1
|
Blom M, van Putten RJ, van der Maas K, Wang B, van Klink GPM, Gruter GJM. Terephthalate Copolyesters Based on 2,3-Butanediol and Ethylene Glycol and Their Properties. Polymers (Basel) 2024; 16:2177. [PMID: 39125202 PMCID: PMC11314993 DOI: 10.3390/polym16152177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study explores the synthesis and performance of novel copolyesters containing 2,3-butanediol (2,3-BDO) as a biobased secondary diol. This presents an opportunity for improving their thermal properties and reducing crystallinity, while also being more sustainable. It is, however, a challenge to synthesize copolyesters of sufficient molecular weight that also have high 2,3-BDO content, due to the reduced reactivity of secondary diols compared to primary diols. Terephthalate-based polyesters were synthesized in combination with different ratios of 2,3-BDO and ethylene glycol (EG). With a 2,3-BDO to EG ratio of 28:72, an Mn of 31.5 kDa was reached with a Tg of 88 °C. The Mn dropped with increasing 2,3-BDO content to 18.1 kDa for a 2,3-BDO to EG ratio of 78:22 (Tg = 104 °C) and further to 9.8 kDa (Tg = 104 °C) for the homopolyester of 2,3-BDO and terephthalate. The water and oxygen permeability both increased significantly with increasing 2,3-BDO content and even the lowest content of 2,3-BDO (28% of total diol) performed significantly worse than PET. The incorporation of 2,3-BDO had little effect on the tensile properties of the polyesters, which were similar to PET. The results suggest that 2,3-BDO can be potentially applied for polyesters requiring higher Tg and lower crystallinity than existing materials (mainly PET).
Collapse
Affiliation(s)
- Marian Blom
- Industrial Sustainable Chemistry, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands or (M.B.); (R.-J.v.P.); (G.P.M.v.K.)
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| | - Robert-Jan van Putten
- Industrial Sustainable Chemistry, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands or (M.B.); (R.-J.v.P.); (G.P.M.v.K.)
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| | - Kevin van der Maas
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| | - Bing Wang
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| | - Gerard P. M. van Klink
- Industrial Sustainable Chemistry, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands or (M.B.); (R.-J.v.P.); (G.P.M.v.K.)
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| | - Gert-Jan M. Gruter
- Industrial Sustainable Chemistry, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands or (M.B.); (R.-J.v.P.); (G.P.M.v.K.)
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| |
Collapse
|
2
|
Fiandra EF, Shaw L, Starck M, McGurk CJ, Mahon CS. Designing biodegradable alternatives to commodity polymers. Chem Soc Rev 2023; 52:8085-8105. [PMID: 37885416 DOI: 10.1039/d3cs00556a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The development and widespread adoption of commodity polymers changed societal landscapes on a global scale. Without the everyday materials used in packaging, textiles, construction and medicine, our lives would be unrecognisable. Through decades of use, however, the environmental impact of waste plastics has become grimly apparent, leading to sustained pressure from environmentalists, consumers and scientists to deliver replacement materials. The need to reduce the environmental impact of commodity polymers is beyond question, yet the reality of replacing these ubiquitous materials with sustainable alternatives is complex. In this tutorial review, we will explore the concepts of sustainable design and biodegradability, as applied to the design of synthetic polymers intended for use at scale. We will provide an overview of the potential biodegradation pathways available to polymers in different environments, and highlight the importance of considering these pathways when designing new materials. We will identify gaps in our collective understanding of the production, use and fate of biodegradable polymers: from identifying appropriate feedstock materials, to considering changes needed to production and recycling practices, and to improving our understanding of the environmental fate of the materials we produce. We will discuss the current standard methods for the determination of biodegradability, where lengthy experimental timescales often frustrate the development of new materials, and highlight the need to develop better tools and models to assess the degradation rate of polymers in different environments.
Collapse
Affiliation(s)
- Emanuella F Fiandra
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Lloyd Shaw
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | - Clare S Mahon
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
3
|
Ling H, Miao H, Cao Z, Mascal M. Electrochemical Incorporation of Electrophiles into the Biomass-Derived Platform Molecule 5-(Chloromethyl)furfural. CHEMSUSCHEM 2023; 16:e202201787. [PMID: 36525531 DOI: 10.1002/cssc.202201787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The 5-(chloromethyl)furfural (CMF) derivative ethyl 5-(chloromethyl)furan-2-carboxylate undergoes two-electron electrochemical reduction in a simple, undivided cell to give the corresponding furylogous enolate anion, which can either be quenched with carbon dioxide to give a 5-(carboxymethyl)furan-2-carboxylate or with hydrogen ion to give a 5-methylfuran-2-carboxylate, thereby expanding the derivative scope of CMF as a biobased platform molecule.
