1
|
He P, Wang H, Zhu A, Zhang Z, Sha J, Ni Z, Chen Y. Detection of Intrinsically Disordered Peptides by Biological Nanopore. Chem Asian J 2024; 19:e202400389. [PMID: 38865098 DOI: 10.1002/asia.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Intrinsically disordered protein regions (IDPRs) are pivotal in regulation of transcription and facilitation of signal transduction. Because of their multiple conformational states of structure, characterizing the highly flexible structures of IDPRs becomes challenging. Herein, we employed the wild-type (WT) aerolysin nanopore as a real-time biosensor for identification and monitoring of long peptides containing IDPRs. This sensor successfully identified three intrinsically disordered peptides, with the lengths up to 43 amino acids, by distinguishing the unique signatures of blockade current and duration time. The analysis of the binding constant revealed that interactions between the nanopore and peptides are critical for peptide translocation, which suggests that mechanisms beyond mere volume exclusion. Furthermore, we were able to compare the conformational stabilities of various IDPRs by examining the detailed current traces of blockade events. Our approach can detect the conformational changes of IDPR in a confined nanopore space. These insights broaden the understanding of peptide structural changes. The nanopore biosensor showed the potential to study the conformations change of IDPRs, IDPRs transmembrane interactions, and protein drug discovery.
Collapse
Affiliation(s)
- Pinyao He
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Haiyan Wang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- Engineering Research Center of New Light Sources Technology and Equipment, Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Anqi Zhu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhenyu Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
2
|
Wang R, Zhang Y, Ma QDY, Wu L. Recent advances of small molecule detection in nanopore sensing. Talanta 2024; 277:126323. [PMID: 38810384 DOI: 10.1016/j.talanta.2024.126323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Due to its advantages of label-free and highly sensitive, the resistive pulse sensing with a nanopore has recently become even more potent for the discrimination of analytes in single molecule level. Generally, a transient interruption of ion current originated from the captured molecule passing through a nanopore will provide the rich information on the structure, charge and translocation dynamics of the analytes. Therefore, nanopore sensors have been widely used in the fields of DNA sequencing, protein recognition, and the portable detection of varied macromolecules and particles. However, the conventional nanopore devices are still lack of sufficient selectivity and sensitivity to distinguish more metabolic molecules involving ATP, glucose, amino acids and small molecular drugs because it is hard to receive a large number of identifiable signals with the fabricated pores comparable in size to small molecules for nanopore sensing. For all this, a series of innovative strategies developed in the past decades have been summarized in this review, including host-guest recognition, engineering alteration of protein channel, the introduction of nucleic acid aptamers and various delivery carriers integrating signal amplification sections based on the biological and solid nanopore platforms, to achieve the high resolution for the small molecules sensing in micro-nano environment. These works have greatly enhanced the powerful sensing capabilities and extended the potential application of nanopore sensors.
Collapse
Affiliation(s)
- Runyu Wang
- College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210046, China
| | - Yinuo Zhang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210046, China
| | - Qianli D Y Ma
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210046, China.
| | - Lingzhi Wu
- College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210046, China.
| |
Collapse
|
3
|
Yuan C, Zhou F, Xu Z, Wu D, Hou P, Yang D, Pan L, Wang P. Functionalized DNA Origami-Enabled Detection of Biomarkers. Chembiochem 2024; 25:e202400227. [PMID: 38700476 DOI: 10.1002/cbic.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Biomarkers are crucial physiological and pathological indicators in the host. Over the years, numerous detection methods have been developed for biomarkers, given their significant potential in various biological and biomedical applications. Among these, the detection system based on functionalized DNA origami has emerged as a promising approach due to its precise control over sensing modules, enabling sensitive, specific, and programmable biomarker detection. We summarize the advancements in biomarker detection using functionalized DNA origami, focusing on strategies for DNA origami functionalization, mechanisms of biomarker recognition, and applications in disease diagnosis and monitoring. These applications are organized into sections based on the type of biomarkers - nucleic acids, proteins, small molecules, and ions - and concludes with a discussion on the advantages and challenges associated with using functionalized DNA origami systems for biomarker detection.
