1
|
Byrne R, Carrico A, Lettieri M, Rajan AK, Forster RJ, Cumba LR. Bioinks and biofabrication techniques for biosensors development: A review. Mater Today Bio 2024; 28:101185. [PMID: 39205870 PMCID: PMC11350460 DOI: 10.1016/j.mtbio.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
3D bioprinting technologies and bioink development are enabling significant advances in miniaturized and integrated biosensors. For example, bioreceptors can be immobilized within a porous 3D structure to significantly amplify the signal, while biocompatible and mechanically flexible systems uniquely enable wearable chem- and bio-sensors. This advancement is accelerating translation by enabling the production of high performance, reproducible, and flexible analytical devices. The formulation of the bioink plays a crucial role in determining the bio-functionality of the resulting printed structures, e.g., the porosity that allows the analyte to diffuse through the 3D structure, the affinity and avidity of the receptors, etc. This review explores the next generation of advanced bioinks for biosensor development and provides insights into the latest cutting-edge bioprinting technologies. The bioprinting methods available for biosensor fabrication including inkjet, extrusion, and laser-based bioprinting, are discussed. The advantages and limitations of each method are analysed, and recent advancements in bioprinting technologies are presented. The review then delves into the properties of advanced bioinks, such as biocompatibility, printability, stability, and applicability. Different types of advanced bioinks are explored, including multicomponent, stimuli-responsive, and conductive bioinks. Finally, the next generation of bioinks for biosensors is considered, identifying possible new opportunities and challenges. Overall, this literature review highlights the combined importance of bioink formulation and bioprinting methods for the development of high-performance analytical biosensors.
Collapse
Affiliation(s)
- Róisín Byrne
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Amanda Carrico
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Mariagrazia Lettieri
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Athira K. Rajan
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Robert J. Forster
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Ireland
| | - Loanda R. Cumba
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
2
|
Meng X, Wen K, Zhao J, Han Y, Ghandhi SA, Kaur SP, Brenner DJ, Turner HC, Amundson SA, Lin Q. Microfluidic measurement of intracellular mRNA with a molecular beacon probe towards point-of-care radiation triage. SENSORS & DIAGNOSTICS 2024; 3:1344-1352. [PMID: 39129862 PMCID: PMC11308381 DOI: 10.1039/d4sd00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
In large-scale radiation exposure events, the ability to triage potential victims by the received radiation dosage is crucial. This can be evaluated by radiation-induced biological changes. Radiation-responsive mRNA is a class of biomarkers that has been explored for dose-dependency with methods such as RT-qPCR. However, these methods are challenging to implement for point-of-care devices. We have designed and used molecular beacons as probes for the measurement of radiation-induced changes of intracellular mRNA in a microfluidic device towards determining radiation dosage. Our experiments, in which fixed TK6 cells labeled with a molecular beacon specific to BAX mRNA exhibited dose-dependent fluorescence in a manner consistent with RT-qPCR analysis, demonstrate that such intracellular molecular probes can potentially be used in point-of-care radiation biodosimetry. This proof of concept could readily be extended to any RNA-based test to provide direct measurements at the bedside.
Collapse
Affiliation(s)
- Xin Meng
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Kechun Wen
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Jingyang Zhao
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Yaru Han
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Salan P Kaur
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| |
Collapse
|
3
|
Plata-Menchaca EP, Ruiz-Rodríguez JC, Ferrer R. Early Diagnosis of Sepsis: The Role of Biomarkers and Rapid Microbiological Tests. Semin Respir Crit Care Med 2024; 45:479-490. [PMID: 38950606 DOI: 10.1055/s-0044-1787270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sepsis is a medical emergency resulting from a dysregulated response to an infection, causing preventable deaths and a high burden of morbidity. Protocolized and accurate interventions in sepsis are time-critical. Therefore, earlier recognition of cases allows for preventive interventions, early treatment, and improved outcomes. Clinical diagnosis of sepsis by clinical scores cannot be considered an early diagnosis, given that underlying molecular pathophysiological mechanisms have been activated in the preceding hour or days. There is a lack of a widely available tool enhancing preclinical diagnosis of sepsis. Sophisticated technologies for sepsis prediction have several limitations, including high costs. Novel technologies for fast molecular and microbiological diagnosis are focusing on bedside point-of-care combined testing to reach most settings where sepsis represents a challenge.
Collapse
Affiliation(s)
- Erika P Plata-Menchaca
- Intensive Care Department, Shock, Organ Dysfunction, and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan Carlos Ruiz-Rodríguez
- Intensive Care Department, Shock, Organ Dysfunction, and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ricard Ferrer
- Intensive Care Department, Shock, Organ Dysfunction, and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
4
|
Bratash O, Buhot A, Leroy L, Engel E. Optical fiber biosensors toward in vivo detection. Biosens Bioelectron 2024; 251:116088. [PMID: 38335876 DOI: 10.1016/j.bios.2024.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
This review takes stock of the various optical fiber-based biosensors that could be used for in vivo applications. We discuss the characteristics that biosensors must have to be suitable for such applications and the corresponding transduction modes. In particular, we focus on optical fiber biosensors based on fluorescence, evanescent wave, plasmonics, interferometry, and Raman phenomenon. The operational principles, implemented solutions, and performances are described and debated. The different sensing configurations, such as the side- and tip-based fiber biosensors, are illustrated, and their adaptation for in vivo measurements is discussed. The required implementation of multiplexed biosensing on optical fibers is shown. In particular, the use of multi-fiber assemblies, one of the most optimal configurations for multiplexed detection, is discussed. Different possibilities for multiple localized functionalizations on optical fibers are presented. A final section is devoted to the practical in vivo use of fiber-based biosensors, covering regulatory, sterilization, and packaging aspects. Finally, the trends and required improvements in this promising and emerging field are analyzed and discussed.
