1
|
Liu M, Liu L, Du M, Li Q, Wu S, Su S, Jian N, Wu Y, Wang Y. A fluorescent platform integrated with a "one-pot" nicking endonuclease signal amplification and magnetic separation for simultaneous detection of tumor markers. Talanta 2024; 282:127011. [PMID: 39383727 DOI: 10.1016/j.talanta.2024.127011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/07/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Although Enzyme-linked immunosorbent assay (ELISA) has been widely used for biomedical research, simultaneous sensitive and cost-effective detection of multiple biomarkers is challenging. Herein, we proposed a "one-pot" nicking endonuclease signal amplification (NESA)-based fluorescent aptasensor for simultaneous detection of carcinoembryonic antigen (CEA) and alpha fetoprotein (AFP). Firstly, two aptamers were synchronously immobilized on the surface of magnetic nanoparticles (MNPs) by coupling with two complementary DNA (cDNA). CEA and AFP specifically recognized the aptamers and then the released cDNA (ssDNA) from the double-strands (dsDNA) triggers NESA, further breaking two detection probes which were labeled with the fluorescent dye (FAM and ROX) and its quencher (BHQ1 and BHQ2) at the same time. Then, the fluorescence signal of FAM and ROX were restored separately. The results indicated that the fluorescence intensity at the emission wavelength of 518 nm and 610 nm had a positive correlation with CEA and AFP concentrations, respectively. Under the optimum conditions, wider liner range of 1-500 ng mL-1 to CEA and 5-800 ng mL-1 to AFP of this fluorescent aptasensor were successfully obtained, achieving a detection limit of CEA and AFP were 0.7 ng mL-1 and 2 ng mL-1, respectively. Hence, it turned out that the aptasensor strategy can be a promising candidate for developing a newly fluorescence assay for the simultaneous quantitative detection of multiple tumor markers in matrix samples by changing the corresponding sequences of aptamer and fluorescent signal probe, which has great potential for the screening of early cancer.
Collapse
Affiliation(s)
- Miaomiao Liu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Lie Liu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Mengsi Du
- Clinical Nutrition Department, Kaifeng People's Hospital, Henan, Kaifeng, 475002, China
| | - Qilong Li
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Shiqi Wu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Shengxiang Su
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Ningge Jian
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Henan, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Yin X, Rong J, Shao M, Zhang S, Yin L, He Z, Wang X. Aptamer-functionalized nanomaterials (AFNs) for therapeutic management of hepatocellular carcinoma. J Nanobiotechnology 2024; 22:243. [PMID: 38735927 PMCID: PMC11089756 DOI: 10.1186/s12951-024-02486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents one of the deadliest cancers globally, making the search for more effective diagnostic and therapeutic approaches particularly crucial. Aptamer-functionalized nanomaterials (AFNs), an innovative nanotechnology, have paved new pathways for the targeted diagnosis and treatment of HCC. Initially, we outline the epidemiological background of HCC and the current therapeutic challenges. Subsequently, we explore in detail how AFNs enhance diagnostic and therapeutic efficiency and reduce side effects through the specific targeting of HCC cells and the optimization of drug delivery. Furthermore, we address the challenges faced by AFNs in clinical applications and future research directions, with a particular focus on enhancing their biocompatibility and assessing long-term effects. In summary, AFNs represent an avant-garde therapeutic approach, opening new avenues and possibilities for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jing Rong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Min Shao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Saisai Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Likang Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhenqiang He
- Clinical Medical College, Hebei University, Baoding, 071002, Hebei, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
