1
|
Liu Y, Arjun AM, Webb S, Wolfe M, Chávez JL, Swami NS. Redox cycling-based signal amplification at alkanethiol modified nanoporous gold interdigitated microelectrodes. Anal Chim Acta 2024; 1316:342818. [PMID: 38969402 DOI: 10.1016/j.aca.2024.342818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 07/07/2024]
Abstract
Interdigitated electrodes (IDEs) enable electrochemical signal enhancement through repeated reduction and oxidation of the analyte molecule. Porosity on these electrodes is often used to lower the impedance background. However, their high capacitive current and signal interferences with oxygen reduction limit electrochemical detection ability. We present utilization of alkanethiol modification on nanoporous gold (NPG) electrodes to lower their background capacitance and chemically passivate them from interferences due to oxygen reduction, while maintaining their fast electron transfer rates, as validated by lower separation between anodic and cathodic peaks (ΔE) and lower charge transfer resistance (Rct) values in comparison to planar gold electrodes. Redox amplification based on this modification enables sensitive detection of various small molecules, including pyocyanin, p-aminophenol, and selective detection of dopamine in the presence of ascorbic acid. Alkanethiol NPG arrays are applied as a multiplexed sensor testbed within a well plate to screen binding of various peptide receptors to the SARS COV2 S-protein by using a sandwich assay for conversion of PAPP (4-aminophenyl phosphate) to PAP (p-aminophenol), by the action of AP (alkaline phosphatase), which is validated against optical ELISA screens of the peptides. Such arrays are especially of interest in small volume analytical settings with complex samples, wherein optical methods are unsuitable.
Collapse
Affiliation(s)
- Yi Liu
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Ajith Mohan Arjun
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Sean Webb
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA; UES, Inc, Dayton, OH, 45433, USA
| | - Monica Wolfe
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA; UES, Inc, Dayton, OH, 45433, USA
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA; Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
2
|
Chen S, An L, Yang S. Low-Molecular-Weight Fe(III) Complexes for MRI Contrast Agents. Molecules 2022; 27:molecules27144573. [PMID: 35889445 PMCID: PMC9324404 DOI: 10.3390/molecules27144573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fe(III) complexes have again attracted much attention for application as MRI contrast agents in recent years due to their high thermodynamic stability, low long-term toxicity, and large relaxivity at a higher magnetic field. This mini-review covers the recent progress on low-molecular-weight Fe(III) complexes, which have been considered as one of the promising alternatives to clinically used Gd(III)-based contrast agents. Two kinds of complexes including mononuclear Fe(III) complexes and multinuclear Fe(III) complexes are summarized in sequence, with a specific highlight of the structural relationships between the complexes and their relaxivity and thermodynamic stability. In additional, the future perspectives for the design of low-molecular-weight Fe(III) complexes for MRI contrast agents are suggested.
Collapse
Affiliation(s)
- Shangjun Chen
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
| | - Lu An
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China;
| | - Shiping Yang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China;
- Correspondence:
| |
Collapse
|
3
|
Daniels RC, Jun H, Davenport RD, Collinson MM, Ward KR. Using redox potential as a feasible marker for banked blood quality and the state of oxidative stress in stored red blood cells. J Clin Lab Anal 2021; 35:e23955. [PMID: 34424578 PMCID: PMC8529126 DOI: 10.1002/jcla.23955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/16/2021] [Accepted: 07/12/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Stored red blood cells (RBCs) may undergo oxidative stress over time, with functional changes affecting oxygen delivery. Central to these changes are oxidation-reduction (redox) reactions and redox potential (RP) that must be maintained for cell function. RP imbalance can lead to oxidative stress that may contribute to storage lesions. This study's purpose was to identify changes in RP over time in banked RBCs, and among RBCs of similar age. METHODS Multiple random RBC segments from RBC units were tested (n = 32), ranging in age from 5 to 40 days, at 5-day intervals. RP was recorded by measuring open circuit potential of RBCs using nanoporous gold electrodes with Ag/AgCl reference. RP measures were also performed on peripheral venous blood from 10 healthy volunteers. RP measures were compared between RBC groups, and with volunteer blood. RESULTS Stored RBCs show time-dependent RP increases. There were significant differences in Day 5 RP compared to all other groups (p ≤ 0.005), Day 10-15 vs. ages ≥ Day 20 (p ≤ 0.025), Day 20-25 vs. Day 40 (p = 0.039), and all groups compared to healthy volunteers. RP became more positive over time suggesting ongoing oxidation as RBCs age; however, storage time alone was not predictive of RP measured in a particular unit/segment. CONCLUSIONS There are significant differences in RP between freshly stored RBCs and all others, with RP becoming more positive over time. However, storage time alone does not predict RP, indicating RP screening may be an important measure of RBC oxidative stress and serve as an RBC quality marker.
