1
|
Feng L, Gu Y, Dong M, Liu J, Jiang L, Wu Y. CO 2 utilization for methanol production: a review on the safety concerns and countermeasures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23393-23407. [PMID: 38451455 DOI: 10.1007/s11356-024-32779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The catalytic conversion of carbon dioxide is one of the important ways to achieve the goal of carbon neutralization, which can be further divided into electrocatalysis, thermal catalysis, and photocatalysis. Although photocatalysis and electrocatalysis have the advantages of mild reaction conditions and low energy consumption, the thermal catalytic conversion of CO2 has larger processing capacity, better reduction effect, and more complete industrial foundation, which is a promising technology in the future. During the development of new technology from laboratory to industrial application, ensuring the safety of production process is essential. In this work, safety optimization design of equipment, safety performance of catalysts, accident types, and their countermeasures in the industrial applications of CO2 to methanol are reviewed and discussed in depth. Based on that, future research demands for industrial process safety of CO2 to methanol were proposed, which provide guidance for the large-scale application of CO2 thermal catalytic conversion technology.
Collapse
Affiliation(s)
- Lele Feng
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
| | - Yifan Gu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Maifan Dong
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Jie Liu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Liangliang Jiang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Yuxin Wu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Yan Z, Luo S, Li Q, Wu ZS, Liu SF. Recent Advances in Flexible Wearable Supercapacitors: Properties, Fabrication, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302172. [PMID: 37537662 PMCID: PMC10885655 DOI: 10.1002/advs.202302172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Indexed: 08/05/2023]
Abstract
A supercapacitor is a potential electrochemical energy storage device with high-power density (PD) for driving flexible, smart, electronic devices. In particular, flexible supercapacitors (FSCs) have reliable mechanical and electrochemical properties and have become an important part of wearable, smart, electronic devices. It is noteworthy that the flexible electrode, electrolyte, separator and current collector all play key roles in overall FSCs. In this review, the unique mechanical properties, structural designs and fabrication methods of each flexible component are systematically classified, summarized and discussed based on the recent progress of FSCs. Further, the practical applications of FSCs are delineated, and the opportunities and challenges of FSCs in wearable technologies are proposed. The development of high-performance FSCs will greatly promote electricity storage toward more practical and widely varying fields. However, with the development of portable equipment, simple FSCs cannot satisfy the needs of integrated and intelligent flexible wearable devices for long durations. It is anticipated that the combining an FSC and a flexible power source such as flexible solar cells is an effective strategy to solve this problem. This review also includes some discussions of flexible self-powered devices.
Collapse
Affiliation(s)
- Zhe Yan
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, P. R. China
| | - Sheji Luo
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, P. R. China
| | - Qi Li
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Zhong-Shuai Wu
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shengzhong Frank Liu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
3
|
Rahamathulla M, Murugesan S, Gowda DV, Alamri AH, Ahmed MM, Osmani RAM, Ramamoorthy S, Veeranna B. The Use of Nanoneedles in Drug Delivery: an Overview of Recent Trends and Applications. AAPS PharmSciTech 2023; 24:216. [PMID: 37857918 DOI: 10.1208/s12249-023-02661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
Nanoneedles (NN) are growing rapidly as a means of navigating biological membranes and delivering therapeutics intracellularly. Nanoneedle arrays (NNA) are among the most potential resources to achieve therapeutic effects by administration of drugs through the skin. Although this is based on well-established approaches, its implementations are rapidly developing as an important pharmaceutical and biological research phenomenon. This study intends to provide a broad overview of current NNA research, with an emphasis on existing approaches, applications, and types of compounds released by these systems. A nanoneedle-based delivery device with great spatial and temporal accuracy, minimal interference, and low toxicity could transfer biomolecules into living organisms. Due to its vast potential, NN has been widely used as a capable transportation system of many therapeutic active substances, from cancer therapy, vaccine delivery, cosmetics, and bio-sensing nanocarrier drugs to genes. The use of nanoneedles for drug delivery offers new opportunities for the rapid, targeted, and exact administration of biomolecules into cell membranes for high-resolution research of biological systems, and it can treat a wide range of biological challenges. As a result, the literature has analyzed existing patents to emphasize the status of NNA in biological applications.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Santhosh Murugesan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| | - Sathish Ramamoorthy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Balamuralidhara Veeranna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