Zhang JH, Song DM, Zhou YG. Impact electrochemistry for biosensing: advances and future directions. Analyst 2024; 149:2498-2506. [PMID: 38629127 DOI: 10.1039/d4an00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Impact electrochemistry allows for the investigation of the properties of single entities, ranging from nanoparticles (NPs) to soft bio-particles. It has introduced a novel dimension in the field of biological analysis, enhancing researchers' ability to comprehend biological heterogeneity and offering a new avenue for developing novel diagnostic devices for quantifying biological analytes. This review aims to summarize the recent advancements in impact electrochemistry-based biosensing over the past two to three years and provide insights into the future directions of this field.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Dian-Mei Song
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, Guangdong Province, China
| |
Collapse
|
5
|
Liu M, Zhao X, Liang X, Zhou YG. Homogeneous and Label-Free Detection and Monitoring of Protein Kinase Activity Using the Impact Electrochemistry of Silver Nanoparticles. ACS Sens 2024; 9:110-117. [PMID: 38113272 DOI: 10.1021/acssensors.3c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Protein kinase activity correlates closely with that of many human diseases. However, the existing methods for quantifying protein kinase activity often suffer from limitations such as low sensitivity, harmful radioactive labels, high cost, and sophisticated detection procedures, underscoring the urgent need for sensitive and rapid detection methods. Herein, we present a simple and sensitive approach for the homogeneous detection of protein kinase activity based on nanoimpact electrochemistry to probe the degree of aggregation of silver nanoparticles (AgNPs) before and after phosphorylation. Phosphorylation, catalyzed by protein kinases, introduces two negative charges into the substrate peptide, leading to alterations in electrostatic interactions between the phosphorylated peptide and the negatively charged AgNPs, which, in turn, affects the aggregation status of AgNPs. Via direct electro-oxidation of AgNPs in nanoimpact electrochemistry experiments, protein kinase activity can be quantified by assessing the impact frequency. The present sensor demonstrates a broad detection range and a low detection limit for protein kinase A (PKA), along with remarkable selectivity. Additionally, it enables monitoring of PKA-catalyzed phosphorylation processes. In contrast to conventional electrochemical sensing methods, this approach avoids the requirement of complex labeling and washing procedures.
Collapse
Affiliation(s)
- Meijuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, P. R. China
| | - Xihan Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, P. R. China
| | - Xianghui Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, P. R. China
| |
Collapse
|
6
|
Liu T, Zhang C, Huo S, Zhou Y, Yi Y, Zhu G. Target-Controlled Redox Reaction and Ru(II) Release of a Smart Metal-Organic Framework Nanomaterial for Highly Sensitive Ratiometric Homogeneous Electroanalysis of Cadmium(II). Inorg Chem 2023; 62:17425-17432. [PMID: 37812810 DOI: 10.1021/acs.inorgchem.3c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
In this work, a highly sensitive ratiometric homogeneous electroanalysis (HEA) strategy of cadmium(II) (Cd2+) was proposed via a Cd2+-controlled redox reaction and Ru(bpy)32+ (Ru(II)) release from a smart metal-organic framework (MOF) nanomaterial. For achieving this purpose, Ru(II) was entrapped ingeniously into the pores of an MOF material (UiO-66-NH2) and subsequently gated by the double-strand hybrids of a Cd2+-aptamer (Apt) and its complementary sequences (CP) to form a novel smart nanomaterial (denoted as Ru@UiO-66-NH2); meanwhile, Fe(III) was selected as an additional probe present in electrolyte to facilitate the Ru(II) redox reaction: Fe(III) + Ru(II) → Fe(II) + Ru(III). Owing to the strong binding effect of the Cd2+ target to the specific Apt, the Apt-CP hybridization at Ru@UiO-66-NH2 would be destroyed in the presence of Cd2+, and the related Apt was further induced away from the smart nanomaterial, leading to the opening of the gate and release of Ru(II). Meanwhile, the released Ru(II) was quickly oxidized chemically by Fe(III) to Ru(III). On the basis of the generated Ru(III) and consumed Fe(III), the ratio of the reduction currents between Ru(III) and Fe(III) exhibits an enhancement and it is dependent on the level of Cd2+; thus, a novel HEA strategy of Cd2+ was then designed. Under the optimal conditions, the HEA sensor shows a wide linearity ranging from 10.0 pM to 500.0 nM, and the achieved detection limit of Cd2+ is 3.3 pM. The as-designed ratiometric HEA strategy not only offers a unique idea to realize a simple and sensitive assay for Cd2+ but also possesses significant potential as an effective tool to be introduced for other target analysis just via altering the specific Apt.
