1
|
Ahmed WS, Geethakumari AM, Sultana A, Fatima A, Philip AM, Uddin SMN, Biswas KH. A slow but steady nanoLuc: R162A mutation results in a decreased, but stable, nanoLuc activity. Int J Biol Macromol 2024; 269:131864. [PMID: 38692549 DOI: 10.1016/j.ijbiomac.2024.131864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
NanoLuc (NLuc) luciferase has found extensive application in designing a range of biological assays, including gene expression analysis, protein-protein interaction, and protein conformational changes due to its enhanced brightness and small size. However, questions related to its mechanism of interaction with the substrate, furimazine, as well as bioluminescence activity remain elusive. Here, we combined molecular dynamics (MD) simulation and mutational analysis to show that the R162A mutation results in a decreased but stable bioluminescence activity of NLuc in living cells and in vitro. Specifically, we performed multiple, all-atom, explicit solvent MD simulations of the apo and furimazine-docked (holo) NLuc structures revealing differential dynamics of the protein in the absence and presence of the ligand. Further, analysis of trajectories for hydrogen bonds (H-bonds) formed between NLuc and furimazine revealed substantial H-bond interaction between R162 and Q32 residues. Mutation of the two residues in NLuc revealed a decreased but stable activity of the R162A, but not Q32A, mutant NLuc in live cell and in vitro assays performed using lysates prepared from cells expressing the proteins and with the furimazine substrate. In addition to highlighting the role of the R162 residue in NLuc activity, we believe that the mutant NLuc will find wide application in designing in vitro assays requiring extended monitoring of NLuc bioluminescence activity. SIGNIFICANCE: Bioluminescence has been extensively utilized in developing a variety of biological and biomedical assays. In this regard, engineering of brighter bioluminescent proteins, i.e. luciferases, has played a significant role. This is acutely exemplified by the engineering of the NLuc luciferase, which is small in size and displays much enhanced bioluminescence and thermal stability compared to previously available luciferases. While enhanced bioluminescent activity is desirable in a multitude of biological and biomedical assays, it would also be useful to develop variants of the protein that display a prolonged bioluminescence activity. This is specifically relevant in designing assays that require bioluminescence for extended periods, such as in the case of biosensors designed for monitoring slow enzymatic or cellular signaling reactions, without necessitating multiple rounds of luciferase substrate addition or any specialized reagents that result in increased assay costs. In the current manuscript, we report a mutant NLuc that possesses a stable and prolonged bioluminescence activity, albeit lower than the wild-type NLuc, and envisage a wider application of the mutant NLuc in designing biosensors for monitoring slower biological and biomedical events.
Collapse
Affiliation(s)
- Wesam S Ahmed
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Anupriya M Geethakumari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asfia Sultana
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Angelin M Philip
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - S M Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
2
|
Würstle S, Lee A, Kortright KE, Winzig F, An W, Stanley GL, Rajagopalan G, Harris Z, Sun Y, Hu B, Blazanin M, Hajfathalian M, Bollyky PL, Turner PE, Koff JL, Chan BK. Optimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University. Sci Rep 2024; 14:2657. [PMID: 38302552 PMCID: PMC10834462 DOI: 10.1038/s41598-024-52192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Bacteriophage therapy is one potential strategy to treat antimicrobial resistant or persistent bacterial infections, and the year 2021 marked the centennial of Felix d'Hérelle's first publication on the clinical applications of phages. At the Center for Phage Biology & Therapy at Yale University, a preparatory modular approach has been established to offer safe and potent phages for single-patient investigational new drug applications while recognizing the time constraints imposed by infection(s). This study provides a practical walkthrough of the pipeline with an Autographiviridae phage targeting Pseudomonas aeruginosa (phage vB_PaeA_SB, abbreviated to ΦSB). Notably, a thorough phage characterization and the evolutionary selection pressure exerted on bacteria by phages, analogous to antibiotics, are incorporated into the pipeline.
Collapse
Affiliation(s)
- Silvia Würstle
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
- Technical University of Munich, 81675, Munich, Germany
| | - Alina Lee
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Kaitlyn E Kortright
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Franziska Winzig
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Technical University of Munich, 81675, Munich, Germany
| | - William An
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Gail L Stanley
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Govindarajan Rajagopalan
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Zach Harris
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Ying Sun
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Buqu Hu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Michael Blazanin
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul E Turner
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan L Koff
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA.