Collapse
Affiliation(s)
- Caiqing Yuan
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, China
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Zhou
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhihao Xu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dunkai Wu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, China
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Hou
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, China
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Pan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
4
|
Voorspoels A, Gevers J, Santermans S, Akkan N, Martens K, Willems K, Van Dorpe P, Verhulst AS. Design Principles of DNA-Barcodes for Nanopore-FET Readout, Based on Molecular Dynamics and TCAD Simulations. J Phys Chem A 2024. [PMID: 38712508 DOI: 10.1021/acs.jpca.4c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Nanopore field-effect transistor (NP-FET) devices hold great promise as sensitive single-molecule sensors, which provide CMOS-based on-chip readout and are also highly amenable to parallelization. A plethora of applications will therefore benefit from NP-FET technology, such as large-scale molecular analysis (e.g., proteomics). Due to its potential for parallelization, the NP-FET looks particularly well-suited for the high-throughput readout of DNA-based barcodes. However, to date, no study exists that unravels the bit-rate capabilities of NP-FET devices. In this paper, we design DNA-based barcodes by labeling a piece of double-stranded DNA with dumbbell-like DNA structures. We explore the impact of both the size of the dumbbells and their spacing on achievable bit-rates. The conformational fluctuations of this DNA-origami, as observed by molecular dynamics (MD) simulation, are accounted for when selecting label sizes. An experimentally informed 3D continuum nanofluidic-nanoelectronic device model subsequently predicts both the ionic current and FET signals. We present a barcode design for a conceptually generic NP-FET, with a 14 nm diameter pore, operating in conditions corresponding to experiments. By adjusting the spacing between the labels to half the length of the pore, we show that a bit-rate of 78 kbit·s-1 is achievable. This lies well beyond the state-of-the-art of ≈40 kbit·s-1, with significant headroom for further optimizations. We also highlight the advantages of NP-FET readout based on the larger signal size and sinusoidal signal shape.
Collapse
Affiliation(s)
- Aderik Voorspoels
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Juliette Gevers
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | - Nihat Akkan
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Koen Martens
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | - Pol Van Dorpe
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Anne S Verhulst
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| |
Collapse
|
5
|
He L, Charron M, Mensing P, Briggs K, Adams J, de Haan H, Tabard-Cossa V. DNA origami characterized via a solid-state nanopore: insights into nanostructure dimensions, rigidity and yield. NANOSCALE 2023; 15:14043-14054. [PMID: 37580994 DOI: 10.1039/d3nr01873c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Due to their programmability via specific base pairing, self-assembled DNA origami structures have proven to be useful for a wide variety of applications, including diagnostics, molecular computation, drug delivery, and therapeutics. Measuring and characterizing these structures is therefore of great interest and an important part of quality control. Here, we show the extent to which DNA nanostructures can be characterized by a solid-state nanopore; a non-destructive, label-free, single-molecule sensor capable of electrically detecting and characterizing charged biomolecules. We demonstrate that in addition to geometrical dimensions, nanopore sensing can provide information on the mechanical properties, assembly yield, and stability of DNA nanostructures. For this work, we use a model structure consisting of a 3 helix-bundle (3HB), i.e. three interconnected DNA double helices using a M13 scaffold folded twice on itself by short DNA staple strands, and translocate it through solid-state nanopores fabricated by controlled breakdown. We present detailed analysis of the passage characteristics of 3HB structures through nanopores under different experimental conditions which suggest that segments of locally higher flexibility are present along the nanostructure contour that allow for the otherwise rigid 3HB to fold inside nanopores. By characterizing partially melted 3HB structures, we find that locally flexible segments are likely due to short staple oligomers missing from the fully assembled structure. The 3HB used herein is a prototypical example to establish nanopores as a sensitive, non-destructive, and label-free alternative to conventional techniques such as gel electrophoresis with which to characterize DNA nanostructures.
Collapse
Affiliation(s)
- Liqun He
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Martin Charron
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Philipp Mensing
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Jonathan Adams
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Hendrick de Haan
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | | |
Collapse
|
6
|
Roelen Z, Briggs K, Tabard-Cossa V. Analysis of Nanopore Data: Classification Strategies for an Unbiased Curation of Single-Molecule Events from DNA Nanostructures. ACS Sens 2023; 8:2809-2823. [PMID: 37436112 PMCID: PMC10913896 DOI: 10.1021/acssensors.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Nanopores are versatile single-molecule sensors that are being used to sense increasingly complex mixtures of structured molecules with applications in molecular data storage and disease biomarker detection. However, increased molecular complexity presents additional challenges to the analysis of nanopore data, including more translocation events being rejected for not matching an expected signal structure and a greater risk of selection bias entering this event curation process. To highlight these challenges, here, we present the analysis of a model molecular system consisting of a nanostructured DNA molecule attached to a linear DNA carrier. We make use of recent advances in the event segmentation capabilities of Nanolyzer, a graphical analysis tool provided for nanopore event fitting, and describe approaches to the event substructure analysis. In the process, we identify and discuss important sources of selection bias that emerge in the analysis of this molecular system and consider the complicating effects of molecular conformation and variable experimental conditions (e.g., pore diameter). We then present additional refinements to existing analysis techniques, allowing for improved separation of multiplexed samples, fewer translocation events rejected as false negatives, and a wider range of experimental conditions for which accurate molecular information can be extracted. Increasing the coverage of analyzed events within nanopore data is not only important for characterizing complex molecular samples with high fidelity but is also becoming essential to the generation of accurate, unbiased training data as machine-learning approaches to data analysis and event identification continue to increase in prevalence.