Collapse
Affiliation(s)
- Huitao Ling
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Haoqian Miao
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Zhiling Cao
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Mark Mascal
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
4
|
Wu X, De bruyn M, Trimmel G, Zangger K, Barta K. High-Performance Thermoplastics from a Unique Bicyclic Lignin-Derived Diol. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:2819-2829. [PMID: 36844751 PMCID: PMC9945171 DOI: 10.1021/acssuschemeng.2c05998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Polyesters are an important class of thermoplastic polymers, and there is a clear demand to find high-performing, recyclable, and renewable alternatives. In this contribution, we describe a range of fully bio-based polyesters obtained upon the polycondensation of the lignin-derived bicyclic diol 4,4'-methylenebiscyclohexanol (MBC) with various cellulose-derived diesters. Interestingly, the use of MBC in combination with either dimethyl terephthalate (DMTA) or dimethyl furan-2,5-dicarboxylate (DMFD) resulted in polymers with industrially relevant glass transition temperatures in the 103-142 °C range and high decomposition temperatures (261-365 °C range). Since MBC is obtained as a mixture of three distinct isomers, in-depth NMR-based structural characterization of the MBC isomers and thereof derived polymers is provided. Moreover, a practical method for the separation of all MBC isomers is presented. Interestingly, clear effects on the glass transition, melting, and decomposition temperatures, as well as polymer solubility, were evidenced with the use of isomerically pure MBC. Importantly, the polyesters can be efficiently depolymerized by methanolysis with an MBC diol recovery yield of up to 90%. The catalytic hydrodeoxygenation of the recovered MBC into two high-performance specific jet fuel additives was demonstrated as an attractive end-of-life option.
Collapse
Affiliation(s)
- Xianyuan Wu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Groningen, The Netherlands
| | - Mario De bruyn
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| | - Gregor Trimmel
- Institute
for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Klaus Zangger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| | - Katalin Barta
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Groningen, The Netherlands
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| |
Collapse
|
5
|
Bannister KR, Prather KL. Engineering polyester monomer diversity through novel pathway design. Curr Opin Biotechnol 2023; 79:102852. [PMID: 36481340 DOI: 10.1016/j.copbio.2022.102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Polyesters composed of hydroxy acids (HAs) and diols serve many material niches and are invaluable to our daily lives. However, their traditional synthesis from petrochemicals creates many environmental concerns. Metabolically engineered microorganisms have been leveraged for the industrially competitive production of a few polyesters with properties that limit their application. Designing new metabolic pathways to polyester building blocks is essential to broadening material property diversity and improving carbon and energy usage of current bioproduction schemes. This review focuses on recently developed pathways to HAs and diols. Specifically, new pathways to 2,3- and ω-Hydroxy acids, as well as C3-C4 and medium-chain-length diols, are discussed. Pathways to the same compound are compared on the basis of criteria such as energy usage, number of pathway steps, and titer. Finally, suggestions for improvements and next steps for each pathway are also discussed.
Collapse
Affiliation(s)
- K'yal R Bannister
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristala Lj Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
de Witt J, Ernst P, Gätgens J, Noack S, Hiller D, Wynands B, Wierckx N. Characterization and engineering of branched short-chain dicarboxylate metabolism in Pseudomonas reveals resistance to fungal 2-hydroxyparaconate. Metab Eng 2023; 75:205-216. [PMID: 36581064 PMCID: PMC9875883 DOI: 10.1016/j.ymben.2022.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
In recent years branched short-chain dicarboxylates (BSCD) such as itaconic acid gained increasing interest in both medicine and biotechnology. Their use as building blocks for plastics urges for developing microbial upcycling strategies to provide sustainable end-of-life solutions. Furthermore, many BSCD exhibit anti-bacterial properties or exert immunomodulatory effects in macrophages, indicating a medical relevance for this group of molecules. For both of these applications, a detailed understanding of the microbial metabolism of these compounds is essential. In this study, the metabolic pathway of BSCD degradation from Pseudomonas aeruginosa PAO1 was studied in detail by heterologously transferring it to Pseudomonas putida. Heterologous expression of the PA0878-0886 itaconate metabolism gene cluster enabled P. putida KT2440 to metabolize itaconate, (S)- and (R)-methylsuccinate, (S)-citramalate, and mesaconate. The functions of the so far uncharacterized genes PA0879 and PA0881 were revealed and proven to extend the substrate range of the core degradation pathway. Furthermore, the uncharacterized gene PA0880 was discovered to encode a 2-hydroxyparaconate (2-HP) lactonase that catalyzes the cleavage of the itaconate derivative 2-HP to itatartarate. Interestingly, 2-HP was found to inhibit growth of the engineered P. putida on itaconate. All in all, this study extends the substrate range of P. putida to include BSCD for bio-upcycling of high-performance polymers, and also identifies 2-HP as promising candidate for anti-microbial applications.