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA.
| | - Benjamin K Chan
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
3
|
Zborowsky S, Balacheff Q, Theodorou I, Kane R, Delattre R, Weitz JS, Tournebize R, Debarbieux L. A nanoluciferase-encoded bacteriophage illuminates viral infection dynamics of Pseudomonas aeruginosa cells. ISME COMMUNICATIONS 2024; 4:ycae105. [PMID: 39296778 PMCID: PMC11409504 DOI: 10.1093/ismeco/ycae105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024]
Abstract
Bacteriophages (phages) are increasingly considered for both treatment and early detection of bacterial pathogens given their specificity and rapid infection kinetics. Here, we exploit an engineered phage expressing nanoluciferase to detect signals associated with Pseudomonas aeruginosa lysis spanning single cells to populations. Using several P. aeruginosa strains we found that the latent period, burst size, fraction of infected cells, and efficiency of plating inferred from fluorescent light intensity signals were consistent with inferences from conventional population assays. Notably, imaging-based traits were obtained in minutes to hours in contrast to the use of overnight plaques, which opens the possibility to study infection dynamics in spatial and/or temporal contexts where plaque development is infeasible. These findings support the use of engineered phages to study infection kinetics of virus-cell interactions in complex environments and potentially accelerate the determination of viral host range in therapeutically relevant contexts.
Collapse
Affiliation(s)
- Sophia Zborowsky
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Quentin Balacheff
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Ioanna Theodorou
- Institut Pasteur, UTechS Photonic Bioimaging, C2RT, 75015 Paris, France
| | - Rokhaya Kane
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Raphaëlle Delattre
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
- Université Paris Cité, INSERM U1137, IAME, F-75006 Paris, France
| | - Joshua S Weitz
- Department of Biology, University of Maryland, College Park, MD 20742, United States
- Institut de Biologie, École Normale Supérieure, 75005 Paris, France
| | - Régis Tournebize
- Institut Pasteur, UTechS Photonic Bioimaging, C2RT, 75015 Paris, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| |
Collapse
|
4
|
Kim D, Kim M. Sensitive detection of viable Cronobacter sakazakii by bioluminescent reporter phage emitting stable signals with truncated holin. Food Res Int 2023; 174:113665. [PMID: 37981373 DOI: 10.1016/j.foodres.2023.113665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
As outbreaks of foodborne illness caused by the opportunistic pathogen Cronobacter sakazakii (Cs) continue to occur, particularly in infants consuming powdered infant formula (PIF), the need for sensitive, rapid, and easy-to-use detection of Cs from food and food processing environments is increasing. Here, we developed bioluminescent reporter bacteriophages for viable Cs-specific, substrate-free, rapid detection by introducing luciferase and its corresponding substrate-providing enzyme complex into the virulent phage ΦC01. Although the reporter phage ΦC01_lux, constructed by replacing non-essential genes for phage infectivity with a luxCDABE reporter operon, produced bioluminescence upon Cs infection, the emitted signal was quickly decayed due to the superior bacteriolytic activity of ΦC01. By truncating the membrane pore-forming protein holin and thus limiting its function, the bacterial lysis was delayed and the resultant engineered reporter phage ΦC01_lux_Δhol could produce a more stable and reliable bioluminescent signal. Accordingly, ΦC01_lux_Δhol was able to detect at least an average of 2 CFU/ml of Cs artificially contaminated PIF and Sunsik and food contact surface models within a total of 7 h of assays, including 5 h of pre-enrichment for Cs amplification. The sensitive, easy-to-use, and specific detection of live Cs with the developed reporter phage could be applied as a novel complementary tool for monitoring Cs in food and food-related environments for food safety and public health.
Collapse
Affiliation(s)
- Doyeon Kim
- Laboratory of Molecular Food Microbiology, Department of Food and Nutrition, Brain Korea 21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Minsik Kim
- Laboratory of Molecular Food Microbiology, Department of Food and Nutrition, Brain Korea 21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Usman SS, Uba AI, Christina E. Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics. Mol Biol Rep 2023; 50:7055-7067. [PMID: 37392288 DOI: 10.1007/s11033-023-08557-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Bacteriophages (phages) are viruses that mainly infect bacteria and are ubiquitously distributed in nature, especially to their host. Phage engineering involves nucleic acids manipulation of phage genome for antimicrobial activity directed against pathogens through the applications of molecular biology techniques such as synthetic biology methods, homologous recombination, CRISPY-BRED and CRISPY-BRIP recombineering, rebooting phage-based engineering, and targeted nucleases including CRISPR/Cas9, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Management of bacteria is widely achieved using antibiotics whose mechanism of action has been shown to target both the genetic dogma and the metabolism of pathogens. However, the overuse of antibiotics has caused the emergence of multidrug-resistant (MDR) bacteria which account for nearly 5 million deaths as of 2019 thereby posing threats to the public health sector, particularly by 2050. Lytic phages have drawn attention as a strong alternative to antibiotics owing to the promising efficacy and safety of phage therapy in various models in vivo and human studies. Therefore, harnessing phage genome engineering methods, particularly CRISPR/Cas9 to overcome the limitations such as phage narrow host range, phage resistance or any potential eukaryotic immune response for phage-based enzymes/proteins therapy may designate phage therapy as a strong alternative to antibiotics for combatting bacterial antimicrobial resistance (AMR). Here, the current trends and progress in phage genome engineering techniques and phage therapy are reviewed.