Collapse
Affiliation(s)
- Oleksii Bratash
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Loïc Leroy
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Elodie Engel
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France.
| |
Collapse
|
5
|
Chauke SH, Nzuza S, Ombinda-Lemboumba S, Abrahamse H, Dube FS, Mthunzi-Kufa P. Advances in the detection and diagnosis of tuberculosis using optical-based devices. Photodiagnosis Photodyn Ther 2024; 45:103906. [PMID: 38042235 DOI: 10.1016/j.pdpdt.2023.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis, is highly contagious and can lead to severe health complications if left untreated. This review article discusses the importance of early detection and treatment and its global incidence and epidemiology, emphasizing its impact on vulnerable populations and its role as a major cause of death worldwide. Furthermore, it highlights the challenges faced with diagnosing TB. To overcome these challenges, point-of-care devices have emerged as promising tools for rapid and accurate TB detection. These include devices such as nucleic acid amplification tests (NAATs), lateral flow assays (LFAs), and microfluidic-based assays, which offer advantages such as rapid results, portability, and the ability to detect drug-resistant strains. Optical-based devices, such as photonic micro-ring sensors, silicon platform-based sensors, plasmonic-based platforms, microfluidics, and smartphone imaging, are some of the highlighted optical-based devices with the potential to detect TB. These devices can detect TB in sputum samples with high sensitivity and specificity. Optical-based diagnostic devices have the potential to offer the advantages of detecting low concentrations of target molecules and being adaptable to detect multiple targets simultaneously. Using these devices in a clinical setting makes them suitable for their application in improving access to diagnostic testing that enables earlier detection and treatment of TB. Furthermore, these devices would improve TB's global health issue, which requires comprehensive research, prevention, and treatment efforts.
Collapse
Affiliation(s)
- Sipho H Chauke
- Biophotonics, Photonic Centre, Manufacturing Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa; Molecular and Cell Biology Department, University of Cape Town, Cape Town 7701, South Africa.
| | - Sinegugu Nzuza
- Biophotonics, Photonic Centre, Manufacturing Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa; Laser Research Centre Department, University of Johannesburg, Johannesburg 2028, South Africa
| | - Saturnin Ombinda-Lemboumba
- Biophotonics, Photonic Centre, Manufacturing Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
| | - Heidi Abrahamse
- Laser Research Centre Department, University of Johannesburg, Johannesburg 2028, South Africa
| | - Felix S Dube
- Molecular and Cell Biology Department, University of Cape Town, Cape Town 7701, South Africa
| | - Patience Mthunzi-Kufa
- Biophotonics, Photonic Centre, Manufacturing Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa; Molecular and Cell Biology Department, University of Cape Town, Cape Town 7701, South Africa; School of Interdisciplinary Research and Graduate Studies (UNESCO), University of South Africa, GroenKloof Campus, Pretoria, South Africa
| |
Collapse
|
6
|
Zhou X, Zheng B. Surface modification for improving immunoassay sensitivity. LAB ON A CHIP 2023; 23:1151-1168. [PMID: 36636910 DOI: 10.1039/d2lc00811d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunoassays are widely performed in many fields such as biomarker discovery, proteomics, drug development, and clinical diagnosis. There is a growing need for high sensitivity of immunoassays to detect low abundance analytes. As a result, great effort has been made to improve the quality of surfaces, on which the immunoassay is performed. In this review article, we summarize the recent progress in surface modification strategies for improving the sensitivity of immunoassays. The surface modification strategies can be categorized into two groups: antifouling coatings to reduce background noise and nanostructured surfaces to amplify the signals. The first part of the review summarizes the common antifouling coating techniques to prevent nonspecific binding and reduce background noise. The techniques include hydrophilic polymer based self-assembled monomers, polymer brushes, and surface attached hydrogels, and omniphobicity based perfluorinated surfaces. In the second part, some common nanostructured surfaces to amplify the specific detection signals are introduced, including nanoparticle functionalized surfaces, two dimensional (2D) nanoarrays, and 2D nanomaterial coatings. The third part discusses the surface modification techniques for digital immunoassays. In the end, the challenges and the future perspectives of the surface modification techniques for immunoassays are presented.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
7
|
Camphausen R, Sansa Perna A, Cuevas Á, Demuth A, Arrés Chillón J, Gräfe M, Steinlechner F, Pruneri V. Fast quantum-enhanced imaging with visible-wavelength entangled photons. OPTICS EXPRESS 2023; 31:6039-6050. [PMID: 36823870 DOI: 10.1364/oe.471429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Quantum resources can provide supersensitive performance in optical imaging. Detecting entangled photon pairs from spontaneous parametric down conversion (SPDC) with single-photon avalanche diode (SPAD) image sensor arrays (ISAs) enables practical wide-field quantum-enhanced imaging. However, matching the SPDC wavelength to the peak detection efficiency range of complementary metal-oxide-semiconductor (CMOS) compatible mass-producible SPAD-ISAs has remained technologically elusive, resulting in low imaging speeds to date. Here, we show that a recently developed visible-wavelength entangled photon source enables high-speed quantum imaging. By operating at high detection efficiency of a SPAD-ISA, we increase acquisition speed by more than an order of magnitude compared to previous similar quantum imaging demonstrations. Besides being fast, the quantum-enhanced phase imager operating at short wavelengths retrieves nanometer scale height differences, tested by imaging evaporated silica and protein microarray spots on glass samples, with sensitivity improved by a factor of 1.351 ± 0.004 over equivalent ideal classical imaging. This work represents an important stepping stone towards scalable real-world quantum imaging advantage, and may find use in biomedical and industrial applications as well as fundamental research.