4
|
Abedi R, Raoof JB, Mohseni M, Bagheri Hashkavayi A. A signal-off aptasensor for the determination of Acinetobacter baumannii by using methylene blue as an electrochemical probe. Mikrochim Acta 2023; 190:308. [PMID: 37466698 DOI: 10.1007/s00604-023-05901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
An electrochemical aptasensor has been developed to detect Acinetobacter baumannii (A. baumannii). The proposed system was developed by modifying carbon screen-printed electrodes (CSPEs) with a synthesized MWCNT@Fe3O4@SiO2-Cl nanocomposite and then binding A. baumannii-specific aptamer using covalent immobilization on the modified electrode surface and the interaction of methylene blue (MB) with Apt as an electrochemical redox indicator. As a result of the incubation of the A. baumannii bacteria as a target on the proposed aptasensor, a cathodic peak current density (Jpc) of MB decreased due to the formation of the Apt-A. baumannii complex and MB being released from the immobilized Apt on the surface of the modified electrode. In addition to increasing the electron transfer kinetics, the nanocomposite provides a relatively stable matrix to improve the loading Apt sequence. The suggested aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of 10.0-1.0 × 107 colony-forming unit (CFU) mL-1 and a detection limit of 1 CFU mL-1 (S/N = 3) using differential pulse voltammetry (DPV) studies at a working potential of ~0.29 V and a scan rate of 100 mV s-1. The outcomes revealed that the aptasensor exhibited high A. baumannii detection sensitivity, stability, reproducibility, and specificity.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mojtaba Mohseni
- Department of Molecular and Cell Biology, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
5
|
Wang Y, Pan Y, Jiang Y, Xu M, Jiang J. Wearable electrochemical gas sensor for methanol leakage detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
6
|
Chen T, Zhang T, Tang H, Cheng X, Li H. Quantitative Analysis of the Cu Element Enhanced by AgNPs in a Single Microsized Suspended Particle Based on Optical Trapping-LIBS and Machine Learning. Anal Chem 2023; 95:4819-4827. [PMID: 36857731 DOI: 10.1021/acs.analchem.3c00487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Extremely severe and persistent particulate pollution caused by industrialization and urbanization impacts air quality, regional and global climates, and human health. The unstable and complex spectral signal of laser-induced breakdown spectroscopy (LIBS) with minimal feature information and interference signals considerably influences the accuracy of qualitative and quantitative analysis. In response to overcome this phenomenon, in this work, quantitative analysis of Cu element enhanced by silver nanoparticles (AgNPs) in a single microsized suspended particle was proposed herein using optical trapping-LIBS and machine learning method was proposed. Initially, the optimal AgNPs enhancement conditions were optimized. The LIBS spectra of 15 polluted black carbon samples were collected and various spectral pretreatment methods were compared to optimize the LIBS spectra. Variable selection methods include variable importance measurement (VIM), variable importance projection (VIP), VIM-successive projections algorithm (VIM-SPA), VIM-genetic algorithm (VIM-GA), and VIM-mutual information (VIM-MI). Finally, several hybrid variable selection methods were implemented in random forest (RF) calibration models. In particular, a wavelet transform (WT)-VIM-SPA-RF calibration model has constructed under the WT spectral pretreatment method and the selected and optimized input variables (VIM-SPA). Results elucidate that the WT-VIM-SPA-RF calibration model (R2P = 0.9858, MREP = 0.0396) have the best prediction performance than the WT-RF and Raw-RF models in predicting the Cu level in a single microsized black carbon particle. Compared to the WT-RF and Raw-RF models, MREP values decreased by 37% and 62%, respectively. The values of RSD, RPD, and RER of this calibration model are 2.8%, 8.39%, and 17.79%, respectively. The aforementioned results demonstrate that the WT-VIM-SPA-RF calibration model with accuracy, stability, and robustness is a promising approach for improving the quantitative accuracy of the Cu level in carbon black particles.
