1
|
Iitani K, Ichikawa K, Toma K, Arakawa T, Mitsubayashi K. Biofluorometric Gas-Imaging System for Evaluating the Ripening Stages of "La France" Pear Based on Ethanol Vapor Emitted via the Epicarp. ACS Sens 2024; 9:5081-5089. [PMID: 38919035 DOI: 10.1021/acssensors.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Fruits can emit ethanol, which is generated through fermentation during hypoxic storage. We imaged spatiotemporal changes in the gaseous ethanol emitted by "La France" pear via its epicarp. The gas-imaging system utilized enzymes to transduce the ethanol concentration into fluorescence intensity. Initially, the uniformity of the enzyme and coenzyme distribution was evaluated to validate the imaging capability. Subsequently, two surface-fitting methods were compared to accurately image ethanol emitted from three-dimensional (3D) objects with a double-curved surface. The imaging results of ethanol emitted from the pear indicated that the distribution of ethanol was related to lenticels, which have been reported to possess high ethanol diffusivity, on the epicarp. As quantified by the system (uniformity of coenzyme and enzymes was 93.2 and 98.8%, respectively; dynamic range was 0.01-100 ppm), ethanol concentration increased with the storage period under hypoxic conditions (0.4-5.3 ppm, from day 1 to 10). The system enables the observation of the location, quantity, and temporal pattern of ethanol release from fruit, which could be a useful technology for agricultural applications.
Collapse
Affiliation(s)
- Kenta Iitani
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kenta Ichikawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Koji Toma
- College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Takahiro Arakawa
- Department of Electric and Electronic Engineering, Tokyo University of Technology, 1404-1 Katakura, Hachioji City, Tokyo 192-0982, Japan
| | - Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
2
|
Jiang T, Guo H, Ge L, Sassa F, Hayashi K. Inkjet-Printed Localized Surface Plasmon Resonance Subpixel Gas Sensor Array for Enhanced Identification and Visualization of Gas Spatial Distributions from Multiple Odor Sources. SENSORS (BASEL, SWITZERLAND) 2024; 24:6731. [PMID: 39460210 PMCID: PMC11511064 DOI: 10.3390/s24206731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
The visualization of the spatial distributions of gases from various sources is essential to understanding the composition, localization, and behavior of these gases. In this study, an inkjet-printed localized surface plasmon resonance (LSPR) subpixel gas sensor array was developed to visualize the spatial distributions of gases and to differentiate between acetic acid, geraniol, pentadecane, and cis-jasmone. The sensor array, which integrates gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), and fluorescent pigments, was positioned 3 cm above the gas source. Hyperspectral imaging was used to capture the LSPR spectra across the sensor array, and these spectra were then used to construct gas information matrices. Principal component analysis (PCA) enabled effective classification of the gases and localization of their sources based on observed spectral differences. Heat maps that visualized the gas concentrations were generated using the mean squared error (MSE) between the sensor responses and reference spectra. The array identified and visualized the four gas sources successfully, thus demonstrating its potential for gas localization and detection applications. The study highlights a straightforward, cost-effective approach to gas sensing and visualization, and in future work, we intend to refine the sensor fabrication process and enhance the detection of complex gas mixtures.
Collapse
Affiliation(s)
| | | | | | | | - Kenshi Hayashi
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; (T.J.); (H.G.); (L.G.); (F.S.)
| |
Collapse
|
3
|
Zhang Z, Guo X, Lee C. Advances in olfactory augmented virtual reality towards future metaverse applications. Nat Commun 2024; 15:6465. [PMID: 39085214 PMCID: PMC11291476 DOI: 10.1038/s41467-024-50261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Recent advances in virtual reality technologies accelerate the immersive interaction between human and augmented 3D virtual worlds. Here, the authors discuss olfactory feedback technologies that facilitate interaction with real and virtual objects and the evolution of wearable devices for immersive VR/AR applications.