Collapse
Affiliation(s)
- Tingting Liu
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, P.R. China
| | - Conglin Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shuhao Huo
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yifan Zhou
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yinhui Yi
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, P.R. China
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha 410019, P.R. China
- The Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, P.R. China
| | - Gangbing Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
7
|
Liu L, Peng M, Liang Z, Wu H, Yan H, Zhou YG. Sensitive quantification of mercury ions in real water systems based on an aggregation-collision electrochemical detection. Anal Chim Acta 2023; 1276:341638. [PMID: 37573116 DOI: 10.1016/j.aca.2023.341638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Nanoparticle impact electrochemistry (NIE) is an emerging electroanalytical technique that has been utilized to the sensitive detection of a wide range of biological species. So far, the NIE based trace ion detection is largely unexplored due to the lack of effective signal amplification strategies. We herein develop an NIE-based electrochemical sensing platform that utilizes T-Hg2+-T coordination induced AgNP aggregation to detect Hg2+ in aqueous solution. The proposed aggregation-collision strategy enables highly sensitive and selective detection. A dual-mode analysis based on the change in impact frequency and oxidative charge of the anodic oxidation of the AgNPs in NIE allows for more accurate self-validated quantification. Furthermore, the current NIE-based sensor demonstrates reliable analysis of Hg2+ of real water samples, showing great potential for practical environmental monitoring and point-of-care testing (POCT) applications.
Collapse
Affiliation(s)
- Lizhen Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Meihong Peng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Zerong Liang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Hong Wu
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, 410000, China.
| | - Hailong Yan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China.
| |
Collapse
|
8
|
Qiu X, Dai Q, Tang H, Li Y. Multiplex Assays of MicroRNAs by Using Single Particle Electrochemical Collision in a Single Run. Anal Chem 2023; 95:13376-13384. [PMID: 37603691 DOI: 10.1021/acs.analchem.3c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
It is important to quantify multiple biomarkers in a single run due to the advantages of precious samples and diagnostic accuracy. Based on the distinguishability of two types of current signals from single particle electrochemical collision (SPEC), step-type current transients produced by Pt nanoparticles (PtNPs) catalyzed hydrazine oxidation and peak-type current transients produced by Ag nanoparticles (AgNPs) oxidation, a kind of multiplex immunoassay of target microRNAs (miRNA-21 and Let-7a) have been established during SPEC in a single run. When the single-stranded DNA (ssDNA1) that was perfectly complementary to miRNA-21 was coupled to the surface of PtNPs, the SPEC of PtNPs electrocatalysis was inhibited and the step-type current transients disappeared, while the single-stranded DNA (ssDNA2) that was perfectly complementary to Let-7a was coupled to the surface of AgNPs, the SPEC of AgNPs oxidation was inhibited, and the peak-type current transients disappeared, thus the signals were in the "off" state at this time. After that, miRNA-21 and Let-7a were added into solution, complementary base pairing disrupted the weak DNA-NP interaction and restored the electrocatalysis of PtNPs and the electrooxidation of AgNPs, and the step-type current signals and peak-type current signals were in the "on" state. Moreover, the frequencies from two different recovered signals (PtNPs catalysis and AgNPs oxidation) corresponded to the amount of added miRNA-21 and Let-7a, thus a multiplex immunoassay method for dual quantification of miRNA-21 and Let-7a in a single run was established.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Qingshan Dai
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| |
Collapse
|
9
|