Collapse
Affiliation(s)
- Zachary Roelen
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
7
|
Xi G, Wu L, Meng H, Li F, Ge Q, Tu J. Discriminating Single Nucleotide Variations in Solid-State Nanopores by Evaluating the Combination Efficiency between DNA Polymerase and Its Substrate. J Phys Chem B 2023. [PMID: 37197998 DOI: 10.1021/acs.jpcb.3c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A single nucleotide variant present between two otherwise identical nucleic acids will have unexpected functional consequences frequently. Here, a neoteric single nucleotide variation (SNV) detection assay that integrates two complementary nanotechnology systems, nanoassembly technology and an ingenious nanopore biosensing platform, has been applied to this research. Specifically, we set up a detection system to reflect the binding efficiency of the polymerase and nanoprobe through the difference of nanopore signals and then explore the effect of base mutation at the binding site. In addition, machine learning based on support vector machines is used to automatically classify characteristic events mapped by nanopore signals. Our system reliably discriminates single nucleotide variants at binding sites, even possessing the recognition among transitions, transversions, and hypoxanthine (base I). Our results demonstrate the potential of solid-state nanopore detection for SNV and provide some ideas for expanding solid-state nanopore detection platforms.
Collapse
Affiliation(s)
- Guohao Xi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingzhi Wu
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
| | - Hao Meng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fuyao Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Hong H, Wei J, Lei X, Chen H, Sarro PM, Zhang G, Liu Z. Study on the controllability of the fabrication of single-crystal silicon nanopores/nanoslits with a fast-stop ionic current-monitored TSWE method. MICROSYSTEMS & NANOENGINEERING 2023; 9:63. [PMID: 37206700 PMCID: PMC10188523 DOI: 10.1038/s41378-023-00532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023]
Abstract
The application of single-crystal silicon (SCS) nanopore structures in single-molecule-based analytical devices is an emerging approach for the separation and analysis of nanoparticles. The key challenge is to fabricate individual SCS nanopores with precise sizes in a controllable and reproducible way. This paper introduces a fast-stop ionic current-monitored three-step wet etching (TSWE) method for the controllable fabrication of SCS nanopores. Since the nanopore size has a quantitative relationship with the corresponding ionic current, it can be regulated by controlling the ionic current. Thanks to the precise current-monitored and self-stop system, an array of nanoslits with a feature size of only 3 nm was obtained, which is the smallest size ever reported using the TSWE method. Furthermore, by selecting different current jump ratios, individual nanopores of specific sizes were controllably prepared, and the smallest deviation from the theoretical value was 1.4 nm. DNA translocation measurement results revealed that the prepared SCS nanopores possessed the excellent potential to be applied in DNA sequencing.
Collapse
Affiliation(s)
- Hao Hong
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| | - Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| | - Xin Lei
- School of Chemistry, Beihang University, 100084 Beijing, China
| | - Haiyun Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, 100084 Beijing, China
| | - Pasqualina M. Sarro
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Guoqi Zhang
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
9
|
Recent Advances in Aptamer‐Based Nanopore Sensing at Single‐Molecule Resolution. Chem Asian J 2022; 17:e202200364. [DOI: 10.1002/asia.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Indexed: 11/07/2022]
|
10
|
Li F, Luo Y, Xi G, Fu J, Tu J. Single-Molecule Analysis of DNA structures using nanopore sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
He L, Tessier DR, Briggs K, Tsangaris M, Charron M, McConnell EM, Lomovtsev D, Tabard-Cossa V. Digital immunoassay for biomarker concentration quantification using solid-state nanopores. Nat Commun 2021; 12:5348. [PMID: 34504071 PMCID: PMC8429538 DOI: 10.1038/s41467-021-25566-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Single-molecule counting is the most accurate and precise method for determining the concentration of a biomarker in solution and is leading to the emergence of digital diagnostic platforms enabling precision medicine. In principle, solid-state nanopores—fully electronic sensors with single-molecule sensitivity—are well suited to the task. Here we present a digital immunoassay scheme capable of reliably quantifying the concentration of a target protein in complex biofluids that overcomes specificity, sensitivity, and consistency challenges associated with the use of solid-state nanopores for protein sensing. This is achieved by employing easily-identifiable DNA nanostructures as proxies for the presence (“1”) or absence (“0”) of the target protein captured via a magnetic bead-based sandwich immunoassay. As a proof-of-concept, we demonstrate quantification of the concentration of thyroid-stimulating hormone from human serum samples down to the high femtomolar range. Further optimization to the method will push sensitivity and dynamic range, allowing for development of precision diagnostic tools compatible with point-of-care format. The concentration of a biomarker in solution can be determined by counting single molecules. Here the authors report a digital immunoassay scheme with solid-state nanopore readout to quantify a target protein and use this to measure thyroid-stimulating hormone from human serum.