Collapse
|
8
|
Neumair J, Elsner M, Seidel M. Flow-Based Chemiluminescence Microarrays as Screening Platform for Affinity Binders to Capture and Elute Bacteria. SENSORS (BASEL, SWITZERLAND) 2022; 22:8606. [PMID: 36433201 PMCID: PMC9693076 DOI: 10.3390/s22228606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Affinity describes the non-covalent but selective interaction between an affinity binder (e.g., proteins, antibiotics, or antibodies) and its counterpart (e.g., bacteria). These affinity binders can serve to detect bacteria and respond to the need for selective concentration via affinity chromatography for trace analysis. By changing the pH value or salt and protein contents, affinity bindings can be reversed, and bacteria can be recovered for characterisation. Analytical microarrays use multiple affinity binders immobilised on the surface in a distinct pattern, which immensely reduces screening time for the discovery of superior binding motifs. Here, flow-based microarray systems can inform not only about binding, but also about desorption. In this work, we pioneer a screening assay for affinity binders against both gram-positive and negative bacteria based on an automated flow-based chemiluminescence (CL) microarray. Biotinylation of model organisms E. coli and E. faecalis enabled labelling with horseradish-peroxidase-coupled streptavidin, and detection with CL. Polymyxin B, an antibiotic against gram-negative bacteria, was found to bind both E. coli and E. faecalis. Simultaneous screening for desorption methods unexpectedly revealed methyl alpha-D-mannopyranoside as a promising buffer for desorption from Polymyxin B. This proof-of-principle study shows that our new platform greatly facilitates the screening of new affinity binders against bacteria, with promise for future automation.
Collapse
|
9
|
Gopal A, Yan L, Kashif S, Munshi T, Roy VAL, Voelcker NH, Chen X. Biosensors and Point-of-Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Adv Healthc Mater 2022; 11:e2101546. [PMID: 34850601 DOI: 10.1002/adhm.202101546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/20/2021] [Indexed: 02/06/2023]
Abstract
With an exponential rise in antimicrobial resistance and stagnant antibiotic development pipeline, there is, more than ever, a crucial need to optimize current infection therapy approaches. One of the most important stages in this process requires rapid and effective identification of pathogenic bacteria responsible for diseases. Current gold standard techniques of bacterial detection include culture methods, polymerase chain reactions, and immunoassays. However, their use is fraught with downsides with high turnaround time and low accuracy being the most prominent. This imposes great limitations on their eventual application as point-of-care devices. Over time, innovative detection techniques have been proposed and developed to curb these drawbacks. In this review, a systematic summary of a range of biosensing platforms is provided with a strong focus on technologies conferring high detection sensitivity and specificity. A thorough analysis is performed and the benefits and drawbacks of each type of biosensor are highlighted, the factors influencing their potential as point-of-care devices are discussed, and the authors' insights for their translation from proof-of-concept systems into commercial medical devices are provided.
Collapse
Affiliation(s)
- Ashna Gopal
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Li Yan
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
| | - Saima Kashif
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Tasnim Munshi
- School of Chemistry University of Lincoln, Brayford Pool Lincoln Lincolnshire LN6 7TS UK
| | | | - Nicolas H. Voelcker
- Drug Delivery Disposition and Dynamics Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton Victoria 3168 Australia
| | - Xianfeng Chen
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| |
Collapse
|
10
|
Fernandez-Cuesta I, Llobera A, Ramos-Payán M. Optofluidic systems enabling detection in real samples: A review. Anal Chim Acta 2022; 1192:339307. [DOI: 10.1016/j.aca.2021.339307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
|
11
|
Alba-Patiño A, Vaquer A, Barón E, Russell SM, Borges M, de la Rica R. Micro- and nanosensors for detecting blood pathogens and biomarkers at different points of sepsis care. Mikrochim Acta 2022; 189:74. [PMID: 35080669 PMCID: PMC8790942 DOI: 10.1007/s00604-022-05171-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/26/2021] [Indexed: 12/29/2022]
Abstract
Severe infections can cause a dysregulated response leading to organ dysfunction known as sepsis. Sepsis can be lethal if not identified and treated right away. This requires measuring biomarkers and pathogens rapidly at the different points where sepsis care is provided. Current commercial approaches for sepsis diagnosis are not fast, sensitive, and/or specific enough for meeting this medical challenge. In this article, we review recent advances in the development of diagnostic tools for sepsis management based on micro- and nanostructured materials. We start with a brief introduction to the most popular biomarkers for sepsis diagnosis (lactate, procalcitonin, cytokines, C-reactive protein, and other emerging protein and non-protein biomarkers including miRNAs and cell-based assays) and methods for detecting bacteremia. We then highlight the role of nano- and microstructured materials in developing biosensors for detecting them taking into consideration the particular needs of every point of sepsis care (e.g., ultrafast detection of multiple protein biomarkers for diagnosing in triage, emergency room, ward, and intensive care unit; quantitative detection to de-escalate treatment; ultrasensitive and culture-independent detection of blood pathogens for personalized antimicrobial therapies; robust, portable, and web-connected biomarker tests outside the hospital). We conclude with an overview of the most utilized nano- and microstructured materials used thus far for solving issues related to sepsis diagnosis and point to new challenges for future development.