Collapse
Affiliation(s)
- Tingting Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an, 710127, China
| | - Tianlong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an, 710127, China
| | - Hongsheng Tang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an, 710127, China
| | - Xuemei Cheng
- Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, PR China
| | - Hua Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an, 710127, China.,College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| |
Collapse
|
7
|
Ma H, Cheng P, Chen C, Geng X, Yang K, Lv F, Ma J, Jiang Y, Liu Q, Su Y, Li J, Zhu N. Highly Selective Wearable Alcohol Homologue Sensors Derived from Pt-Coated Truncated Octahedron Au. ACS Sens 2022; 7:3067-3076. [PMID: 36173279 DOI: 10.1021/acssensors.2c01392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unhealthy alcohol inhalation is among the top 10 causes of preventable death. However, the present alcohol sensors show poor selectivity among alcohol homologues. Herein, Pt-coated truncated octahedron Au (Ptm@Auto) as the electrocatalyst for a highly selective electrochemical sensor toward alcohol homologues has been designed. The alcohol sensor is realized by distinguishing the electro-oxidation behavior of methanol (MeOH), ethanol (EtOH), or isopropanol (2-propanol). Intermediates from alcohols are further oxidized to CO2 by Ptm@Auto, resulting in different oxidation peaks in cyclic voltammograms and successful distinction of alcohols. Ptm@Auto is then modified on wearable glove-based sensors for monitoring actual alcohol samples (MeOH fuel, vodka, and 2-propanol hand sanitizer), with good mechanical performance and repeatability. The exploration of the Ptm@Auto-based wearable alcohol sensor is expected to be suitable for environmental measurement with high selectivity for alcohol homologues or volatile organic compounds.
Collapse
Affiliation(s)
- Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Peihao Cheng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chuanrui Chen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaodong Geng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kaizhou Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yue Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Quanli Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yan Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jian Li
- Center for Reproductive Medicine, Dalian Women and Children's Medical Center (Group), Dalian 116037, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
8
|
Park JY, Kwak Y, Lim HR, Park SW, Lim MS, Cho HB, Myung NV, Choa YH. Tuning the sensing responses towards room-temperature hypersensitive methanol gas sensor using exfoliated graphene-enhanced ZnO quantum dot nanostructures. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129412. [PMID: 35780731 DOI: 10.1016/j.jhazmat.2022.129412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
A suitable and non-invasive methanol sensor workable in ambient temperature conditions with a high response has gained wide interest to prevent detrimental consequences for industrial workers from its low-level intoxication. In this work, we present a tunable and highly responsive ppb-level methanol gas sensor device working at room temperature via a bottom-up synthetic approach using exfoliated graphene sheet (EGs) and ZnO quantum dots (QDs) on an aluminum anodic oxide (AAO) template. It is verified that EGs-supported AAO with a vertical electrode configuration enabled high and fast-responsive methanol sensing. Moreover, the hydroxyl and carboxyl groups of the high surface area EGs and ZnO QDs with a 3.37 eV bandgap efficiently absorbing UV light led to 56 times high response due to the enhanced polarization on the sensor surface compared to non-UV-radiated EGs/AAO at 800 ppb of methanol. The optimal resonance frequency of methanol is determined to be 100 kHz, which could detect methanol with high response of 2.65% at 100 ppm. The limit of detection (LOD) concentration is obtained at 2 ppb level. This study demonstrates the potential of UV-assisted ZnO, EGs, and AAO-based capacitance sensor material for rapidly detecting hazardous gaseous light organic molecules at ambient conditions, and the overall approach can be easily expanded to a novel non-invasive monitoring strategy for light and hazardous volatile organic exposures.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Yeonsu Kwak
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark 19716, United States
| | - Hyo-Ryoung Lim
- Major of Human Biocovergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Si-Woo Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Min Seob Lim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hong-Baek Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Nosang Vincent Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, United States
| | - Yong-Ho Choa
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
9
|
Liu S, Liu X, Gong Y, Hu Q, Yu L. π-Electronic Coassembled Microflake Sensors with Förster Resonance Energy Transfer Enhanced Discrimination of Methanol and Ethanol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13980-13988. [PMID: 35286806 DOI: 10.1021/acsami.2c01712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the field of fluorescence-based gas sensing, it is very difficult to realize the distinction of the molecules with similar chemical properties and slight structural differences (e.g., methanol and ethanol). Herein, we fabricated coassemblies of energy-donor molecule 1 (M1) and energy-acceptor molecule 2 (M2) with different molar ratios. These materials can selectively differentiate methanol and ethanol by regulating the distance of exciton migration of donor M1 by embedding energy-acceptor M2. More importantly, methanol can also be detected from the mixture vapors of methanol and ethanol. These results provide a new approach for developing fluorescence sensors that are highly sensitive to molecules with very small difference in the chemical structures.