Collapse
Affiliation(s)
- Liqun He
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | - Martin Charron
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
12
|
Ren R, Sun M, Goel P, Cai S, Kotov NA, Kuang H, Xu C, Ivanov AP, Edel JB. Single-Molecule Binding Assay Using Nanopores and Dimeric NP Conjugates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103067. [PMID: 34323323 PMCID: PMC11469134 DOI: 10.1002/adma.202103067] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Indexed: 06/13/2023]
Abstract
The ability to measure biomarkers, both specifically and selectively at the single-molecule level in biological fluids, has the potential to transform the diagnosis, monitoring, and therapeutic intervention of diseases. The use of nanopores has been gaining prominence in this area, not only for sequencing but more recently in screening applications. The selectivity of nanopore sensing can be substantially improved with the use of labels, but substantial challenges remain, especially when trying to differentiate between bound from unbound targets. Here highly sensitive and selective molecular probes made from nanoparticles (NPs) that self-assemble and dimerize upon binding to a biological target are designed. It is shown that both single and paired NPs can be successfully resolved and detected at the single-molecule nanopore sensing and can be used for applications such as antigen/antibody detection and microRNA (miRNA) sequence analysis. It is expected that such technology will contribute significantly to developing highly sensitive and selective strategies for the diagnosis and screening of diseases without the need for sample processing or amplification while requiring minimal sample volume.
Collapse
Affiliation(s)
- Ren Ren
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Maozhong Sun
- Key Lab of Synthetic and Biological ColloidsMinistry of EducationState Key Lab of Food Science and TechnologyInternational Joint Research Laboratory for Biointerface and BiodetectionSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Pratibha Goel
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Shenglin Cai
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Nicholas A. Kotov
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Materials Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Hua Kuang
- Key Lab of Synthetic and Biological ColloidsMinistry of EducationState Key Lab of Food Science and TechnologyInternational Joint Research Laboratory for Biointerface and BiodetectionSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological ColloidsMinistry of EducationState Key Lab of Food Science and TechnologyInternational Joint Research Laboratory for Biointerface and BiodetectionSchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Aleksandar P. Ivanov
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| | - Joshua B. Edel
- Department of ChemistryMolecular Science Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
13
|
Xie S, Ai L, Cui C, Fu T, Cheng X, Qu F, Tan W. Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9542-9560. [PMID: 33595277 DOI: 10.1021/acsami.0c19562] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the past decades, various nanomaterials with unique properties have been explored for bioapplications. Meanwhile, aptamers, generated from the systematic evolution of ligands by exponential enrichment technology, are becoming an indispensable element in the design of functional nanomaterials because of their small size, high stability, and convenient modification, especially endowing nanomaterials with recognition capability to specific targets. Therefore, the incorporation of aptamers into nanomaterials offers an unprecedented opportunity in the research fields of diagnostics and therapeutics. Here, we focus on recent advances in aptamer-embedded nanomaterials for bioapplications. First, we briefly introduce the properties of nanomaterials that can be functionalized with aptamers. Then, the applications of aptamer-embedded nanomaterials in cellular analysis, imaging, targeted drug delivery, gene editing, and cancer diagnosis/therapy are discussed. Finally, we provide some perspectives on the challenges and opportunities that have arisen from this promising area.
Collapse
Affiliation(s)
- Sitao Xie
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Fengli Qu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- College of Chemistry and Chemical, Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, P. R. China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
14
|
Beamish E, Tabard-Cossa V, Godin M. Digital counting of nucleic acid targets using solid-state nanopores. NANOSCALE 2020; 12:17833-17840. [PMID: 32832949 DOI: 10.1039/d0nr03878d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Assays targeting biomarkers for the early diagnosis of disease demand a sensing platform with a high degree of specificity and sensitivity. In this work, we developed and characterized a solid-state nanopore-based sensing assay for the detection of short nucleic acid targets with readily customizable nanostructured DNA probe sets. We explored the electrical signatures of three DNA nanostructures to determine their performance as probe sets in a digital counting scheme to quantify the concentration of targets. With these probes, we demonstrate the specific, simultaneous detection of two different DNA targets in a 2-plex assay, and separately that of microRNA-155, a biomarker linked to various human cancers. In addition to specific target detection, our scheme demonstrated the ability to quantify at least six different microRNA concentrations. These results highlight the potential for solid-state nanopores as single-molecule counters for future digital diagnostic technologies.
