1
|
Chen H, Xia L, Li G. Recent progress of chiral metal-organic frameworks in enantioselective separation and detection. Mikrochim Acta 2024; 191:640. [PMID: 39356328 DOI: 10.1007/s00604-024-06729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Chiral compounds are abundantly distributed in both the natural world and biological systems. It is crucial to identify and detect chiral compounds in living systems or to separate and determine them in the natural environment. Many researchers have developed a range of chiral materials with different functionalizations to separate and detect chiral substances. Chiral metal-organic frameworks (CMOFs) have the potential to be used in enantioselective separation and detection due to their large surface areas, regulated framework topologies, particular substrate interactions, and accessible chiral sites. CMOFs contribute significantly to the development of enantiomer separation and detection in medicine, agriculture, food, environment, and other fields. This review focuses on four synthesis methods of CMOFs and their applications in chiral separation and chiral sensing in the past five years, mainly including chromatographic separation, membrane separation, optical sensing, electrochemical sensing, and other sensing methods. Finally, the challenges and potential growth direction of CMOFs in enantiomer separation and detection are discussed and prospected.
Collapse
Affiliation(s)
- Huiting Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
2
|
Yang K, Wang R, Lu J, Wang J, Liao X, Wang C. A covalent organic framework nanosheet-nanochannel composite with signal amplification strategy for electrochemical enantioselective recognition. Talanta 2024; 277:126331. [PMID: 38823324 DOI: 10.1016/j.talanta.2024.126331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Recognition and separation of chiral isomers are of great importance in both industrial and biological applications. However, owing to identical molecular formulas and chemical properties of enantiomers, signal transduction and amplification are still two major challenges in chiral sensing. In this study, we developed an enantioselective device by integrating chiral covalent organic framework nanosheets (CONs) with nanochannels for sensitive identification and quantification of enantiomers. Using 3,4-dihydroxyphenylalanine (DOPA) as the model analyte, the as-prepared chiral nanofluidic device exhibits a remarkable chiral recognition ability to l-DOPA than d-DOPA. More importantly, due to the chelation of DOPA with Fe3+ ions, it can efficiently block the ion transport through channel and shield the channel surface charge, which will amplify the difference in the electrochemical response of l-DOPA and d-DOPA. Therefore, a sensitive chiral recognition can be achieved using the present nanofluidic device coupled using electrochemical amplification strategy. Notably, using this method, an ultra-low concentration of l-DOPA (as low as 0.21 pM) can be facilely and successfully detected with a linear range of 1 pM-10 μM. This study provides a reliable and sensitive approach for achieving highly selective detection of chiral molecules.
Collapse
Affiliation(s)
- Kun Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ruyi Wang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Junjian Lu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Honors college, Nanjing Normal University, Nanjing, 210023, China
| | - Jin Wang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuewei Liao
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Analytical & Testing Center, Nanjing Normal University, Nanjing, 210023, China.
| | - Chen Wang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Niu X, Zhao R, Yuan M, Liu Y, Yang X, Li H, Xu H, Wang K. Enhanced Enantioselective Discrimination Regulated by Achiral Ligands in Chiral Metal-Organic Frameworks. ACS Sens 2024; 9:4069-4078. [PMID: 39136380 DOI: 10.1021/acssensors.4c01014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Enantioselective recognition is a fundamental property of chiral linkers in chiral metal-organic frameworks (CMOFs). However, clarifying the efficient enantioselective discrimination tailored by achiral linkers remains challenging to explain the chiral recognition mechanism and efficiency. Here, two CMOFs ([Zn2(l-Phe)2(bpa)2]n and [Zn2(l-Phe)2(bpe)2]n) with the completely different enantioselective recognition are synthesized from different nonchiral ligands and the same chiral ligands. The enantioselective recognition of CMOF is undoubtedly related to l-Phe, which differs in the hydrogen bonding to the Trp enantiomer. However, the electrochemical signals are weak and undifferentiated. [Zn2(l-Phe)2(bpe)2]n produces a flattened coplanar conformation with the -C═C- tether in the achiral ligand. The flattened achiral bpee ligand and its surrounding chiral phenylalanine molecules interact through multiple π-π stacking and hydrogen bonding, which together create a chiral sensor that facilitates the recognition of l-Trp. However, [Zn2(l-Phe)2(bpa)2]n produces a stepped conformation due to the -C-C- tether in the achiral ligand; despite the recognition effect of bpea, the recognition is unsatisfactory. Therefore, the chiral recognition of the two CMOFs stems from the synergistic effect between chiral and achiral ligands. This work shows that nonchiral ligands are also crucial in determining enantiomeric discrimination and opens up a new avenue for designing chiral materials.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xing Yang