Collapse
Affiliation(s)
- Shuya Liu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Xiaoling Liu
- Hisense Video Technology Co., Ltd., Qingdao 266104, China
| | - Yanjun Gong
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| |
Collapse
|
10
|
Material Design for Enhancing Properties of 3D Printed Polymer Composites for Target Applications. TECHNOLOGIES 2022. [DOI: 10.3390/technologies10020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymer composites are becoming an important class of materials for a diversified range of industrial applications due to their unique characteristics and natural and synthetic reinforcements. Traditional methods of polymer composite fabrication require machining, manual labor, and increased costs. Therefore, 3D printing technologies have come to the forefront of scientific, industrial, and public attention for customized manufacturing of composite parts having a high degree of control over design, processing parameters, and time. However, poor interfacial adhesion between 3D printed layers can lead to material failure, and therefore, researchers are trying to improve material functionality and extend material lifetime with the addition of reinforcements and self-healing capability. This review provides insights on different materials used for 3D printing of polymer composites to enhance mechanical properties and improve service life of polymer materials. Moreover, 3D printing of flexible energy-storage devices (FESD), including batteries, supercapacitors, and soft robotics using soft materials (polymers), is discussed as well as the application of 3D printing as a platform for bioengineering and earth science applications by using a variety of polymer materials, all of which have great potential for improving future conditions for humanity and planet Earth.
Collapse
|
11
|
Rong Q, Xiao B, Zeng J, Yu R, Zi B, Zhang G, Zhu Z, Zhang J, Wu J, Liu Q. Pt Single Atom-Induced Activation Energy and Adsorption Enhancement for an Ultrasensitive ppb-Level Methanol Gas Sensor. ACS Sens 2022; 7:199-206. [PMID: 34928579 DOI: 10.1021/acssensors.1c01959] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As an important organic chemical raw material, methanol is used in various industries but is harmful to human health. Developing an effective and accurate detection device for methanol is an urgent need. Herein, we demonstrate a novel gas-sensing material with a Pt single atom supported on a porous Ag-LaFeO3@ZnO core-shell sphere (Ag-LaFeO3@ZnO-Pt) with a high specific surface area (192.08 m2·g-1). Based on this, the surface activity of the Ag-LaFeO3@ZnO-Pt gas sensor is enhanced obviously, which improved the working temperature and detection limit for methanol gas. Consequently, this sensor possesses an ultrahigh sensitivity of 453.02 for 5 ppm methanol gas at a working temperature of 86 °C and maintains a high sensitivity of 21.25 even at a concentration as low as 62 ppb. The sensitivity of Ag-LaFeO3@ZnO-Pt to methanol gas is increased by 6.69 times compared with the Ag-LaFeO3@ZnO core-shell sphere (Ag-LaFeO3@ZnO). Additionally, the minimum detection limit is found to be 3.27 ppb. Detailed theoretical calculations revealed that the unoccupied 5d state of Pt single atoms increases the adsorption and activation energy of methanol and oxygen, which facilities methanol gas-sensing performance. This work will provide a novel strategy to design high-performance gas-sensing materials.
Collapse
Affiliation(s)
- Qian Rong
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China
- School of Chemistry and Environmental Sciences, Qujing Normal University, Qujing 655011, China
| | - Bin Xiao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China
| | - Jiyang Zeng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Baoye Zi
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China
| | - Genlin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China
| | - Zhongqi Zhu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China
| |
Collapse
|
12
|
Raichure PC, Kachwal V, Laskar IR. 'Aggregation-Induced Emission' Active Mono-Cyclometalated Iridium(III) Complex Mediated Efficient Vapor-Phase Detection of Dichloromethane. Molecules 2021; 27:202. [PMID: 35011430 PMCID: PMC8746431 DOI: 10.3390/molecules27010202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Selective vapor-phase detection of dichloromethane (DCM) is a challenge, it being a well-known hazardous volatile organic solvent in trace amounts. With this in mind, we have developed an 'Aggregation-induced Emission' (AIE) active mono-cyclometalated iridium(III)-based (M1) probe molecule, which detects DCM sensitively and selectively in vapor phase with a response time <30 s. It reveals a turn-on emission (non-emissive to intense yellow) on exposing DCM vapor directly to the solid M1. The recorded detection limit is 4.9 ppm for DCM vapor with pristine M1. The mechanism of DCM detection was explored. Moreover, the detection of DCM vapor by M1 was extended with a low-cost filter paper as the substrate. The DCM is weakly bound with the probe and can be removed with a mild treatment, so, notably, the probe can be reused.