Collapse
Affiliation(s)
- Eric Beamish
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
15
|
Reynaud L, Bouchet-Spinelli A, Raillon C, Buhot A. Sensing with Nanopores and Aptamers: A Way Forward. SENSORS 2020; 20:s20164495. [PMID: 32796729 PMCID: PMC7472324 DOI: 10.3390/s20164495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
In the 90s, the development of a novel single molecule technique based on nanopore sensing emerged. Preliminary improvements were based on the molecular or biological engineering of protein nanopores along with the use of nanotechnologies developed in the context of microelectronics. Since the last decade, the convergence between those two worlds has allowed for biomimetic approaches. In this respect, the combination of nanopores with aptamers, single-stranded oligonucleotides specifically selected towards molecular or cellular targets from an in vitro method, gained a lot of interest with potential applications for the single molecule detection and recognition in various domains like health, environment or security. The recent developments performed by combining nanopores and aptamers are highlighted in this review and some perspectives are drawn.
Collapse
|
16
|
Cui M, Ma Y, Wang L, Wang Y, Wang S, Luo X. Antifouling sensors based on peptides for biomarker detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Qiao L, Slater GW. Capture of rod-like molecules by a nanopore: Defining an "orientational capture radius". J Chem Phys 2020; 152:144902. [PMID: 32295359 DOI: 10.1063/5.0002044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Both the translational diffusion coefficient D and the electrophoretic mobility μ of a short rod-like molecule (such as dsDNA) that is being pulled toward a nanopore by an electric field should depend on its orientation. Since a charged rod-like molecule tends to orient in the presence of an inhomogeneous electric field, D and μ will change as the molecule approaches the nanopore, and this will impact the capture process. We present a simplified study of this problem using theoretical arguments and Langevin dynamics simulations. In particular, we introduce a new orientational capture radius, which we compare to the capture radius for the equivalent point-like particle, and we discuss the different physical regimes of orientation during capture and the impact of initial orientations on the capture time.
Collapse
Affiliation(s)
- Le Qiao
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gary W Slater
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
18
|
Qiao L, Ignacio M, Slater GW. Voltage-driven translocation: Defining a capture radius. J Chem Phys 2019; 151:244902. [DOI: 10.1063/1.5134076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Le Qiao
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Maxime Ignacio
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gary W. Slater
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
19
|
Waugh M, Briggs K, Gunn D, Gibeault M, King S, Ingram Q, Jimenez AM, Berryman S, Lomovtsev D, Andrzejewski L, Tabard-Cossa V. Solid-state nanopore fabrication by automated controlled breakdown. Nat Protoc 2019; 15:122-143. [DOI: 10.1038/s41596-019-0255-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/10/2019] [Indexed: 11/09/2022]
|
20
|
Beamish E, Tabard-Cossa V, Godin M. Programmable DNA Nanoswitch Sensing with Solid-State Nanopores. ACS Sens 2019; 4:2458-2464. [PMID: 31449750 DOI: 10.1021/acssensors.9b01053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sensing performance of solid-state nanopores is limited by the fast kinetics of small molecular targets. To address this challenge, we translate the presence of a small target to a large conformational change of a long polymer. In this work, we explore the performance of solid-state nanopores for sensing the conformational states of molecular nanoswitches assembled using the principles of DNA origami. These programmable single-molecule switches show great potential in molecular diagnostics and long-term information storage. We investigate the translocation properties of linear and looped nanoswitch topologies using nanopores fabricated in thin membranes, ultimately comparing the performance of our nanopore platform for detecting the presence of a DNA analogue to a sequence found in a Zika virus biomarker gene with that of conventional gel electrophoresis. We found that our system provides a high-throughput method for quantifying several target concentrations within an order of magnitude by sensing only several hundred molecules using electronics of moderate bandwidth that are conventionally used in nanopore sensing systems.