Collapse
Affiliation(s)
- Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Enrique Barón
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Steven M Russell
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
12
|
Wei Y, Zhou W, Wu Y, Zhu H. High Sensitivity Label-Free Quantitative Method for Detecting Tumor Biomarkers in Human Serum by Optical Microfiber Couplers. ACS Sens 2021; 6:4304-4314. [PMID: 34806360 DOI: 10.1021/acssensors.1c01031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Label-free optical fiber immunosensors have attracted widespread attention in recent decades due to their high sensitivity. However, nonspecific adsorption in serum has remained a critical bottleneck in existing label-free fiber optic biosensors, which hinders their widespread use in diagnostics. In addition, individual differences in clinical human serum (HS) negatively impact biosensing results. In this work, the modified serum preadsorption strategy was applied to reduce nonspecific adsorption by forming a saturated antifouling interface on an optical microfiber coupler (OMC). Furthermore, to reduce the effect of the differences between individual HS samples, we proposed a new method where Sigma HS was used as a wavelength shift reference due to being close to clinical serum compared to other serums. Sigma HS was used first to reduce the differences in immune sensors before performing a clinical sample test in which quantitative detection was achieved based on the independent calibration of several sensors with wide dynamic ranges via dissociation processes. The individual differences in 25% HS were corrected by 30% Sigma HS. As a proof of concept, the label-free OMC immune sensor demonstrates good sensitivity and specificity for the detection of carcinoembryonic antigen (CEA) in 25% Sigma HS at different concentrations. The detection limit of CEA reached as low as 34.6 fg/mL (0.475 fM). Additionally, label-free quantitative detection of CEA using this OMC immune sensor was verified experimentally according to the calibration line, and the results agree well with clinical examination detection. To our knowledge, it is the first study to employ an OMC immune sensor in point-of-care label-free quantitative detection for clinical HS.
Collapse
Affiliation(s)
- Youlian Wei
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Wenchao Zhou
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Yihui Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Hongquan Zhu
- The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
13
|
Shu T, Hunter H, Zhou Z, Sun Y, Cheng X, Ma J, Su L, Zhang X, Serpe MJ. Portable point-of-care diagnostic devices: an updated review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5418-5435. [PMID: 34787609 DOI: 10.1039/d1ay01643a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The global pandemic caused by the SARS-CoV-2 (COVID) virus indiscriminately impacted people worldwide with unquantifiable and severe impacts on all aspects of our lives, regardless of socioeconomic status. The pandemic brought to light the very real possibility of pathogens changing and shaping the way we live, and our lack of preparedness to deal with viral/bacterial outbreaks. Importantly, the quick detection of pathogens can help prevent and control the spread of disease, making the importance of diagnostic techniques undeniable. Point-of-care diagnostics started as a supplement to standard lab-based diagnostics, and are gradually becoming mainstream. Because of this, and their importance in detecting pathogens (especially in the developing world), their development has accelerated at an unprecedented rate. In this review, we highlight some important and recent examples of point-of-care diagnostics for detecting nucleic acids, proteins, bacteria, and other biomarkers, with the intent of making apparent their positive impact on society and human health.
Collapse
Affiliation(s)
- Tong Shu
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Haley Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| | - Ziping Zhou
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yanping Sun
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaojun Cheng
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jianxin Ma
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lei Su
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xueji Zhang
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| |
Collapse
|
14
|
Camphausen R, Cuevas Á, Duempelmann L, Terborg RA, Wajs E, Tisa S, Ruggeri A, Cusini I, Steinlechner F, Pruneri V. A quantum-enhanced wide-field phase imager. SCIENCE ADVANCES 2021; 7:eabj2155. [PMID: 34788099 PMCID: PMC8598016 DOI: 10.1126/sciadv.abj2155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Quantum techniques can be used to enhance the signal-to-noise ratio in optical imaging. Leveraging the latest advances in single-photon avalanche diode array cameras and multiphoton detection techniques, here, we introduce a supersensitive phase imager, which uses space-polarization hyperentanglement to operate over a large field of view without the need of scanning operation. We show quantum-enhanced imaging of birefringent and nonbirefringent phase samples over large areas, with sensitivity improvements over equivalent classical measurements carried out with equal number of photons. The potential applicability is demonstrated by imaging a biomedical protein microarray sample. Our technology is inherently scalable to high-resolution images and represents an essential step toward practical quantum-enhanced imaging.