Collapse
Affiliation(s)
- Pramod C. Raichure
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, Rajasthan, India; (P.C.R.); (V.K.)
| | - Vishal Kachwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, Rajasthan, India; (P.C.R.); (V.K.)
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Inamur Rahaman Laskar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, Rajasthan, India; (P.C.R.); (V.K.)
| |
Collapse
|
13
|
Ma H, Liu Q, Cheng P, Shen L, Ma J, Lv F, Zhang Y, Jiang Y, Sun T, Zhu N. Wearable Motion Smartsensors Self-Powered by Core-Shell Au@Pt Methanol Fuel Cells. ACS Sens 2021; 6:4526-4534. [PMID: 34910879 DOI: 10.1021/acssensors.1c02236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A wearable self-powered sensor is a promising frontier in recent flexible electronic devices. In this work, a wearable fuel cell (FC)-type self-powering motion smartsensor has been fabricated, particularly in choosing methanol vapor as a target fuel for the first time. The core-shell structure of Pt@Au/N-rGO and the porous carbon network act as methanol oxidation and oxygen reduction reaction catalysts, with a highly conductive alkaline hydrogel as a solid-state electrolyte. As a result, a wearable FC for a self-powered sensing system demonstrates excellent sensing performance toward 2-20% (v/v) methanol vapor with a maximum power density of 2.26 μW cm-1 and good mechanical behaviors during the bending or twisting process. Significantly, this wearable FC device could power strain sensors of human motion, and real-time signals can be easily remotely detected via a cellphone. With attractive biocompatibility and self-powering performance, wearable FCs for a self-powering system would provide new opportunities for next-generation flexible smartsensing electronics and initiate a developed self-powering platform in future practical application of wearable smart monitoring.
Collapse
Affiliation(s)
- Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Quanli Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Peihao Cheng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yunze Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tongrui Sun
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
14
|
A sensor of liquid methanol for direct methanol fuel cells. Anal Chim Acta 2021; 1177:338785. [PMID: 34482890 DOI: 10.1016/j.aca.2021.338785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
The methanol sensors are of significance to maintain the efficient and stable operation of direct methanol fuel cells (DMFCs). The issues, including stability, the relationship between temperature, current density and concentration need, however, urgent attention. A novel electrochemical methanol sensor which is based on current output limited by methanol diffusion is developed. The stability of sensors was lifted steeply through introducing a reference electrode, narrowing the methanol flow channel, and adding a water container. The relationship between the temperature, response current and methanol concentration was determined with the help of theoretical derivation and the validity was verified by the fitting result. Other sensors can avail of this relationship to correct the temperature effect. Application test indicated that the sensor may be of great potential for the accurate monitoring of methanol concentration at the levels of DMFCs application.
Collapse
|
15
|
Sequential electrodeposition of Cu-Pt bimetallic nanocatalysts on boron-doped diamond electrodes for the simple and rapid detection of methanol. Sci Rep 2021; 11:14354. [PMID: 34257317 PMCID: PMC8277777 DOI: 10.1038/s41598-021-92769-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/09/2021] [Indexed: 11/08/2022] Open
Abstract
In this work, a novel electrochemical sensor for methanol determination was established by developing a bimetallic catalyst with superiority to a monometallic catalyst. A Cu–Pt nanocatalyst was proposed and easily synthesized by sequential electrodeposition onto a boron-doped diamond (BDD) electrode. The successful deposition of this nanocatalyst was then verified by scanning electron microscopy and energy dispersive spectroscopy. The electrodeposition technique and sequence of metal deposition significantly affected the surface morphology and electrocatalytic properties of the Cu–Pt nanocatalyst. The presence of Cu atoms reduced the adsorption of other species on the Pt surface, consequently enhancing the long-term stability and poisoning tolerance of Pt nanocatalysts during the methanol oxidation process. This advanced sensor was also integrated with sequential injection analysis to achieve automated and high-throughput analysis. This combination can significantly improve the detection limit of the developed sensor by approximately 100 times compared with that of the cyclic voltammetric technique. The limit of detection of this sensor was 83 µM (S/N = 3), and wide linearity of the standard curve for methanol concentrations ranging from 0.1 to 1000 mM was achieved. Finally, this proposed sensor was successfully applied to detect methanol in fruit and vegetable beverage samples.