Collapse
Affiliation(s)
- Sani Sharif Usman
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India
- Department of Biological Sciences, Faculty of Science, Federal University of Kashere, P.M.B. 0182, Gombe, Nigeria
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537, Istanbul, Türkiye
| | - Evangeline Christina
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India.
| |
Collapse
|
6
|
Meile S, Du J, Staubli S, Grossmann S, Koliwer-Brandl H, Piffaretti P, Leitner L, Matter CI, Baggenstos J, Hunold L, Milek S, Guebeli C, Kozomara-Hocke M, Neumeier V, Botteon A, Klumpp J, Marschall J, McCallin S, Zbinden R, Kessler TM, Loessner MJ, Dunne M, Kilcher S. Engineered reporter phages for detection of Escherichia coli, Enterococcus, and Klebsiella in urine. Nat Commun 2023; 14:4336. [PMID: 37474554 PMCID: PMC10359277 DOI: 10.1038/s41467-023-39863-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
The rapid detection and species-level differentiation of bacterial pathogens facilitates antibiotic stewardship and improves disease management. Here, we develop a rapid bacteriophage-based diagnostic assay to detect the most prevalent pathogens causing urinary tract infections: Escherichia coli, Enterococcus spp., and Klebsiella spp. For each uropathogen, two virulent phages were genetically engineered to express a nanoluciferase reporter gene upon host infection. Using 206 patient urine samples, reporter phage-induced bioluminescence was quantified to identify bacteriuria and the assay was benchmarked against conventional urinalysis. Overall, E. coli, Enterococcus spp., and Klebsiella spp. were each detected with high sensitivity (68%, 78%, 87%), specificity (99%, 99%, 99%), and accuracy (90%, 94%, 98%) at a resolution of ≥103 CFU/ml within 5 h. We further demonstrate how bioluminescence in urine can be used to predict phage antibacterial activity, demonstrating the future potential of reporter phages as companion diagnostics that guide patient-phage matching prior to therapeutic phage application.
Collapse
Affiliation(s)
- Susanne Meile
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Jiemin Du
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Samuel Staubli
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | | | | | | | - Lorenz Leitner
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | | | - Laura Hunold
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Sonja Milek
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | | | - Vera Neumeier
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Angela Botteon
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Jochen Klumpp
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Jonas Marschall
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, US
| | - Shawna McCallin
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Reinhard Zbinden
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland.
| | - Samuel Kilcher
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland.
| |
Collapse
|
7
|
Du J, Meile S, Baggenstos J, Jäggi T, Piffaretti P, Hunold L, Matter CI, Leitner L, Kessler TM, Loessner MJ, Kilcher S, Dunne M. Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors. Nat Commun 2023; 14:4337. [PMID: 37474516 PMCID: PMC10359290 DOI: 10.1038/s41467-023-39612-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Bacteriophages operate via pathogen-specific mechanisms of action distinct from conventional, broad-spectrum antibiotics and are emerging as promising alternative antimicrobials. However, phage-mediated killing is often limited by bacterial resistance development. Here, we engineer phages for target-specific effector gene delivery and host-dependent production of colicin-like bacteriocins and cell wall hydrolases. Using urinary tract infection (UTI) as a model, we show how heterologous effector phage therapeutics (HEPTs) suppress resistance and improve uropathogen killing by dual phage- and effector-mediated targeting. Moreover, we designed HEPTs to control polymicrobial uropathogen communities through production of effectors with cross-genus activity. Using phage-based companion diagnostics, we identified potential HEPT responder patients and treated their urine ex vivo. Compared to wildtype phage, a colicin E7-producing HEPT demonstrated superior control of patient E. coli bacteriuria. Arming phages with heterologous effectors paves the way for successful UTI treatment and represents a versatile tool to enhance and adapt phage-based precision antimicrobials.
Collapse
Affiliation(s)
- Jiemin Du
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Susanne Meile
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Jasmin Baggenstos
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Tobias Jäggi
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Pietro Piffaretti
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Laura Hunold
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Lorenz Leitner
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Samuel Kilcher
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|