Collapse
Affiliation(s)
- Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Davina Hiller
- Institut für Mikrobiologie, Technische Universität Braunschweig, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany,Corresponding author.
| |
Collapse
|
7
|
Chen M, Jiang Z, Qiu Z. Synthesis, thermal, and mechanical properties of fully biobased Poly(hexamethylene 2,5-furandicarboxylate-co-diglycolate) copolyesters. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Synthesis, Thermal Behavior, and Mechanical Properties of Fully Biobased Poly(Hexamethylene 2,5-Furandicarboxylate- Co-Sebacate) Copolyesters. Polymers (Basel) 2022; 15:polym15010085. [PMID: 36616435 PMCID: PMC9823706 DOI: 10.3390/polym15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
In this research, three fully biobased poly(hexamethylene 2,5-furandicarboxylate-co-sebacate) (PHFSe) copolyesters with low contents of hexamethylene sebacate (HSe) unit (10 mol%, 20 mol%, and 30 mol%) were successfully synthesized through a two-step transesterification/esterification and polycondensation method. The chemical structure and actual composition of PHFSe copolyesters were confirmed by hydrogen nuclear magnetic resonance. The thermal behavior and mechanical property of PHFSe copolyesters were investigated and compared with those of the poly(hexamethylene 2,5-furandicarboxylate) (PHF) homopolymer. Both PHFSe copolyesters and PHF showed the high thermal stability. The basic thermal parameters, including glass transition temperature, melting temperature, and equilibrium melting temperature, gradually decreased with increasing the HSe unit content. PHFSe copolyesters crystallized more slowly than PHF under both the nonisothermal and isothermal melt crystallization conditions; however, they crystallized through the same crystallization mechanism and crystal structure. In addition, the mechanical property, especially the elongation at break of PHFSe copolyesters, was obviously improved when the HSe unit content was greater than 10 mol%. In brief, the thermal and mechanical properties of PHF may be easily tuned by changing the HSe unit content to meet various practical end-use requirements.
Collapse
|
9
|
Blending PLA with Polyesters Based on 2,5-Furan Dicarboxylic Acid: Evaluation of Physicochemical and Nanomechanical Properties. Polymers (Basel) 2022; 14:polym14214725. [DOI: 10.3390/polym14214725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Poly(lactic acid) (PLA) is a readily available, compostable biobased polyester with high strength and toughness, and it is excellent for 3D printing applications. Polymer blending is an economic and easy way to improve its properties, such as its slow degradation and crystallization rates and its small elongation, and thus, make it more versatile. In this work, the effects of different 2,5-furan dicarboxylic acid (FDCA)-based polyesters on the physicochemical and mechanical properties of PLA were studied. Poly(butylene furan 2,5-dicarboxylate) (PBF) and its copolymers with poly(butylene adipate) (PBAd) were synthesized in various comonomer ratios and were blended with 70 wt% PLA using melt compounding. The thermal, morphological and mechanical properties of the blends are investigated. All blends were immiscible, and the presence of the dispersed phases improved the crystallization ability of PLA. Mechanical testing revealed the plasticization of PLA after blending, and a small but measurable mass loss after burying in soil for 7 months. Reactive blending was evaluated as a compatibilizer-free method to improve miscibility, and it was found that when the thermal stability of the blend components allowed it, some transesterification reactions occurred between the PLA matrix and the FDCA-based dispersed phase after 20 min at 250 °C.
Collapse
|
10
|
Liu X, Desilles N, Jiang B, Chappey C, Lebrun L. High barrier semi-crystalline polyesters involving nature occurring pyridine structure towards sustainable food packaging. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
|
12
|
Bazin A, Avérous L, Pollet E. Lipase-catalyzed synthesis of furan-based aliphatic-aromatic biobased copolyesters: Impact of the solvent. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Affiliation(s)
- Jonathan M. Millican
- Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Seema Agarwal
- Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|