Collapse
|
16
|
Sumida A, Imoto H, Naka K. Turn-on type sensing of methanol vapor by a luminescent platinum(II) dichloride complex with 21-dibenzoarsacrown-7. Dalton Trans 2021; 50:6682-6687. [PMID: 33908533 DOI: 10.1039/d1dt01133b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of turn-on detection sensors for methanol vapor remains challenging in materials science. Methanol sensing materials are generally based on vapor-triggered color changes or are turn-off types. Additionally, in general, the selectivity for methanol is limited, and the recyclability is low. Turn-on type sensing, high selectivity, rapid response time, and recyclability are favorable for achieving real-time detection systems. Herein, platinum(ii) dihalide (PtX2, X = Cl, Br, and I) complexes with 21-dibenzoarsacrown-7 were synthesized and their structures were characterized by single-crystal diffraction analysis. The PtCl2 complex showed intense emission when capturing methanol molecules in the crystalline matrix. In addition, this sensing system possessed high selectivity for methanol vapor and required facile recycling procedures.
Collapse
Affiliation(s)
- Akifumi Sumida
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. and Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. and Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
17
|
Extending Porous Silicone Capacitive Pressure Sensor Applications into Athletic and Physiological Monitoring. SENSORS 2021; 21:s21041119. [PMID: 33562707 PMCID: PMC7914416 DOI: 10.3390/s21041119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022]
Abstract
Porous polymer dielectric materials have been developed to increase the sensitivity of capacitive pressure sensors, so that they might expand capacitive sensor use, and promote the realization of the advantages of this class of sensor in further fields. However, their use has not been demonstrated in physiological monitoring applications such as respiration monitoring and body position detection during sleep; an area in need of unmet medical attention for conditions such as sleep apnea. Here, we develop and characterize a sensor comprised of a poly dimethylsiloxane (PDMS) sponge dielectric layer, and PDMS/carbon black (CB) blend electrode layers, with suitable compliance and sensitivity for integration in mattresses, pillows, and athletic shoe insoles. With relatively high pressure sensitivity (~0.1 kPa-1) and mechanical robustness, this sensor was able to fulfill a wide variety of roles, including athletic monitoring in an impact mechanics scenario, by recording heel pressure during running and walking, and physiological monitoring, by detecting head position and respiration of a subject lying on a pad and pillow. The sensor detected considerably greater relative signal changes than those reported in recent capacitive sensor studies for heel pressure, and for a comparably minimal, resistive sensor during respiration, in line with its enhanced sensitivity.
Collapse
|
18
|
Kumar A, Wang C, Meng FY, Jiang CP, Yan GF, Zhao M, Jing CQ, Wang L. Ultrafast Detection and Discrimination of Methanol Gas Using a Polyindole-Embedded Substrate Integrated Waveguide Microwave Sensor. ACS Sens 2020; 5:3939-3948. [PMID: 33251796 DOI: 10.1021/acssensors.0c01589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fast and sensitive detection of methanol gas using cost-effective sensors in the industry is a significant issue to be addressed. Herein, a polyindole (PIn)-deposited substrate integrated waveguide (SIW) has been introduced to perform quantitative and qualitative methanol gas sensing with quick response and recovery time at room temperature. First, PIn is synthesized and deposited in the microwell etched at the intensified electric field region of the microwave-based cavity resonator, which gives a sensing response through variation of PIn's high-frequency conductivity and dielectric property caused by the adsorption and desorption of methanol gas. Second, an enhanced filling factor and high Q factor have been attained using the proposed microwell etched SIW structure, which exhibits high sensitivity in terms of frequency shift (3.33 kHz/ppm), amplitude shift (0.005 dB/ppm), bandwidth broadening (3.66 kHz/ppm), and loaded Q factor (10.60 Q value/ppm). Third, the gas measurement results reveal excellent long-term stability with a relative standard deviation (RSD) of 0.02% for 7 days, excellent repeatability with an RSD of 0.004%, and desired response and recovery time of 95 and 120 s, respectively. The results indicate that the proposed microwave sensor has great potential to achieve high sensitivity and fast response toward methanol gas molecules at room temperature.