Collapse
Affiliation(s)
- Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Xinge Guo
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| |
Collapse
|
4
|
Iitani K, Suzuki M, Ichikawa K, Toma K, Arakawa T, Mitsubayashi K. Image Sensing of Gaseous Acetone Using Secondary Alcohol Dehydrogenase-Immobilized Mesh for Exhaled Air. Anal Chem 2024; 96:11549-11556. [PMID: 38958207 DOI: 10.1021/acs.analchem.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Human-borne acetone is a potent marker of lipid metabolism. Here, an enzyme immobilization method for secondary alcohol dehydrogenase (S-ADH), which is suitable for highly sensitive and selective biosensing of acetone, was developed, and then its applicability was demonstrated for spatiotemporal imaging of concentration distribution. After various investigations, S-ADH-immobilized meshes could be prepared with less than 5% variation by cross-linking S-ADH with glutaraldehyde on a cotton mesh at 40 °C for 15 min. Furthermore, high activity was obtained by adjusting the concentration of the coenzyme nicotinamide adenine dinucleotide (NADH) solution added to the S-ADH-immobilized mesh to 500 μM and the solvent to a potassium phosphate buffer solution at pH 6.5. The gas imaging system using the S-ADH-immobilized mesh was able to image the decrease in NADH fluorescence (ex 340 nm, fl 490 nm) caused by the catalytic reaction of S-ADH and the acetone distribution in the concentration range of 0.1-10 ppm-v, including the breath concentration of healthy people at rest. The exhaled breath of two healthy subjects at 6 h of fasting was quantified as 377 and 673 ppb-v, which were consistent with the values quantified by gas chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Kenta Iitani
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Mika Suzuki
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kenta Ichikawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Koji Toma
- College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Takahiro Arakawa
- Department of Electric and Electronic Engineering, Tokyo University of Technology, 1404-1 Katakura, Hachioji City, Tokyo 192-0982, Japan
| | - Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
5
|
Chen L, Guo H, Wang C, Chen B, Sassa F, Hayashi K. Two-Dimensional SERS Sensor Array for Identifying and Visualizing the Gas Spatial Distributions of Two Distinct Odor Sources. SENSORS (BASEL, SWITZERLAND) 2024; 24:790. [PMID: 38339509 PMCID: PMC10857130 DOI: 10.3390/s24030790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The spatial distribution of gas emitted from an odor source provides valuable information regarding the composition, size, and localization of the odor source. Surface-enhanced Raman scattering (SERS) gas sensors exhibit ultra-high sensitivity, molecular specificity, rapid response, and large-area detection. In this paper, a SERS gas sensor array was developed for visualizing the spatial distribution of gas evaporated from benzaldehyde and 4-ethylbenzaldehyde odor sources. The SERS spectra of the gas were collected by scanning the sensor array using an automatic detection system. The non-negative matrix factorization algorithm was employed to extract feature and concentration information at each spot on the sensor array. A heatmap image was generated for visualizing the gas spatial distribution using concentration information. Gaussian fitting was applied to process the image for localizing the odor source. The size of the odor source was estimated using the processed image. Moreover, the spectra of benzaldehyde, 4-ethylbenzaldehyde, and their gas mixture were simultaneously detected using one SERS sensor array. The feature information was recognized using a convolutional neural network with an accuracy of 98.21%. As a result, the benzaldehyde and 4-ethylbenzaldehyde odor sources were identified and visualized. Our research findings have various potential applications, including odor source localization, environmental monitoring, and healthcare.
Collapse
Affiliation(s)
- Lin Chen
- Department of Information Science, Joint Graduate School of Mathematics for Innovation, Kyushu University, Fukuoka 819-0395, Japan
| | - Hao Guo
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; (H.G.); (C.W.); (F.S.)
| | - Cong Wang
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; (H.G.); (C.W.); (F.S.)
| | - Bin Chen
- Chongqing Key Laboratory of Non-Linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China;
| | - Fumihiro Sassa
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; (H.G.); (C.W.); (F.S.)
| | - Kenshi Hayashi
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; (H.G.); (C.W.); (F.S.)