Collapse
Affiliation(s)
- Robin Camphausen
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
- Corresponding author. (R.C.); (Á.C.); (V.P.)
| | - Álvaro Cuevas
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
- Corresponding author. (R.C.); (Á.C.); (V.P.)
| | - Luc Duempelmann
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
| | - Roland A. Terborg
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
| | - Ewelina Wajs
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
| | - Simone Tisa
- Micro Photon Device SRL, Via Waltraud Gebert Deeg 3f, 39100 Bolzano, Italy
| | - Alessandro Ruggeri
- Micro Photon Device SRL, Via Waltraud Gebert Deeg 3f, 39100 Bolzano, Italy
| | - Iris Cusini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Giuseppe Ponzio, 34, 20133 Milano, Italy
| | - Fabian Steinlechner
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str. 6, 07745 Jena, Germany
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Corresponding author. (R.C.); (Á.C.); (V.P.)
| |
Collapse
|
15
|
Nanoplasmonic biosensors: Theory, structure, design, and review of recent applications. Anal Chim Acta 2021; 1185:338842. [PMID: 34711322 DOI: 10.1016/j.aca.2021.338842] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022]
Abstract
Nanoplasmonic biosensing shows an immense potential to satisfy the needs of the global health industry - low-cost, fast, and portable automated systems; highly sensitive and real-time detection; multiplexing and miniaturization. In this review, we presented the theory of nanoplasmonic biosensing for popular detection schemes - SPR, LSPR, and EOT - and underline the consideration for nanostructure design, material selection, and their effects on refractometric sensing performance. Later, we covered the bottom-up and top-down nanofabrication methods for nanoplasmonic biosensors. Subsequently, we reviewed the recent examples of nanoplasmonic biosensors over a wide range of clinically relevant analytes in the diagnosis and prognosis of a wide range of diseases and conditions such as biomarker proteins, infectious bacteria, viral agents. Finally, we discussed the challenges of nanoplasmonic biosensing toward clinical translation and proposed strategic avenues to be competitive against current clinical detection methods. Hopefully, nanoplasmonic biosensing can realize its potential through successful demonstrations of clinical translation in the upcoming years.
Collapse
|
16
|
Cai G, Wu W, Feng S, Liu Y. Label-free E. coli detection based on enzyme assay and a microfluidic slipchip. Analyst 2021; 146:4622-4629. [PMID: 34164637 DOI: 10.1039/d1an00495f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An enzyme assay based method in a microfluidic slipchip was proposed for the rapid and label-free detection of E. coli. The specific target analyte of E. coli was β-d-glucuronidase (GUS) which could catalyze the substrate 6-chloro-4-methyl-umbelliferyl-β-d-glucuronide (6-CMUG) to release the fluorescent molecule 6-chloro-4-methyl-umbelliferyl (6-CMU). E. coli culture, lysis and enzymatic reaction steps could be conducted in a microfluidic slipchip without any pumps and valves, which was tailored for fluorescence detection using a commercial plate reader, to achieve a rapid E. coli test. A mixture of the culture broth, enzyme inducer and E. coli was injected into the chambers on the top layer. A mixture of the substrate and lysis solution was injected into the chambers on the bottom layer. Then, the slipchip was slid to make each chamber independent. E. coli was cultured in the chamber in the LB broth for 2.5 h. After that, the slipchip was slid again to introduce the lysis solution into the culture solution for GUS release and enzyme reaction, and then incubated in the plate reader at 42 °C for another 2.5 h. During incubation, the fluorescence intensity of each chamber was recorded. This proposed label-free method can directly detect E. coli with a low concentration of 8 CFU per chamber within 5 h, thus showing great potential in on-site E. coli detection.
Collapse
Affiliation(s)
- Gaozhe Cai
- Key Laboratory of Agricultural Information Acquisition Technology, China Agricultural University, Beijing 100083, China.
| | - Wenshuai Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
17
|
Fuentes-Chust C, Parolo C, Rosati G, Rivas L, Perez-Toralla K, Simon S, de Lecuona I, Junot C, Trebicka J, Merkoçi A. The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006104. [PMID: 33719117 DOI: 10.1002/adma.202006104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Indexed: 05/15/2023]
Abstract
Monitoring of the human microbiome is an emerging area of diagnostics for personalized medicine. Here, the potential of different nanomaterials and nanobiosensing technologies is reviewed for the development of novel diagnostic devices for the detection and measurement of microbiome-related biomarkers. Moreover, the current and future landscape of microbiome-based diagnostics is defined by exploring the advantages and disadvantages of current nanotechnology-based approaches, especially in the context of developing point-of-care (PoC) devices that would meet the international guidelines known as REASSURED (Real-time connectivity; Ease of specimen collection; Affordability; Sensitivity; Specificity; User-friendliness; Rapid & robust operation; Equipment-free; and Deliverability). Finally, the strategies of the latest international scientific consortia working in this field are analyzed, the current microbiome diagnostics market are reported and the principal ethical, legal, and societal issues related to microbiome R&D and innovation are discussed.