- College of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hui Xu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| |
Collapse
|
4
|
Hosseini F, Dashtian K, Golzani M, Ejraei Z, Zare-Dorabei R. Remote magnetically stimulated xanthan-biochar-Fe3O 4-molecularly imprinted biopolymer hydrogel toward electrochemical enantioselection of l-tryptophan. Anal Chim Acta 2024; 1316:342837. [PMID: 38969427 DOI: 10.1016/j.aca.2024.342837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
Monitoring the levels of L-Tryptophan (L-Trp) in body fluids is crucial due to its significant role in metabolism and protein synthesis, which ultimately affects neurological health. Herein, we have developed a novel magneto-responsive electrochemical enantioselective sensor for the recognition of L-Trp based on oriented biochar derived from Loofah, Fe3O4 nanoparticles, and molecularly imprinted polydopamine (MIPDA) in xanthan hydrogel. The successful synthesis of these materials has been confirmed through physicochemical and electrochemical characterization. Various operational factors such as pH, response time, loading sample volume, and loading of active materials were optimized. As a result, the sensor exhibited an affordable linear range of 1.0-60.0 μM, with a desirable limit of detection of 0.44 μM. Furthermore, the proposed electrochemical sensor demonstrated good reproducibility and desirable selectivity for the determination of L-Trp, making it suitable for analyzing L-Trp levels in human plasma and serum samples. The development presented offers an appealing, easily accessible, and efficient strategy. It utilizes xanthan hydrogel to improve mass transfer and adhesion, biochar-stabilized Fe3O4 to facilitate magnetic orientation and accelerate mass transfer and sensitivity, and polydopamine MIP to enhance selectivity. This approach enables on-site evaluation of L-Trp levels, which holds significant value for healthcare monitoring and early detection of related conditions.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mojdeh Golzani
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zahra Ejraei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
5
|
Zhang H, Cheng Q, Pei H, He S, Guo R, Liu N, Mo Z. Synthesis Strategies, Preparation Methods, and Applications of Chiral Metal-Organic Frameworks. Chemistry 2024; 30:e202401091. [PMID: 38625048 DOI: 10.1002/chem.202401091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Chiral Metal-Organic Frameworks (CMOFs) is a kind of material with great application value in recent years. Formed by the coordination of metal ions or metal clusters with organic ligands. It has ordered and adjustable pores, multi-dimensional network structure, large specific surface area and excellent adsorption properties. This material structure combines the properties of metal-organic frameworks (MOFs) with the chiral properties of chiral molecules. It has great advantages in catalysis, adsorption, separation and other fields. Therefore, it has a wide range of applications in chemistry, biology, medicine and materials science. In this paper, various synthesis strategies and preparation methods of chiral metal-organic frameworks are reviewed from different perspectives, and the advantages of each method are analyzed. In addition, the applications of chiral metal-organic framework materials in enantiomer recognition and separation, circular polarization luminescence and asymmetric catalysis are systematically summarized, and the corresponding mechanisms are discussed. Finally, the challenges and prospects of the development of chiral metal-organic frame materials are analyzed in detail.
Collapse
Affiliation(s)
- Hui Zhang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Qingsong Cheng
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Wang F, Tan L, Li J, Cai W, Wu D, Kong Y. π-π + Interaction Promoting the Absorption of Electroactive Chiral Selectors into the Cavity of Conductive Covalent Organic Framework for Enantioselective Sensing of Electrochemically Silent Molecules. Anal Chem 2024; 96:7626-7633. [PMID: 38688014 DOI: 10.1021/acs.analchem.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
To date, achieving enantioselective electroanalysis for electrochemically silent chiral molecules is still highly desired. Here, an ionic covalent organic framework (COF) consisting of the pyridinium cation was derived from the tripyridinium Zincke salt and 1,4-phenylenediamine in a one-pot reaction. The electrochemical measurements revealed that the ionic backbone contributed to the electron transfer with a low charge transfer resistance. Besides, the π-π+ interaction between the pyridinium cation and ferrocenyl unit can promote the absorption of electroactive chiral ferrocenyl reagents into the hole of COF, so as to afford the electrochemical signals by themselves, replacing the testing enantiomers. As a result, the electroactive complex used as an electrochemical platform was highly effective at enantiomerically recognizing amino alcohols (prolinol, valinol, leucinol, and alaninol) and amino acids (methionine, serine, and penicillamine), giving the ratios of current intensity between l- and d-enantiomers in the range of 1.46-1.72. Moreover, the density functional theory calculations determined the possible intermolecular interactions between the testing enantiomers and chiral selector: namely, hydrogen bonds and electrostatic attractions. Overall, the present work offers an effective strategy to enlarge the electrochemical scope for chiral recognition based on electroactive chiral COFs.