Collapse
Affiliation(s)
- Alok Kumar
- School of Information and Communication Engineering, Harbin Institute of Technology, Harbin 15001, China
| | - Cong Wang
- School of Information and Communication Engineering, Harbin Institute of Technology, Harbin 15001, China
| | - Fan-Yi Meng
- School of Information and Communication Engineering, Harbin Institute of Technology, Harbin 15001, China
| | - Cheng-Peng Jiang
- Research Center for Smart Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Guo-Feng Yan
- Research Center for Smart Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Meng Zhao
- School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chang-Qiang Jing
- School of Information Science and Engineering, LinYi University, LinYi 276000, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
19
|
Jiang Y, Cui S, Xia T, Sun T, Tan H, Yu F, Su Y, Wu S, Wang D, Zhu N. Real-Time Monitoring of Heavy Metals in Healthcare via Twistable and Washable Smartsensors. Anal Chem 2020; 92:14536-14541. [PMID: 33073993 DOI: 10.1021/acs.analchem.0c02723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The wearable and integrated sensing platform is a promising choice for developing real-time analytic electronics with clear advantages but still poses challenges, such as the realization of high precision, low limit of detection (LOD), moderate mechanical capacity, integration, and miniaturization. In this work, a simple printed wearable smartsensor has been fabricated with the aid of electrochemical plating methods with bismuth (Bi) films. The excellent sensing behaviors, including linear relationship, selectivity, stability, repeatability, and the LOD at ppb levels, have been obtained by this smartsensor. Additionally, the highly flexible textile-based sensor exhibits potential application on the substrates of daily cloth, sports T-shirt, and sports wristbands, and it maintains good stability under repeated deformations of washing and twisting. Importantly, integrated with printed circuit board, single chip micyoco, and Bluetooth modules, a smartsensing platform is successfully acquired for real-time detection of heavy metals (e.g., Zn, Cd, Pb, etc.). Finally, actual samples of human sweat, seawater, cosmetics, and drinking water have been remotely successfully demonstrated for detection by this smartsensor, enabling a great promise for fast on-site screening of samples in practical application.
Collapse
Affiliation(s)
- Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shengjun Cui
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment, Ministry of Education, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tong Xia
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tongrui Sun
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Haixin Tan
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment, Ministry of Education, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fei Yu
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment, Ministry of Education, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yan Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dejun Wang
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment, Ministry of Education, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
20
|
Sun T, Shen L, Jiang Y, Ma J, Lv F, Ma H, Chen D, Zhu N. Wearable Textile Supercapacitors for Self-Powered Enzyme-Free Smartsensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21779-21787. [PMID: 32323969 DOI: 10.1021/acsami.0c05465] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wearable energy storage and flexible body biomolecule detection are two key factors for real-time monitoring of human health in a practical environment. It would be rather exciting if one wearable system could be used for carrying out both energy storage and biomolecule detection. Herein, carbon fiber-based NiCoO2 nanosheets coated with nitrogen-doped carbon (CF@NiCoO2@N-C) have been prepared via a simple electrochemical deposition method. Interestingly, being a dual-functional active material, CF@NiCoO2@N-C exhibits excellent behaviors as a supercapacitor and prominent electrocatalytic properties, which can be applied for enzyme-free biosensor. It exhibits outstanding energy storage, high capacitive stability (94% capacitive retention after 10,000 cycles), and pre-eminent flexible ability (95% capacitive retention after 10,000 bending cycles), as well as high sensitivity for enzyme-free glucose detection (592 μA mM-1). Moreover, the CF@NiCoO2@N-C-based wearable supercapacitors would be used as self-powered energy systems for enzyme-free biosensors. Integrating with bluetooth, we have successfully developed a wearable self-powered enzyme-free smartsensor, remotely controlled using a smartphone for health monitoring in a practical environment. From this prospective study, it was found that the design of wearable self-powered smartsensors, demonstrating energy storage and enzyme-free biosensing in one system, provides a promising device for detecting body biomolecules, which has the potential to be implemented in the artificial intelligent fields.