Collapse
|
21
|
He L, Karau P, Tabard-Cossa V. Fast capture and multiplexed detection of short multi-arm DNA stars in solid-state nanopores. NANOSCALE 2019; 11:16342-16350. [PMID: 31386731 DOI: 10.1039/c9nr04566j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fast and multiplexed detection of low-abundance disease biomarkers at the point-of-need would transform medicine. Nanopores have gained attention as single-molecule counters to electrically detect a range of biological molecules in a handheld format, but challenges remain before diagnostic applications can emerge. For solid-state nanopore sensors, the specificity of the ionic current signatures and the rate of target capture required to simultaneously recognize and rapidly count a mixture of molecular targets in a complex sample are active areas of research. Herein, we study the capture and translocation characteristics of short N-arm star shaped DNA nanostructures to evaluate their potential as a family of surrogate label molecules for biomarkers of interest, designed for fast and reliable multiplexed detection based on conductance blockages. Simple hybridization of a varying number of short, easily synthesized 50 bp ssDNA strands allows the number of arms in the star shape DNA to be controlled from N = 3 to 12. By introducing more arms to the nanostructures, we show that we can controllably increase the nanopore signal-to-noise ratio for a range of pore sizes, producing conductance blockages which increase linearly with the number of arms, and we demonstrate conductance-based multiplexing through simultaneous detection of three such nanostructures. Moreover, the increased molecular signal strength facilitates detection under salt concentration asymmetries, allowing for a capture rate enhancement of two orders of magnitude without compromising the nanopore temporal and ionic signals. Together, these attributes (strong signal, multiplexing potential and increased counting rate) make the N-arm star DNA-based nanostructures promising candidates as proxy labels for the detection of multiple biomarkers of interest in future high sensitivity single-molecule solid-state nanopore-based assays.
Collapse
Affiliation(s)
- Liqun He
- Department of Physics, University of Ottawa, Ottawa, ON, Canada.
| | - Philipp Karau
- Department of Physics, University of Ottawa, Ottawa, ON, Canada.
| | | |
Collapse
|
22
|
Weckman NE, Ermann N, Gutierrez R, Chen K, Graham J, Tivony R, Heron A, Keyser UF. Multiplexed DNA Identification Using Site Specific dCas9 Barcodes and Nanopore Sensing. ACS Sens 2019; 4:2065-2072. [PMID: 31340637 DOI: 10.1021/acssensors.9b00686] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decorating double-stranded DNA with dCas9 barcodes to identify characteristic short sequences provides an alternative to fully sequencing DNA samples for rapid and highly specific analysis of a DNA sample. Solid state nanopore sensors are especially promising for this type of single-molecule sensing because of the ability to analyze patterns in the ionic current signatures of DNA molecules. Here, we systematically demonstrate the use of highly specific dCas9 probes to create unique barcodes on the DNA that can be read out using nanopore sensors. Single dCas9 probes are targeted to various positions on DNA strands up to 48 kbp long and are effectively measured in high salt conditions typical of nanopore sensing. Multiple probes bound to the same DNA strand at characteristic target sequences create distinct barcodes of double and triple peaks. Finally, double and triple barcodes are used to simultaneously identify two different DNA targets in a background mixture of bacterial DNA. Our method forms the basis of a fast and versatile assay for multiplexed DNA sensing applications in complex samples.
Collapse
Affiliation(s)
- Nicole E. Weckman
- Cavendish Laboratory, JJ Thomson Ave, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Niklas Ermann
- Cavendish Laboratory, JJ Thomson Ave, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Richard Gutierrez
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Road, Oxford Science Park OX4 4DQ, United Kingdom
| | - Kaikai Chen
- Cavendish Laboratory, JJ Thomson Ave, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - James Graham
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Road, Oxford Science Park OX4 4DQ, United Kingdom
| | - Ran Tivony
- Cavendish Laboratory, JJ Thomson Ave, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Andrew Heron
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Road, Oxford Science Park OX4 4DQ, United Kingdom
| | - Ulrich F. Keyser
- Cavendish Laboratory, JJ Thomson Ave, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
23
|
Charron M, Briggs K, King S, Waugh M, Tabard-Cossa V. Precise DNA Concentration Measurements with Nanopores by Controlled Counting. Anal Chem 2019; 91:12228-12237. [DOI: 10.1021/acs.analchem.9b01900] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Martin Charron
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Kyle Briggs
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Simon King
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Matthew Waugh
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Vincent Tabard-Cossa
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
24
|
Madejski GR, Briggs K, DesOrmeaux JP, Miller JJ, Roussie JA, Tabard-Cossa V, McGrath JL. Monolithic Fabrication of NPN/SiN x Dual Membrane Cavity for Nanopore-based DNA Sensing. ADVANCED MATERIALS INTERFACES 2019; 6:1900684. [PMID: 32577337 PMCID: PMC7310959 DOI: 10.1002/admi.201900684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 06/11/2023]
Abstract
Nanoscale preconfinement of DNA has been shown to reduce the variation of passage times through solid-state nanopores. Preconfinement has been previously achieved by forming a femtoliter-sized cavity capped with a highly porous layer of nanoporous silicon nitride (NPN). This cavity was formed by sealing a NPN nanofilter membrane against a substrate chip using water vapor delamination. Ultimately, this method of fabrication cannot keep a consistent spacing between the filter and solid-state nanopore due to thermal fluctuations and wrinkles in the membrane, nor can it be fabricated on thousands of individual devices reliably. To overcome these issues, we present a method to fabricate the femtoliter cavity monolithically, using a selective XeF2 etch to hollow out a polysilicon spacer sandwiched between silicon nitride layers. These monolithically fabricated cavities behave identically to their counterparts formed by vapor delamination, exhibiting similar translocation passage time variation reduction and folding suppression of DNA without requiring extensive manual assembly. The ability to form nanocavity sensors with nanometer-scale precision and to reliably manufacture them at scale using batch wafer processing techniques will find numerous applications, including motion control of polymers for single-molecule detection applications, filtering of dirty samples prior to nanopore detection, and simple fabrication of single-molecule nanobioreactors.
