1
|
Althumayri M, Das R, Banavath R, Beker L, Achim AM, Ceylan Koydemir H. Recent Advances in Transparent Electrodes and Their Multimodal Sensing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405099. [PMID: 39120484 PMCID: PMC11481197 DOI: 10.1002/advs.202405099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Indexed: 08/10/2024]
Abstract
This review examines the recent advancements in transparent electrodes and their crucial role in multimodal sensing technologies. Transparent electrodes, notable for their optical transparency and electrical conductivity, are revolutionizing sensors by enabling the simultaneous detection of diverse physical, chemical, and biological signals. Materials like graphene, carbon nanotubes, and conductive polymers, which offer a balance between optical transparency, electrical conductivity, and mechanical flexibility, are at the forefront of this development. These electrodes are integral in various applications, from healthcare to solar cell technologies, enhancing sensor performance in complex environments. The paper addresses challenges in applying these electrodes, such as the need for mechanical flexibility, high optoelectronic performance, and biocompatibility. It explores new materials and innovative techniques to overcome these hurdles, aiming to broaden the capabilities of multimodal sensing devices. The review provides a comparative analysis of different transparent electrode materials, discussing their applications and the ongoing development of novel electrode systems for multimodal sensing. This exploration offers insights into future advancements in transparent electrodes, highlighting their transformative potential in bioelectronics and multimodal sensing technologies.
Collapse
Affiliation(s)
- Majed Althumayri
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| | - Ritu Das
- Department of Mechanical EngineeringKoç UniversitySariyerIstanbul34450Turkey
| | - Ramu Banavath
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| | - Levent Beker
- Department of Mechanical EngineeringKoç UniversitySariyerIstanbul34450Turkey
| | - Alin M. Achim
- School of Computer ScienceUniversity of BristolBristolBS8 1QUUK
| | - Hatice Ceylan Koydemir
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| |
Collapse
|
2
|
Alexandre-Franco MF, Kouider R, Kassir Al-Karany R, Cuerda-Correa EM, Al-Kassir A. Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview. MICROMACHINES 2024; 15:1137. [PMID: 39337797 PMCID: PMC11433824 DOI: 10.3390/mi15091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in polymer materials, such as flexible, biocompatible, and structurally robust polymers, have been pivotal in developing advanced microfluidic systems. Techniques like replica molding, microcontact printing, solvent-assisted molding, injection molding, and 3D printing are examined, highlighting their advantages and recent developments. Additionally, the review discusses the diverse applications of polymer-based microfluidic devices in biomedical diagnostics, drug delivery, organ-on-chip models, environmental monitoring, and industrial processes. This paper also addresses future challenges, including enhancing chemical resistance, achieving multifunctionality, ensuring biocompatibility, and scaling up production. By overcoming these challenges, the potential for widespread adoption and impactful use of polymer-based microfluidic technologies can be realized.
Collapse
Affiliation(s)
- María F Alexandre-Franco
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Rahmani Kouider
- Department of Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria
| | | | - Eduardo M Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Awf Al-Kassir
- School of Industrial Engineers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
3
|
Kim KR, Kang TW, Kim H, Lee YJ, Lee SH, Yi H, Kim HS, Kim H, Min J, Ready J, Millard-Stafford M, Yeo WH. All-in-One, Wireless, Multi-Sensor Integrated Athlete Health Monitor for Real-Time Continuous Detection of Dehydration and Physiological Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403238. [PMID: 38950170 PMCID: PMC11434103 DOI: 10.1002/advs.202403238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Indexed: 07/03/2024]
Abstract
Athletes are at high risk of dehydration, fatigue, and cardiac disorders due to extreme performance in often harsh environments. Despite advancements in sports training protocols, there is an urgent need for a non-invasive system capable of comprehensive health monitoring. Although a few existing wearables measure athlete's performance, they are limited by a single function, rigidity, bulkiness, and required straps and adhesives. Here, an all-in-one, multi-sensor integrated wearable system utilizing a set of nanomembrane soft sensors and electronics, enabling wireless, real-time, continuous monitoring of saliva osmolality, skin temperature, and heart functions is introduced. This system, using a soft patch and a sensor-integrated mouthguard, provides comprehensive monitoring of an athlete's hydration and physiological stress levels. A validation study in detecting real-time physiological levels shows the device's performance in capturing moments (400-500 s) of synchronized acute elevation in dehydration (350%) and physiological strain (175%) during field training sessions. Demonstration with a few human subjects highlights the system's capability to detect early signs of health abnormality, thus improving the healthcare of sports athletes.
Collapse
Affiliation(s)
- Ka Ram Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tae Woog Kang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hodam Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yoon Jae Lee
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sung Hoon Lee
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hoon Yi
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hyeon Seok Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jihee Min
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Jud Ready
- Electro-Optical Systems Laboratory, Georgia Tech Research Institute, Atlanta, GA, 30332, USA
| | | | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
4
|
Gao B, Jiang J, Zhou S, Li J, Zhou Q, Li X. Toward the Next Generation Human-Machine Interaction: Headworn Wearable Devices. Anal Chem 2024; 96:10477-10487. [PMID: 38888091 DOI: 10.1021/acs.analchem.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Wearable devices are lightweight and portable devices worn directly on the body or integrated into the user's clothing or accessories. They are usually connected to the Internet and combined with various software applications to monitor the user's physical conditions. The latest research shows that wearable head devices, particularly those incorporating microfluidic technology, enable the monitoring of bodily fluids and physiological states. Here, we summarize the main forms, functions, and applications of head wearable devices through innovative researches in recent years. The main functions of wearable head devices are sensor monitoring, diagnosis, and even therapeutic interventions. Through this application, real-time monitoring of human physiological conditions and noninvasive treatment can be realized. Furthermore, microfluidics can realize real-time monitoring of body fluids and skin interstitial fluid, which is highly significant in medical diagnosis and has broad medical application prospects. However, despite the progress made, significant challenges persist in the integration of microfluidics into wearable devices at the current technological level. Herein, we focus on summarizing the cutting-edge applications of microfluidic contact lenses and offer insights into the burgeoning intersection between microfluidics and head-worn wearables, providing a glimpse into their future prospects.