Collapse
Affiliation(s)
- Tongrui Sun
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dawei Chen
- Neware Technology Limited, Shenzhen, Guangdong 518049, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
21
|
Ma H, Jiang Y, Ma J, Ma X, Xue M, Zhu N. Highly Selective Wearable Smartsensors for Vapor/Liquid Amphibious Methanol Monitoring. Anal Chem 2020; 92:5897-5903. [PMID: 32207617 DOI: 10.1021/acs.analchem.9b05728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A wearable screen-printed electrochemical smartsensor with excellent selectivity for methanol quantification has been developed. This smartsensor consists of a printable sensing system modified with platinum (Pt) confined in a reduced graphene oxide (rGO) matrix, as well as a compact electronic interface for data collection. The real-time electrochemical signal from methanol could be remotely detected and transmitted to a smartphone by blue tooth. It performs good environmental adaptability of vapor/liquid amphibious behaviors. Owing to the uniform distribution of Pt loading on the rGO nanosheets, this sensor demonstrates high selectivity, sensitivity, stability, and recoverability both in vapor and liquid during temperature or humidity diversification, compared with other resistance-based sensors. It also achieves good bending and stretching performance, and it could be a possible candidate device for the quantification of methanol in different environments.
Collapse
Affiliation(s)
- Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xinlei Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Mianqi Xue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
22
|
Ma J, Jiang Y, Shen L, Ma H, Sun T, Lv F, Kiran A, Zhu N. Wearable biomolecule smartsensors based on one-step fabricated berlin green printed arrays. Biosens Bioelectron 2019; 144:111637. [PMID: 31494509 DOI: 10.1016/j.bios.2019.111637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
The wearable smart detection of body biomolecules and biomarkers is being of significance in the practical fields. Hydrogen peroxide (H2O2) is a product of some enzyme-catalyzed biomolecular reactions. The detection of H2O2 could reflect the concentration information of the enzyme reaction biomolecule substrate such as glucose. A high-performance berlin green (BG) carbon ink for monitoring H2O2 was prepared in this work. And we have successfully developed the wearable smartsensors for detecting H2O2 and glucose based on one-step fabricated BG arrays by screen-printing technology. Comparing with other detection methods, these sensors are wearable, movable, flexible and biocompatible for monitoring biomolecules. As a result, the sensors exhibited good sensitivity, specificity, stability and reproductivity towards H2O2 and glucose. Additionally, there also received stable response after near one hundred times stretching and thousands of bending. Moreover, the wearable sensors could be easily remotely controlled by a smart phone, when integrated with wireless into the device. In prospective studies, the one-step fabricated wearable smartsensors is of great significance in developing a straightforward, highly-efficient and low-cost method for actual detection of biomolecules reflecting body health status, and would potentially be applied in the artificial intelligence (AI) fields.
Collapse
Affiliation(s)
- Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Tongrui Sun
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Almas Kiran
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
23
|
Montes-Cebrián Y, Álvarez-Carulla A, Colomer-Farrarons J, Puig-Vidal M, Miribel-Català PL. Self-Powered Portable Electronic Reader for Point-of-Care Amperometric Measurements. SENSORS 2019; 19:s19173715. [PMID: 31461956 PMCID: PMC6749422 DOI: 10.3390/s19173715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 11/25/2022]
Abstract
In this work, we present a self-powered electronic reader (e-reader) for point-of-care diagnostics based on the use of a fuel cell (FC) which works as a power source and as a sensor. The self-powered e-reader extracts the energy from the FC to supply the electronic components concomitantly, while performing the detection of the fuel concentration. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low power device without needing an external power source. Besides, the custom electronic instrumentation platform can process and display fuel concentration without requiring any type of laboratory equipment. In this study, we present the electronics system in detail and describe all modules that make up the system. Furthermore, we validate the device’s operation with different emulated FCs and sensors presented in the literature. The e-reader can be adjusted to numerous current ranges up to 3 mA, with a 13 nA resolution and an uncertainty of 1.8%. Besides, it only consumes 900 µW in the low power mode of operation, and it can operate with a minimum voltage of 330 mV. This concept can be extended to a wide range of fields, from biomedical to environmental applications.
Collapse
Affiliation(s)
- Yaiza Montes-Cebrián
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Albert Álvarez-Carulla
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Jordi Colomer-Farrarons
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Manel Puig-Vidal
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Pere Ll Miribel-Català
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|