Collapse
Affiliation(s)
- Celia Fuentes-Chust
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Claudio Parolo
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Lourdes Rivas
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Karla Perez-Toralla
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Stéphanie Simon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Itziar de Lecuona
- Bioethics and Law Observatory -UNESCO Chair in Bioethics-Department of Medicine, University of Barcelona, Barcelona, 08007, Spain
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- European Foundation for the Study of Chronic Liver Failure, Travesera de Gracia 11, Barcelona, 08021, Spain
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
18
|
Huang J, Zhong Y, Li W, Wang W, Li C, Wang A, Yan H, Wan Y, Li J. Fluorescent and Opt-Electric Recording Bacterial Identification Device for Ultrasensitive and Specific Detection of Microbials. ACS Sens 2021; 6:443-449. [PMID: 33369433 DOI: 10.1021/acssensors.0c02007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since microbial detection is an important aspect for the prevention and control of foodborne diseases, an ideal detection system with high sensitivity, strong specificity, and timeliness is needed. Here, we proposed a fluorescent and opt-electric recording bacterial identification device (FORBID) for fully automatic real-time photoelectric sensing analysis of microbials by integrating the metabolic characteristics of microbial and selective substrate catalysis. It simplifies the testing process (one-step) and decreases the need of professional technicians. Besides, the system exhibits ultrasensitive (1 CFU/mL) and specific detection (99%) in both microbials, Escherichia coli and Pseudomonas aeruginosa. More importantly, the timeliness of this system is even better than that of the traditional culture methods. It is believed that this system can be extended to the detection of other microorganisms and provide a potential alternative for the detection of pathogens.
Collapse
Affiliation(s)
- Jiaomei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yongjie Zhong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Wenxing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Wenxia Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Chaoyang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Nanotools for Sepsis Diagnosis and Treatment. Adv Healthc Mater 2021; 10:e2001378. [PMID: 33236524 PMCID: PMC11469323 DOI: 10.1002/adhm.202001378] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Sepsis is one of the leading causes of death worldwide with high mortality rates and a pathological complexity hindering early and accurate diagnosis. Today, laboratory culture tests are the epitome of pathogen recognition in sepsis. However, their consistency remains an issue of controversy with false negative results often observed. Clinically used blood markers, C reactive protein (CRP) and procalcitonin (PCT) are indicators of an acute-phase response and thus lack specificity, offering limited diagnostic efficacy. In addition to poor diagnosis, inefficient drug delivery and the increasing prevalence of antibiotic-resistant microorganisms constitute significant barriers in antibiotic stewardship and impede effective therapy. These challenges have prompted the exploration for alternative strategies that pursue accurate diagnosis and effective treatment. Nanomaterials are examined for both diagnostic and therapeutic purposes in sepsis. The nanoparticle (NP)-enabled capture of sepsis causative agents and/or sepsis biomarkers in biofluids can revolutionize sepsis diagnosis. From the therapeutic point of view, currently existing nanoscale drug delivery systems have proven to be excellent allies in targeted therapy, while many other nanotherapeutic applications are envisioned. Herein, the most relevant applications of nanomedicine for the diagnosis, prognosis, and treatment of sepsis is reviewed, providing a critical assessment of their potentiality for clinical translation.
Collapse
Affiliation(s)
- Lana Papafilippou
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
| | - Andrew Claxton
- Department of Critical CareSalford Royal Foundation TrustStott LaneSalfordM6 8HDUK
| | - Paul Dark
- Manchester NIHR Biomedical Research CentreDivision of InfectionImmunity and Respiratory MedicineUniversity of ManchesterManchesterM13 9PTUK
| | - Kostas Kostarelos
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Campus UABBellaterraBarcelona08193Spain
| | - Marilena Hadjidemetriou
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
| |
Collapse
|
20
|
Reuschel E, Toelge M, Haeusler S, Deml L, Seelbach-Goebel B, Solano ME. Perinatal Gram-Positive Bacteria Exposure Elicits Distinct Cytokine Responses In Vitro. Int J Mol Sci 2020; 22:E332. [PMID: 33396944 PMCID: PMC7795300 DOI: 10.3390/ijms22010332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/31/2023] Open
Abstract
During pregnancy, infections caused by the gram-positive bacteria Enterococcus faecalis (E. faecalis), Streptococcus agalacticae (S. agalacticae), and Staphylococcus aureus (S. aureus) are major reasons for preterm labor, neonatal prematurity, meningitis, or sepsis. Here, we propose cytokine responses to bacterial infections by the immature perinatal immune system as central players in the pathogenesis of preterm birth and neonatal sepsis. We aimed to close the gap in knowledge about such cytokine responses by stimulating freshly isolated umbilical blood mononuclear cells (UBMC) with lysates of E. faecalis, S. agalacticae, and S. aureus collected from pregnant women in preterm labor. Bacterial lysates and, principally, S. aureus and S. agalacticae distinctly triggered most of the eleven inflammatory, anti-inflammatory, TH1/TH2 cytokines, and chemokines quantified in UBMC culture media. Chemokines depicted the most robust induction. Among them, MIP-1β was further enhanced in UBMC from female compered to male newborn infants. Due to its stability and high levels, we investigated the diagnostic value of IL-8. IL-8 was critically upregulated in cord blood of preterm neonates suffering from infections compared to gestational age-matched controls. Our results provide novel clues about perinatal immunity, underscoring a potential value of IL-8 for the timely detection of infections and suggesting that MIP-1β constitutes an early determinant of sex-specific immunity, which may contribute, e.g., to male's vulnerability to preterm birth.