Collapse
Affiliation(s)
- Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingwen Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shu Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
5
|
Wei M, Zhou Q, Ma X, Gao B. Review of biomimetic ordered microstructures in advancing synergistic integration of adhesion and microfluidics. RSC Adv 2024; 14:11643-11658. [PMID: 38605897 PMCID: PMC11005026 DOI: 10.1039/d3ra07698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Many ordered arrangements are observable in the natural world, serving not only as pleasing aesthetics but also as functional improvements. These structured arrangements streamline cohesion while also facilitating the spontaneous drainage of liquids in microfluidics, resulting in effective separation and signal enhancement. Nevertheless, there is a substantial challenge when handling microstructured chips with microfluidic detection and adhesion. The arrangement of the adhesive interface's microstructure affects the liquid flow in the microfluidic chip, impacting the detection's sensitivity and accuracy. Additionally, the liquid in the microfluidic chip corrodes the adhesive material and structure, reducing the adhesion strength due to the hydration layer between the material and the contact interface. Therefore, this review explores the application of ordered structures in the integration of adhesion and microfluidics. We discussed the standard preparation method, appropriate materials, and the application of ordered structures in biomimetic adhesion and microfluidics. Furthermore, the paper discusses the major challenges in this field and provides opinions on its future developments.
Collapse
Affiliation(s)
- Meng Wei
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 China
| | - Xiaoming Ma
- Department of Orthopedics, Taizhou People's Hospital 366 Taihu Road Taizhou Jiangsu Province People's Republic of China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
6
|
Rodriguez EE, Zaccarelli M, Sterchele ED, Taccone FS. "NeuroVanguard": a contemporary strategy in neuromonitoring for severe adult brain injury patients. Crit Care 2024; 28:104. [PMID: 38561829 PMCID: PMC10985991 DOI: 10.1186/s13054-024-04893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Severe acute brain injuries, stemming from trauma, ischemia or hemorrhage, remain a significant global healthcare concern due to their association with high morbidity and mortality rates. Accurate assessment of secondary brain injuries severity is pivotal for tailor adequate therapies in such patients. Together with neurological examination and brain imaging, monitoring of systemic secondary brain injuries is relatively straightforward and should be implemented in all patients, according to local resources. Cerebral secondary injuries involve factors like brain compliance loss, tissue hypoxia, seizures, metabolic disturbances and neuroinflammation. In this viewpoint, we have considered the combination of specific noninvasive and invasive monitoring tools to better understand the mechanisms behind the occurrence of these events and enhance treatment customization, such as intracranial pressure monitoring, brain oxygenation assessment and metabolic monitoring. These tools enable precise intervention, contributing to improved care quality for severe brain injury patients. The future entails more sophisticated technologies, necessitating knowledge, interdisciplinary collaboration and resource allocation, with a focus on patient-centered care and rigorous validation through clinical trials.
Collapse
Affiliation(s)
- Edith Elianna Rodriguez
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mario Zaccarelli
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Terapia Intensiva e del Dolore, Scuola di Anestesia Rianimazione, Università degli Studi di Milano, Milan, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium.
| |
Collapse
|
7
|
Safarkhani M, Farasati Far B, Lima EC, Jafarzadeh S, Makvandi P, Varma RS, Huh Y, Ebrahimi Warkiani M, Rabiee N. Integration of MXene and Microfluidics: A Perspective. ACS Biomater Sci Eng 2024; 10:657-676. [PMID: 38241520 DOI: 10.1021/acsbiomaterials.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The fusion of MXene-based materials with microfluidics not only presents a dynamic and promising avenue for innovation but also opens up new possibilities across various scientific and technological domains. This Perspective delves into the intricate synergy between MXenes and microfluidics, underscoring their collective potential in material science, sensing, energy storage, and biomedical research. This intersection of disciplines anticipates future advancements in MXene synthesis and functionalization as well as progress in advanced sensing technologies, energy storage solutions, environmental applications, and biomedical breakthroughs. Crucially, the manufacturing and commercialization of MXene-based microfluidic devices, coupled with interdisciplinary collaborations, stand as pivotal considerations. Envisioning a future where MXenes and microfluidics collaboratively shape our technological landscape, addressing intricate challenges and propelling innovation forward necessitates a thoughtful approach. This viewpoint provides a comprehensive assessment of the current state of the field while outlining future prospects for the integration of MXene-based entities and microfluidics.
Collapse
Affiliation(s)
- Moein Safarkhani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684611367, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Avenida Bento Goncalves 9500, Caixa Postal 15003, Porto Alegre CEP 91501-970, Rio Grande do Sul, Brazil
| | - Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - YunSuk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|