Collapse
Affiliation(s)
- Rodney C Daniels
- Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hyesun Jun
- Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA
| | - Robertson D Davenport
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Kevin R Ward
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Freeman CJ, Ullah B, Islam MS, Collinson MM. Potentiometric Biosensing of Ascorbic Acid, Uric Acid, and Cysteine in Microliter Volumes Using Miniaturized Nanoporous Gold Electrodes. BIOSENSORS-BASEL 2020; 11:bios11010010. [PMID: 33379137 PMCID: PMC7823660 DOI: 10.3390/bios11010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023]
Abstract
Potentiometric redox sensing is a relatively inexpensive and passive approach to evaluate the overall redox state of complex biological and environmental solutions. The ability to make such measurements in ultra-small volumes using high surface area, nanoporous electrodes is of particular importance as such electrodes can improve the rates of electron transfer and reduce the effects of biofouling on the electrochemical signal. This work focuses on the fabrication of miniaturized nanoporous gold (NPG) electrodes with a high surface area and a small footprint for the potentiometric redox sensing of three biologically relevant redox molecules (ascorbic acid, uric acid, and cysteine) in microliter volumes. The NPG electrodes were inexpensively made by attaching a nanoporous gold leaf prepared by dealloying 12K gold in nitric acid to a modified glass capillary (1.5 mm id) and establishing an electrode connection with copper tape. The surface area of the electrodes was ~1.5 cm2, providing a roughness factor of ~16 relative to the geometric area of 0.09 cm2. Scanning electron microscopy confirmed the nanoporous framework. A linear dependence between the open-circuit potential (OCP) and the logarithm of concentration (e.g., Nernstian-like behavior) was obtained for all three redox molecules in 100 μL buffered solutions. As a first step towards understanding a real system, the response associated with changing the concentration of one redox species in the presence of the other two was examined. These results show that at NPG, the redox potential of a solution containing biologically relevant concentrations of ascorbic acid, uric acid, and cysteine is strongly influenced by ascorbic acid. Such information is important for the measurement of redox potentials in complex biological solutions.
Collapse
Affiliation(s)
- Christopher J. Freeman
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA;
| | - Borkat Ullah
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
| | - Md. Shafiul Islam
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
| | - Maryanne M. Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
- Correspondence:
| |
Collapse
|
5
|
Tutorial review: Enrichment and separation of neutral and charged species by ion concentration polarization focusing. Anal Chim Acta 2020; 1128:149-173. [PMID: 32825899 DOI: 10.1016/j.aca.2020.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/06/2023]
Abstract
Ion concentration polarization focusing (ICPF) is an electrokinetic technique, in which analytes are enriched and separated along a localized electric field gradient in the presence of a counter flow. This field gradient is generated by depletion of ions of the background electrolyte at an ion permselective junction. In this tutorial review, we summarize the fundamental principles and experimental parameters that govern selective ion transport and the stability of the enriched analyte plug. We also examine faradaic ICP (fICP), in which local ion concentration is modulated via electrochemical reactions as an attractive alternative to ICP that achieves similar performance with a decrease in both power consumption and Joule heating. The tutorial covers important challenges to the broad application of ICPF including undesired pH gradients, low volumetric throughput, samples that induce biofouling or are highly conductive, and limited approaches to on- or off-chip analysis. Recent developments in the field that seek to address these challenges are reviewed along with new approaches to maximize enrichment, focus uncharged analytes, and achieve enrichment and separation in water-in-oil droplets. For new practitioners, we discuss practical aspects of ICPF, such as strategies for device design and fabrication and the relative advantages of several types of ion selective junctions and electrodes. Lastly, we summarize tips and tricks for tackling common experimental challenges in ICPF.
Collapse
|
6
|
Liu Y, Moore JH, Kolling GL, McGrath JS, Papin JA, Swami NS. Minimum Bactericidal Concentration of Ciprofloxacin to Pseudomonas aeruginosa Determined Rapidly Based on Pyocyanin Secretion. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 312:127936. [PMID: 32606491 PMCID: PMC7326315 DOI: 10.1016/j.snb.2020.127936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.