Collapse
Affiliation(s)
- Gregory R. Madejski
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall Box 270168 Rochester, NY 14627, USA
| | - Kyle Briggs
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N6N5, Canada
| | | | - Joshua J. Miller
- SiMPore Inc, 150 Lucius Gordon Dr, West Henrietta, NY, 14586, USA
| | - James A. Roussie
- SiMPore Inc, 150 Lucius Gordon Dr, West Henrietta, NY, 14586, USA
| | - Vincent Tabard-Cossa
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N6N5, Canada
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall Box 270168 Rochester, NY 14627, USA
| |
Collapse
|
25
|
Zhao X, Ma R, Hu Y, Chen X, Dou R, Liu K, Cui C, Liu H, Li Q, Pan D, Shan X, Wang L, Fan C, Lu X. Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. NANOSCALE 2019; 11:6263-6269. [PMID: 30882811 DOI: 10.1039/c8nr10474c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are programmable DNA nanostructures that have great potential in bio-sensing, cell imaging and therapeutic applications. In this study, we investigate the translocation behavior of individual TDNs through solid-state nanopores. Pronounced translocation signals for TDNs are observed that are sensitive to the size of the nanostructures. TDNs bound to linear DNA molecules produce an extra signal in the ionic current traces. Statistical analysis of its relative temporal position reveals distinct features between TDNs bound to the end and those bound to the middle of the linear DNA molecules. A featured current trace for two TDNs bound to the same linear DNA molecule has also been observed. Our study demonstrates the potential of using TDNs as sensitive bio-sensors to detect specific segments of a single DNA molecule in real time, based on solid-state nanopore devices.
Collapse
Affiliation(s)
- Xinjia Zhao
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang L, Zhu Z, Li B, Shao F. One-Dimensional Assemblies of a DNA Tetrahedron: Manipulations on the Structural Conformation and Single-Molecule Behaviors. ACS APPLIED BIO MATERIALS 2019; 2:1278-1285. [PMID: 35021375 DOI: 10.1021/acsabm.8b00834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA nanotechnology can construct various nanostructures with diverse functionalities. However, conformation fluctuations due to the structural flexibility of duplex DNA compromise the efficiency to realize the functionality and reactivity of DNA nanostructures. To understand and control the structural deviation from the design represents a major challenge as well as an opportunity for DNA nanotechnology. In the present work, two series of one-dimensional assemblies of DNA tetrahedrons (DTHs) were fabricated and applied to demonstrate the manipulations of conformation dynamics of a one-dimensional DTH assembly by simple variation on linkage styles at single-molecule resolution. A stepwise strategy allows both nanoassembly with a high fidelity in the number and sequence of DTH units to be assembled with a minimum number of linkage sequences. The characterization for these nanostructures with atomic force microscope (AFM) and a solid-state nanopore technique indicates the difference in conformation dynamics and bending stiffness between two analogous nanoassemblies both in the immobilized state on the surface and free state in solution. This work showed the power of fine-tuning the dynamic conformation of the nanostructures and could see the applications in single-molecule biosensing and functionalization of DNA nanostructures.
Collapse
Affiliation(s)
- Liying Wang
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining 314400, People's Republic of China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Zhentong Zhu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, People's Republic of China
| | - Fangwei Shao
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining 314400, People's Republic of China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
27
|
Chen K, Kong J, Zhu J, Ermann N, Predki P, Keyser UF. Digital Data Storage Using DNA Nanostructures and Solid-State Nanopores. NANO LETTERS 2019; 19:1210-1215. [PMID: 30585490 DOI: 10.1021/acs.nanolett.8b04715] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Solid-state nanopores are powerful tools for reading the three-dimensional shape of molecules, allowing for the translation of molecular structure information into electric signals. Here, we show a high-resolution integrated nanopore system for identifying DNA nanostructures that has the capability of distinguishing attached short DNA hairpins with only a stem length difference of 8 bp along a DNA double strand named the DNA carrier. Using our platform, we can read up to 112 DNA hairpins with a separating distance of 114 bp attached on a DNA carrier that carries digital information. Our encoding strategy allows for the creation of a library of molecules with a size of up to 5 × 1033 (2112) that is only built from a few hundred types of base molecules for data storage and has the potential to be extended by linking multiple DNA carriers. Our platform provides a nanopore- and DNA nanostructure-based data storage method with convenient access and the potential for miniature-scale integration.