| |
Collapse
|
6
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Bakker E. Wearable Sensors. ACS Sens 2023; 8:1368-1370. [PMID: 36942872 DOI: 10.1021/acssensors.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
|
8
|
Li X, Chen MM, Su HF, Zhang ML, Xie SY, Zheng LS. Real-Time Sniffing Mass Spectrometry Aided by Venturi Self-Pumping Applicable to Gaseous and Solid Surface Analysis. Anal Chem 2022; 94:13719-13727. [PMID: 36173369 DOI: 10.1021/acs.analchem.2c01759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on the Venturi self-pumping effect, real-time sniffing with mass spectrometry (R-sniffing MS) is developed as a tool for direct and real-time mass spectrometric analysis of both gaseous and solid samples. It is capable of dual-mode operation in either gaseous or solid phase, with the corresponding techniques termed as Rg-sniffing MS and Rs-sniffing MS, respectively. In its gaseous mode, Rg-sniffing MS is capable of analyzing a gaseous mixture with response time (0.8-2.1 s rise time and 7.3-9.6 s fall time), spatial resolution (<80 μm), three-dimensional diffusion imaging, and aroma distribution imaging of red pepper. In its solid mode, an appropriate solvent droplet desorbs the sample from a solid surface, followed by the aspiration of the mixture using the Venturi self-pumping effect into the mass spectrometer, wherein it is ionized by a standard ion source. Compared with the desorption electrospray ionization (DESI) technique, Rs-sniffing MS demonstrated considerably improved limit of detection (LOD) values for arginine (0.07 μg/cm2 Rs-sniffing vs 1.47 μg/cm2 DESI), thymopentin (0.10 μg/cm2 vs 2.67 μg/cm2), and bacitracin (0.16 μg/cm2 vs 2.28 μg/cm2). Rs-sniffing is applicable for the detection of C60(OCH3)6Cl-, an intermediate in the methoxylation reaction involving C60Cl6 (solid) and methanol (liquid). The convenient and highly sensitive R-sniffing MS has a characteristic separation of desorption from the ionization process, in which the matrix atmosphere of desorption can be interfaced by a pipe channel and self-pumped by the Venturi effect with consequent integration using a standard ion source. The R-sniffing MS operates in a voltage-, heat-, and vibration-free environment, wherein the analyte is ionized by a standard ion source. Consequently, a wide range of samples can be analyzed simultaneously by the R-sniffing MS technique, regardless of their physical state.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Miao-Miao Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hai-Feng Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mei-Lin Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Su-Yuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Iitani K, Nakaya M, Tomono T, Toma K, Arakawa T, Tsuchido Y, Mitsubayashi K, Takeda N. Enzyme-embedded electrospun fiber sensor of hydrophilic polymer for fluorometric ethanol gas imaging in vapor phase. Biosens Bioelectron 2022; 213:114453. [PMID: 35728364 DOI: 10.1016/j.bios.2022.114453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Non-invasive measurement of volatile organic compounds (VOCs) emitted from living organisms is a powerful technique for diagnosing health conditions or diseases in humans. Bio-based gas sensors are suitable for the sensitive and selective measurement of a target VOC from a complex mixture of VOCs. Conventional bio-based sensors are normally prepared as wet-type probes to maintain proteins such as enzymes in a stable state, resulting in limitations in the commercialization of sensors, their operating environment, and performance. In this study, we present an enzyme-based fluorometric electrospun fiber sensor (eFES) mesh as a gas-phase biosensor in dry form. The eFES mesh targeting ethanol was fabricated by simple one-step electrospinning of polyvinyl alcohol with an alcohol dehydrogenase and an oxidized form of nicotinamide adenine dinucleotide. The enzyme embedded in the eFES mesh worked actively in a dry state without pretreatment. Substrate specificity was also maintained, and the sensor responded well to ethanol with a sufficient dynamic range. Adjustment of the pH and coenzyme quantity in the eFES mesh also affected enzyme activity. The dry-form biosensor-eFES mesh-will open a new direction for gas-phase biosensors because of its remarkable performance and simple fabrication, which is advantageous for commercialization.
Collapse
Affiliation(s)
- Kenta Iitani
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan; Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Misa Nakaya
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Tsubomi Tomono
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takahiro Arakawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yuji Tsuchido
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Naoya Takeda
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
10
|
Iitani K, Ramamurthy SS, Ge X, Rao G. Transdermal sensing: in-situ non-invasive techniques for monitoring of human biochemical status. Curr Opin Biotechnol 2021; 71:198-205. [PMID: 34455345 DOI: 10.1016/j.copbio.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Improving life expectancy necessitates prevention and early diagnosis of any disease state based on active self-monitoring of symptoms and longitudinal biochemical profiling. Non-invasive and continuous measurement of molecular biomarkers that reflect metabolism and health must however be established to realize this plan. Human samples non-invasively obtained via the skin are suitable in this context for in-situ biochemical monitoring. We present a brief classification of transdermal sampling in aqueous and gaseous phases and then introduce a new generation of transdermal monitoring devices for rapid and accurate assessment of important parameters. Finally, we have summarized the diversity of body-wide skin characteristics that have possible effects for transdermal sampling. Because of its passive nature, in-situ biochemical monitoring via transdermal sampling will potentially lead to a greater understanding of important biochemical markers and their temporal variation.
Collapse
Affiliation(s)
- Kenta Iitani
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Sai Sathish Ramamurthy
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA; STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Xudong Ge
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA
| | - Govind Rao
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA.
| |
Collapse
|