and depth of field. Continuous perfusion experiments were conducted in sterile conditions over 55 h with a K562 cell line, allowing for deterministic monitoring. The acoustofluidic platform allows for rational in vitro cell testing imitating in vivo conditions such as cell function tests or cell-cell interactions.
Collapse
Affiliation(s)
- Luca Fabiano
- Heinz-Nixdorf-Chair of Biomedical Electronics, School of Computation, Information and Technology, Technical University of Munich, TranslaTUM, 80333 Munich, Germany; (L.F.); (M.B.); (M.H.K.)
| | - Shilpi Pandey
- Heinz-Nixdorf-Chair of Biomedical Electronics, School of Computation, Information and Technology, Technical University of Munich, TranslaTUM, 80333 Munich, Germany; (L.F.); (M.B.); (M.H.K.)
| | - Martin Brischwein
- Heinz-Nixdorf-Chair of Biomedical Electronics, School of Computation, Information and Technology, Technical University of Munich, TranslaTUM, 80333 Munich, Germany; (L.F.); (M.B.); (M.H.K.)
| | - Morteza Hasanzadeh Kafshgari
- Heinz-Nixdorf-Chair of Biomedical Electronics, School of Computation, Information and Technology, Technical University of Munich, TranslaTUM, 80333 Munich, Germany; (L.F.); (M.B.); (M.H.K.)
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 80333 Munich, Germany
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Oliver Hayden
- Heinz-Nixdorf-Chair of Biomedical Electronics, School of Computation, Information and Technology, Technical University of Munich, TranslaTUM, 80333 Munich, Germany; (L.F.); (M.B.); (M.H.K.)
| |
Collapse
|
4
|
Zhang S, Luo Y, Zhuang W, Zhong G, Su L, Xu T, Zhang X. Fully Integrated Ratiometric Fluorescence Enrichment Platform for High-Sensitivity POC Testing of Salivary Cancer Biomarkers. Anal Chem 2023; 95:18739-18747. [PMID: 38079568 DOI: 10.1021/acs.analchem.3c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The point-of-care (POC) testing of cancer biomarkers in saliva with both high sensitivity and accuracy remains a serious challenge in modern clinical medicine. Herein, we develop a new fully integrated ratiometric fluorescence enrichment platform that utilizes acoustic radiation forces to enrich dual-emission sandwich immune complexes for a POC visual assay. As a result, the color signals from red and green fluorescence (capture probe and report probe, respectively) are enhanced by nearly 10 times, and colorimetric sensitivity is effectively improved. When illuminated using a portable UV lamp, the fluorescence color changing from red to green can be clearly seen with the naked eye, which allows a semiqualitative assessment of the carcinoembryonic antigen (CEA) level. In combination with a homemade smartphone-based portable device, cancer biomarkers like CEA are quantified, achieving a limit of detection as low as 0.012 ng/mL. We also directly quantify CEA in human saliva samples to investigate the reliability of this fully integrated platform, thus validating the usefulness of the proposed strategy for clinical diagnosis and home monitoring of physical conditions.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yong Luo
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wenxuan Zhuang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Geng Zhong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Lei Su
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Zhu Q, Yan T, Yang Y, Song Y, Lu J, Luo Y, Xu LP, Xu T. Programmable Microparticle Array for In Situ Modification and Multiple miRNA Detection. ACS Sens 2022; 7:3654-3659. [PMID: 36448914 DOI: 10.1021/acssensors.2c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Simultaneous detection of multiple miRNAs of one disease can greatly reduce misdiagnosis and improve the detection rate, which is helpful for early cancer diagnosis. Here, a programmable microparticle-array-based acoustic microchip for in situ simultaneous multiple miRNAs detection is developed. On this microchip, the multiple probes-labeled microparticle array can be procedurally arranged in a microfluidic reaction chamber when four orthogonally piezoelectric transducers are applied. The probes-labeled microparticle array offers a platform for full molecular contact under dynamic ultrasonic streaming, and the array supplies a multipoint data correction to reduce the false positive of the detection results for more precisely visible fluorescence multiple target miRNAs sensing. We employed miRNA-21, miRNA-210, and miRNA-155 as specific biomarkers of pancreatic cancer and successfully finished the multiple miRNAs simultaneous detection in the microchip with a detection limit of 139.1, 179.9, and 111.4 pM, respectively. Such a device is programmable by adjusting the imputing frequency and voltage, and target biomarkers can be easily collected when the ultrasound force is released for further analysis, which shows great potential in multiple miRNAs enrichment and simultaneous detection for cancer clinical diagnosis.
Collapse
Affiliation(s)
- Qinglin Zhu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Tingxiu Yan
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Yuemeng Yang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Yongchao Song
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao266071, People's Republic of China
| | - Jingwei Lu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Yong Luo
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, People's Republic of China.,School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| |
Collapse
|
6
|
Sailor MJ. The Future of Engineered Living Sensors ─ I Hope It Is Not the Thing with Feathers. ACS Sens 2022; 7:2795-2796. [DOI: 10.1021/acssensors.2c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|