Collapse
Affiliation(s)
- Edith Reuschel
- University Department of Obstetrics and Gynecology At The Hospital St. Hedwig of The Order of St. John, University of Regensburg, 93049 Regensburg, Germany; (S.H.); (B.S.-G.)
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (L.D.)
| | - Sebastian Haeusler
- University Department of Obstetrics and Gynecology At The Hospital St. Hedwig of The Order of St. John, University of Regensburg, 93049 Regensburg, Germany; (S.H.); (B.S.-G.)
| | - Ludwig Deml
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (L.D.)
| | - Birgit Seelbach-Goebel
- University Department of Obstetrics and Gynecology At The Hospital St. Hedwig of The Order of St. John, University of Regensburg, 93049 Regensburg, Germany; (S.H.); (B.S.-G.)
| | - Maria Emilia Solano
- Department of Obstetrics and Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
21
|
Lin JH, Tsai TT, Zeng Q, Chang CY, Guo JY, Lin CJ, Chen CF. A Multifunctional Microfluidic Device for Blood Typing and Primary Screening of Blood Diseases. ACS Sens 2020; 5:3082-3090. [PMID: 32786388 DOI: 10.1021/acssensors.0c00969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we demonstrate a multifunctional, portable, and disposable microfluidic device for blood typing and primary screening of blood diseases. Preloaded antibodies (anti-A, anti-B, and anti-D) interact with injected whole blood cells to cause an agglutination reaction that blocks a microslit in the microfluidic channel to accumulate red blood cells and form a visible red line that can be easily read to determine the blood type. Moreover, the different blood density and agglutination properties of normal and subtype blood groups, as well as different blood diseases, including anemia and polycythemia vera, generate different lengths of blood agglutination within the channels, which allows us to successfully screen these various conditions in as little as 2 min. The required blood volume for each test is just 1 μL, which can be obtained by minimally invasive finger pricking. This novel method of observing agglutinated red blood cells to distinguish blood types and diseases is both feasible and affordable, suggesting its promise for use in areas with limited resources.
Collapse
Affiliation(s)
- Jia-Hui Lin
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Qiang Zeng
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Yen Chang
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Jun-Yu Guo
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Jui Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
22
|
Yuan X, Yang C, He Q, Chen J, Yu D, Li J, Zhai S, Qin Z, Du K, Chu Z, Qin P. Current and Perspective Diagnostic Techniques for COVID-19. ACS Infect Dis 2020; 6:1998-2016. [PMID: 32677821 PMCID: PMC7409380 DOI: 10.1021/acsinfecdis.0c00365] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 02/08/2023]
Abstract
Since late December 2019, the coronavirus pandemic (COVID-19; previously known as 2019-nCoV) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been surging rapidly around the world. With more than 1,700,000 confirmed cases, the world faces an unprecedented economic, social, and health impact. The early, rapid, sensitive, and accurate diagnosis of viral infection provides rapid responses for public health surveillance, prevention, and control of contagious diffusion. More than 30% of the confirmed cases are asymptomatic, and the high false-negative rate (FNR) of a single assay requires the development of novel diagnostic techniques, combinative approaches, sampling from different locations, and consecutive detection. The recurrence of discharged patients indicates the need for long-term monitoring and tracking. Diagnostic and therapeutic methods are evolving with a deeper understanding of virus pathology and the potential for relapse. In this Review, a comprehensive summary and comparison of different SARS-CoV-2 diagnostic methods are provided for researchers and clinicians to develop appropriate strategies for the timely and effective detection of SARS-CoV-2. The survey of current biosensors and diagnostic devices for viral nucleic acids, proteins, and particles and chest tomography will provide insight into the development of novel perspective techniques for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Xi Yuan
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Chengming Yang
- Southern
University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Qian He
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Junhu Chen
- National
Institute of Parasitic Diseases, Chinese
Center for Disease Control and Prevention, Shanghai 200025, China
| | - Dongmei Yu
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
- Department
of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jie Li
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
- Kunming
Dog Base of Police Security, Ministry of Public Security, Kunming, Yunnan 650204, China
| | - Shiyao Zhai
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Zhifeng Qin
- Animal &
Plant Inspection and Quarantine Technology Center, Shenzhen Customs District People’s Republic of China, Shenzhen, Guangdong 518045, China
| | - Ke Du
- Department
of Mechanical Engineering, Rochester Institute
of Technology, Rochester, New York 14623, United States
| | - Zhenhai Chu
- Southern
University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Peiwu Qin
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| |
Collapse
|
23
|
Mejía-Salazar JR, Rodrigues Cruz K, Materón Vásques EM, Novais de Oliveira Jr. O. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1951. [PMID: 32244343 PMCID: PMC7180826 DOI: 10.3390/s20071951] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
Point-of-care (PoC) diagnostics is promising for early detection of a number of diseases, including cancer, diabetes, and cardiovascular diseases, in addition to serving for monitoring health conditions. To be efficient and cost-effective, portable PoC devices are made with microfluidic technologies, with which laboratory analysis can be made with small-volume samples. Recent years have witnessed considerable progress in this area with "epidermal electronics", including miniaturized wearable diagnosis devices. These wearable devices allow for continuous real-time transmission of biological data to the Internet for further processing and transformation into clinical knowledge. Other approaches include bluetooth and WiFi technology for data transmission from portable (non-wearable) diagnosis devices to cellphones or computers, and then to the Internet for communication with centralized healthcare structures. There are, however, considerable challenges to be faced before PoC devices become routine in the clinical practice. For instance, the implementation of this technology requires integration of detection components with other fluid regulatory elements at the microscale, where fluid-flow properties become increasingly controlled by viscous forces rather than inertial forces. Another challenge is to develop new materials for environmentally friendly, cheap, and portable microfluidic devices. In this review paper, we first revisit the progress made in the last few years and discuss trends and strategies for the fabrication of microfluidic devices. Then, we discuss the challenges in lab-on-a-chip biosensing devices, including colorimetric sensors coupled to smartphones, plasmonic sensors, and electronic tongues. The latter ones use statistical and big data analysis for proper classification. The increasing use of big data and artificial intelligence methods is then commented upon in the context of wearable and handled biosensing platforms for the Internet of things and futuristic healthcare systems.