Collapse
Affiliation(s)
- Kaikai Chen
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jinglin Kong
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jinbo Zhu
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Niklas Ermann
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Paul Predki
- Iridia Incorporated , 3156 Lionshead Avenue , Suite 1, Carlsbad , California 92010 , United States
| | - Ulrich F Keyser
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
28
|
Conical nanofluidic channel for selective quantitation of melamine in combination with β-cyclodextrin and a single-walled carbon nanotube. Biosens Bioelectron 2019; 127:200-206. [DOI: 10.1016/j.bios.2018.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Loh AYY, Burgess CH, Tanase DA, Ferrari G, McLachlan MA, Cass AEG, Albrecht T. Electric Single-Molecule Hybridization Detector for Short DNA Fragments. Anal Chem 2018; 90:14063-14071. [PMID: 30398852 DOI: 10.1021/acs.analchem.8b04357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By combining DNA nanotechnology and high-bandwidth single-molecule detection in nanopipets, we demonstrate an electric, label-free hybridization sensor for short DNA sequences (<100 nucleotides). Such short fragments are known to occur as circulating cell-free DNA in various bodily fluids, such as blood plasma and saliva, and have been identified as disease markers for cancer and infectious diseases. To this end, we use as a model system an 88-mer target from the RV1910c gene in Mycobacterium tuberculosis, which is associated with antibiotic (isoniazid) resistance in TB. Upon binding to short probes attached to long carrier DNA, we show that resistive-pulse sensing in nanopipets is capable of identifying rather subtle structural differences, such as the hybridization state of the probes, in a statistically robust manner. With significant potential toward multiplexing and high-throughput analysis, our study points toward a new, single-molecule DNA-assay technology that is fast, easy to use, and compatible with point-of-care environments.
Collapse
Affiliation(s)
- A Y Y Loh
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - C H Burgess
- Department of Materials and Centre for Plastic Electronics , Imperial College London , London SW7 2AZ , United Kingdom
| | - D A Tanase
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - G Ferrari
- Dipartimento di Elettronica, Informazione e Bioingegneria , Politecnico di Milano , Piazza Leonardo da Vinci 32 , Milano 20133 , Italy
| | - M A McLachlan
- Department of Materials and Centre for Plastic Electronics , Imperial College London , London SW7 2AZ , United Kingdom
| | - A E G Cass
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - T Albrecht
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom.,School of Chemistry , University of Birmingham , Edgbaston Campus, Birmingham B15 2TT , United Kingdom
| |
Collapse
|
30
|
Ermann N, Hanikel N, Wang V, Chen K, Weckman NE, Keyser UF. Promoting single-file DNA translocations through nanopores using electro-osmotic flow. J Chem Phys 2018; 149:163311. [DOI: 10.1063/1.5031010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Niklas Ermann
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Nikita Hanikel
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Vivian Wang
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Kaikai Chen
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Nicole E. Weckman
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
31
|
Karau P, Tabard-Cossa V. Capture and Translocation Characteristics of Short Branched DNA Labels in Solid-State Nanopores. ACS Sens 2018; 3:1308-1315. [PMID: 29874054 DOI: 10.1021/acssensors.8b00165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The challenge when employing solid-state nanopores as single-molecule sensors in a given assay is the specificity of the ionic current signal during the translocation of target molecules. Here we present the capture and translocation characteristics of short structurally defined DNA molecules that could serve as effective surrogate labels in biosensing applications. We produced T-shaped or Y-shaped DNA molecules with a 50 bp double-stranded DNA (dsDNA) backbone and a 25 bp dsDNA branch in the middle, as improved labels over short linear DNA fragments. We show that molecular topologies can be distinguished from linear DNA by analyzing ionic current blockades produced as these DNA labels translocate through nanopores fabricated by controlled breakdown on 10-nm-thick SiN membranes and ranging in diameter from 4 to 10 nm. Event signatures are shown to be a direct result of the structure of the label and lead to an increased signal-to-noise ratio over that of short linear dsDNA, in addition to well resolved dwell times for the pore size in this range. These results show that structurally defined branched DNA molecules can be robustly detected for a broad range of pore size, and thus represent promising candidates as surrogate labels in a variety of nanopore-based molecular or immunoassay schemes.
Collapse
Affiliation(s)
- Philipp Karau
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|