Zeng Z, Xue A, Wang H, Zha X, Ji Z. Effects of various hyperopia intervention levels on male college students' gait kinematics. Front Physiol 2023; 14:1161711. [PMID: 37346490 PMCID: PMC10281504 DOI: 10.3389/fphys.2023.1161711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Hyperopia is a common blurred vision phenomenon that affects postural control in gait; however, current research has focused on the alteration and correction of hyperopia's physiological characteristics, ignoring the effect of hyperopia on gait kinematic characteristics. The effect of hyperopia on the basic form of movement walking is a worthy concern. Objective: To investigate the gait kinematic characteristics of male college students with varying degrees of visual acuity (normal vision, hyperopia 150°, and hyperopia 450°), as well as to provide a theoretical foundation for the effect of visual acuity on gait and fall risk reduction. Methods: Twenty-two male college students with normal visual acuity were chosen. Their vision was tested using a standard visual acuity logarithm table at normal and with 150° and 450° concave lenses. Gait kinematic data were collected under normal vision and hyperopic conditions using the PN3 Pro advanced inertial motion capture system and Axis Studio application program. Results and conclusion: 1. The change of center of gravity in Pre-double support was smaller than normal vision; Late-single support and Late-swing was larger than normal vision; 2. The percentage of the double-leg support decreased; the percentage of the single-leg support and the Late-swing increased; 3. For the joints' range of motion, Trunk flexion and extension range of motion in Pre-single support, Late-double support and Pre-swing smaller than normal visual acuity, and Late-swing larger than normal; hip internal abduction and adduction and internal and external rotation are larger than normal vision in Late-single support; knee and ankle in abduction and adduction direction are larger than normal vision in the swing stage; hip flexion and extension, internal external rotation are larger than normal vision in the swing stage. Hyperopic interventions have an impact on the kinematic characteristics of gait in male college students, mainly in terms of altered balance, increased instability, increased difficulty in maintaining trunk stability, and increased risk of injury.
Collapse
Affiliation(s)
- Zhaohong Zeng
- School of Physical Education and Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Aochuan Xue
- School of Physical Education and Health, Zunyi Medical University, Zunyi, Guizhou, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Huihui Wang
- School of Physical Education and Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianjun Zha
- School of Physical Education and Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhongqiu Ji
- School of Physical Education and Sports, Beijing Normal University, Beijing, China
| |
Collapse
|
10
|
Liu J, Jiang Y, Wen W, Zhang X, Wu Z, Wang S. Enhanced Single-Particle Collision Electrochemistry at Polysulfide-Functionalized Microelectrodes for SARS-CoV-2 Detection. ACS Sens 2023; 8:2011-2020. [PMID: 37083364 PMCID: PMC10157629 DOI: 10.1021/acssensors.3c00181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Single-particle collision electrochemistry (SPCE) has shown great promise in biosensing applications due to its high sensitivity, high flux, and fast response. However, a low effective collision frequency and a large number of interfering substances in complex matrices limit its broad application in clinical samples. Herein, a novel and universal SPCE biosensor was proposed to realize sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on the collision and oxidation of single silver nanoparticles (Ag NPs) on polysulfide-functionalized gold ultramicroelectrodes (Ps-Au UMEs). Taking advantage of the strong interaction of the Ag-S bond, collision and oxidation of Ag NPs on the Ps-Au UME surface could be greatly promoted to generate enhanced Faraday currents. Compared with bare Au UMEs, the collision frequency of Ps-Au UMEs was increased by 15-fold, which vastly improved the detection sensitivity and practicability of SPCE in biosensing. By combining magnetic separation, liposome encapsulation release, and DNAzyme-assisted signal amplification, the SPCE biosensor provided a dynamic range of 5 orders of magnitude for spike proteins with a detection limit of 6.78 fg/mL and a detection limit of 21 TCID50/mL for SARS-CoV-2. Furthermore, SARS-CoV-2 detection in nasopharyngeal swab samples of infected patients was successfully conducted, indicating the potential of the SPCE biosensor for use in clinically relevant diagnosis.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease
Control and Prevention, Wuhan 430079, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| |
Collapse
|