Collapse
Affiliation(s)
| | - Kamilla Rodrigues Cruz
- National Institute of Telecommunications (Inatel), 37540-000 Santa Rita do Sapucaí, MG, Brazil;
| | - Elsa María Materón Vásques
- Sao Carlos Institute of Physics, University of Sao Paulo, P.O. Box 369, 13560-970 Sao Carlos, SP, Brazil; (E.M.M.V.); (O.N.d.O.J.)
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Osvaldo Novais de Oliveira Jr.
- Sao Carlos Institute of Physics, University of Sao Paulo, P.O. Box 369, 13560-970 Sao Carlos, SP, Brazil; (E.M.M.V.); (O.N.d.O.J.)
| |
Collapse
|
24
|
Calabretta MM, Zangheri M, Lopreside A, Marchegiani E, Montali L, Simoni P, Roda A. Precision medicine, bioanalytics and nanomaterials: toward a new generation of personalized portable diagnostics. Analyst 2020; 145:2841-2853. [PMID: 32196042 DOI: 10.1039/c9an02041a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The customization of disease treatment focused on genetic, environmental and lifestyle factors of individual patients, including tailored medical decisions and treatments, is identified as precision medicine. This approach involves the combination of various aspects such as the collection and processing of a large amount of data, the selection of optimized and personalized drug dosage for each patient and the development of selective and reliable analytical tools for the monitoring of clinical, genetic and environmental parameters. In this context, miniaturized, compact and ultrasensitive bioanalytical devices play a crucial role for achieving the goals of personalized medicine. In this review, the latest analytical technologies suitable for providing portable and easy-to-use diagnostic tools in clinical settings will be discussed, highlighting new opportunities arising from nanotechnologies, offering peculiar perspectives and opportunities for precision medicine.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry, Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Yesilkoy F. Optical Interrogation Techniques for Nanophotonic Biochemical Sensors. SENSORS 2019; 19:s19194287. [PMID: 31623315 PMCID: PMC6806184 DOI: 10.3390/s19194287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
The manipulation of light via nanoengineered surfaces has excited the optical community in the past few decades. Among the many applications enabled by nanophotonic devices, sensing has stood out due to their capability of identifying miniscule refractive index changes. In particular, when free-space propagating light effectively couples into subwavelength volumes created by nanostructures, the strongly-localized near-fields can enhance light’s interaction with matter at the nanoscale. As a result, nanophotonic sensors can non-destructively detect chemical species in real-time without the need of exogenous labels. The impact of such nanophotonic devices on biochemical sensor development became evident as the ever-growing research efforts in the field started addressing many critical needs in biomedical sciences, such as low-cost analytical platforms, simple quantitative bioassays, time-resolved sensing, rapid and multiplexed detection, single-molecule analytics, among others. In this review, the optical transduction methods used to interrogate optical resonances of nanophotonic sensors will be highlighted. Specifically, the optical methodologies used thus far will be evaluated based on their capability of addressing key requirements of the future sensor technologies, including miniaturization, multiplexing, spatial and temporal resolution, cost and sensitivity.
Collapse
Affiliation(s)
- Filiz Yesilkoy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
26
|
Mauriz E, Dey P, Lechuga LM. Advances in nanoplasmonic biosensors for clinical applications. Analyst 2019; 144:7105-7129. [DOI: 10.1039/c9an00701f] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmonic biosensors can be conveniently used as portable diagnostic devices for attaining timely and cost-effective clinical outcomes. Nanoplasmonics technology opens the way for sensor miniaturization, multiplexing and point of care testing.
Collapse
Affiliation(s)
- Elba Mauriz
- Department of Nursing and Physiotherapy
- Universidad de León
- 24071 León
- Spain
| | - Priyanka Dey
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- BIST
- and CIBER-BBN
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- BIST
- and CIBER-BBN
| |
Collapse
|