Collapse
Affiliation(s)
- Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| |
Collapse
|
7
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Wang K. Enhancing Electrochemical Signal for Efficient Chiral Recognition by Encapsulating C 60 Fullerene into Chiral Lanthanum-Based MOFs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17361-17370. [PMID: 38556802 DOI: 10.1021/acsami.4c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Chiral metal-organic frameworks (MOFs) have attracted much attention due to their highly tunable regular microporous structures. However, chiral electrochemical recognition based on chiral MOFs is often limited by poor charge separation and slow charge transfer kinetics. In this case, C60 can be encapsulated into the cavity of [La(BTB)]n by virtue of host-guest interactions through π-π stacking to synthesize the chiral composite C60@[La(BTB)]n and amplify electrochemically controlled enantioselective interactions with the target enantiomers. A large electrostatic potential difference is generated in chiral C60@[La(BTB)]n due to the host-guest interaction and the inhomogeneity of the charge distribution, leading to the generation of a strong built-in electric field and thus an overall enhancement of the conductivity of the chiral material. Their enantioselective detection of tryptophan enantiomers was demonstrated by electrochemical measurement. The results showed that chiral MOF materials can be used for enantiomeric recognition. It is worth noting that this new material derived from the concept of host-guest interaction to enhance charge separation opens up unprecedented possibilities for future enantioselective recognition and separation.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
8
|
Niu X, Yuan M, Zhao R, Wang L, Liu Y, Zhao H, Li H, Yang X, Wang K. Fabrication strategies for chiral self-assembly surface. Mikrochim Acta 2024; 191:202. [PMID: 38492117 DOI: 10.1007/s00604-024-06278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Chiral self-assembly is the spontaneous organization of individual building blocks from chiral (bio)molecules to macroscopic objects into ordered superstructures. Chiral self-assembly is ubiquitous in nature, such as DNA and proteins, which formed the foundation of biological structures. In addition to chiral (bio) molecules, chiral ordered superstructures constructed by self-assembly have also attracted much attention. Chiral self-assembly usually refers to the process of forming chiral aggregates in an ordered arrangement under various non-covalent bonding such as H-bond, π-π interactions, van der Waals forces (dipole-dipole, electrostatic effects, etc.), and hydrophobic interactions. Chiral assembly involves the spontaneous process, which followed the minimum energy rule. It is essentially an intermolecular interaction force. Self-assembled chiral materials based on chiral recognition in electrochemistry, chiral catalysis, optical sensing, chiral separation, etc. have a broad application potential with the research development of chiral materials in recent years.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Luhua Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| |
Collapse
|
9
|
Liang J, Song Y, Zhao Y, Gao Y, Hou J, Yang G. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Mikrochim Acta 2023; 190:433. [PMID: 37814099 DOI: 10.1007/s00604-023-06011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
A chiral sensor for the electrochemical identification of tryptophan (Trp) isomers is described. The electrochemical sensor was prepared based on the combination of (a) carbon black (CB-COOH) as conductive material, (b) Cu2+-modified β-cyclodextrin (Cu-β-CD), and (c) β-CD-based metal-organic frameworks (β-CD-MOF) as chiral selectors. The Cu-β-CD can be self-assembled into the CB-COOH and β-CD-MOF through electrostatic interactions, which was characterized by zeta potential analysis. UV-vis spectroscopy proved that Cu-β-CD displays a higher combination for D-Trp than L-Trp, and the β-CD-MOF at the surface of the GCE has a higher affinity for L-Trp than D-Trp, which endow an easier permeation of L-Trp to the surface of the electrode, thus leading to a larger electrochemical signal of differential pulse voltammetry (DPV). The enantioselectivity for L-Trp over D-Trp (IL/ID) is 2.13, with a low detection limit for D-Trp (11.18 μM) and L-Trp (5.48 μM). In addition, the proposed chiral sensor can be chosen to determine the percentage of D-Trp in enantiomer mixture solutions and real sample detection with a recovery from 98.2 to 102.8% for L-Trp and 97.9 to 101.1% for D-Trp.
Collapse
Affiliation(s)
- Jiamin Liang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yuxin Song
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yanan Zhao
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yue Gao
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Juan Hou
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Guang Yang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China.
| |
Collapse
|