Collapse
Affiliation(s)
- Yi Liu
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - John H. Moore
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Glynis L. Kolling
- Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - John S. McGrath
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jason A Papin
- Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S. Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
- Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
7
|
Snyder EM, Asik D, Abozeid SM, Burgio A, Bateman G, Turowski SG, Spernyak JA, Morrow JR. A Class of Fe III Macrocyclic Complexes with Alcohol Donor Groups as Effective T 1 MRI Contrast Agents. Angew Chem Int Ed Engl 2020; 59:2414-2419. [PMID: 31725934 PMCID: PMC7502272 DOI: 10.1002/anie.201912273] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Early studies suggested that FeIII complexes cannot compete with GdIII complexes as T1 MRI contrast agents. Now it is shown that one member of a class of high-spin macrocyclic FeIII complexes produces more intense contrast in mice kidneys and liver at 30 minutes post-injection than does a commercially used GdIII agent and also produces similar T1 relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIII macrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable-temperature 17 O NMR studies suggest that none of the complexes has a single, integral inner-sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIII complexes that correspond, in part, to their r1 relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys.
Collapse
Affiliation(s)
- Eric M Snyder
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| | - Didar Asik
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| | - Samira M Abozeid
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| | - Ariel Burgio
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| | - Gage Bateman
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| | - Steven G. Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo New York 14263, United States
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo New York 14263, United States
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst New York 14260, United States
| |
Collapse
|
8
|
Smith LA, Glasscott MW, Vannoy KJ, Dick JE. Enzyme Kinetics via Open Circuit Potentiometry. Anal Chem 2019; 92:2266-2273. [PMID: 31830783 DOI: 10.1021/acs.analchem.9b04972] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate the application of open circuit potentiometry (OCP) to measure enzyme turnover kinetics, kturn. The electrode surface will become poised by the addition of a well-behaved redox pair, such as ferrocenemethanol/ferrocenium methanol (FcMeOH/FcMeOH+), which acts as the cosubstrate for the enzymatic process. A measurable change in potential results when an enzyme consumes the one-electron transfer mediator. Glucose oxidase was studied as a test-case, but the method is generalizable across oxidoreductase enzymes that rely on electron transfer mediators. In the presence of glucose and FcMeOH+, glucose oxidase delivers electrons to FcMeOH+, and the potential changes with respect to the Nernst equation. A theoretical model incorporating enzymatic rate expressions into the Nernst equation was derived to explain the observed potential transients, and experimental data fit theory well. A similar experiment was performed using amperometry on ultramicroelectrodes (UMEs). Here, the same enzymatic rate expression may be incorporated into the equation for steady-state flux to an UME to obtain kturn. While similar kinetic information was obtained from the potentiometric and amperometric responses, potentiometry is independent of electrode size and mass transfer effects. Finally, we show how kturn changes as a function of one-electron mediator. Our results may eventually find applications to biosensors, where electrode fouling plagues long-term sensor performance.
Collapse
Affiliation(s)
- Lettie A Smith
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Matthew W Glasscott
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kathryn J Vannoy
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jeffrey E Dick
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States.,Lineberger Comprehensive Cancer Center, School of Medicine , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
9
|
Snyder EM, Asik D, Abozeid SM, Burgio A, Bateman G, Turowski SG, Spernyak JA, Morrow JR. A Class of Fe
III
Macrocyclic Complexes with Alcohol Donor Groups as Effective
T
1
MRI Contrast Agents. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912273] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Eric M. Snyder
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| | - Didar Asik
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| | - Samira M. Abozeid
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| | - Ariel Burgio
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| | - Gage Bateman
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| | - Steven G. Turowski
- Department of Cell Stress Biology Roswell Park Comprehensive Cancer Center Buffalo New York 14263 USA
| | - Joseph A. Spernyak
- Department of Cell Stress Biology Roswell Park Comprehensive Cancer Center Buffalo New York 14263 USA
| | - Janet R. Morrow
- Department of Chemistry University at Buffalo State University of New York Amherst New York 14260 USA
| |
Collapse
|
10
|
Khan RK, Yadavalli VK, Collinson MM. Flexible Nanoporous Gold Electrodes for Electroanalysis in Complex Matrices. ChemElectroChem 2019. [DOI: 10.1002/celc.201900894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rezaul K. Khan
- Department of Chemistry Virginia Commonwealth University Richmond, VA 23284-2006
| | - Vamsi K. Yadavalli
- Department of Chemical and Life Science Engineering Virginia Commonwealth University Richmond, VA 23284
| | - Maryanne M Collinson
- Department of Chemistry Virginia Commonwealth University Richmond, VA 23284-2006
| |
Collapse
|
11
|
Liu Y, McGrath JS, Moore JH, Kolling GL, Papin JA, Swami NS. Electrofabricated biomaterial-based capacitor on nanoporous gold for enhanced redox amplification. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Silva TA, Khan MRK, Fatibello-Filho O, Collinson MM. Simultaneous electrochemical sensing of ascorbic acid and uric acid under biofouling conditions using nanoporous gold electrodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|