1
|
Liu R, Li X, Guo W, Han X, Zhu H, Kong X, Zhou H, Li X, Wang S, Li Y, Dou M, Zhong D, Hao H. Multifunctional and Ultrastable Co-MOF Effectively Separates Various Different Component Gas Mixtures. Inorg Chem 2024; 63:17316-17328. [PMID: 39221825 DOI: 10.1021/acs.inorgchem.4c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Developing low-cost and multifunctional adsorbents for adsorption separation to obtain high-purity (>99.9%) gases is intriguing yet challenging. Notably, the ongoing trade-off between adsorption capacity and selectivity in separating multicomponent mixed gases still persists as a pressing scientific challenge requiring urgent attention. Herein, the ultrastable TJT-100 exhibits unique structural characteristics including uncoordinated carboxylate oxygen atoms, coordinated water molecules directed toward the pore surface, and sufficient Me2NH2+ cations in channels. TJT-100 exhibits a high adsorption capacity and exceptional separation performance, particularly notable for its high C2H2 capacity of 127.7 cm3/g and remarkable C2H2 selectivity over CO2 (5.4) and CH4 (19.8), which makes it a standout material for various separation applications. In a breakthrough experiment with a C2H2/CO2 mixture (v/v = 50/50), TJT-100 achieved a record-high C2H2 productivity of 69.33 L/kg with a purity of 99.9%. Additionally, TJT-100 demonstrates its effectiveness in separating CO2 from natural gas and flue gas. Its exceptional selectivity for CO2/CH4 (10.7) and CO2/N2 (11.9) results in a high CO2 productivity of 21.23 and 22.93 L/kg with 99.9% purity from CO2/CH4 (v/v = 50/50) and CO2/N2 (v/v = 15/85) mixtures, respectively.
Collapse
Affiliation(s)
- Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Wenxiao Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xueke Han
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiangjin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Huawei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Mingyu Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Dichang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Li D, Gao MY, Deng CH, Li GB, Qin SJ, Yang QY, Song BQ. Cross-Linking CdSO 4-Type Nets with Hexafluorosilicate Anions to Form an Ultramicroporous Material for Efficient C 2H 2/CO 2 and C 2H 2/C 2H 4 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402523. [PMID: 38747010 DOI: 10.1002/smll.202402523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Indexed: 10/04/2024]
Abstract
A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4'-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF6 2- and F- anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol-1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF6 2- anion and coordinated F- anion.
Collapse
Affiliation(s)
- Dan Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Mei-Yan Gao
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Cheng-Hua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Guo-Bi Li
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Shao-Jie Qin
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bai-Qiao Song
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|
3
|
Dutta S, Mukherjee S, Javan Nikkhah S, Qazvini OT, Dam GK, Vandichel M, Mandal TN, Ghosh SK. Hemilabile Binding of Acetylene in an Amide-Rich Ultramicroporous MOF Enables Strong Acetylene Selectivity. Inorg Chem 2024; 63:12404-12408. [PMID: 38913858 DOI: 10.1021/acs.inorgchem.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Thanks to a hemilabile amide-based binding site, a previously unreported amide-functionalized metal-organic framework (MOF) exhibits high acetylene affinity over ethylene, methane, and carbon dioxide, three-in-one.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Soumya Mukherjee
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland
| | - Sousa Javan Nikkhah
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland
| | - Omid T Qazvini
- Svante Inc., 8800 Glenlyon Pkwy., Burnaby, BC V5J 5K3, Canada
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Matthias Vandichel
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland
| | - Tarak Nath Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
4
|
Zhu J, Ke T, Yang L, Bao Z, Zhang Z, Su B, Ren Q, Yang Q. Optimizing Trace Acetylene Removal from Acetylene/Ethylene Mixture in a Flexible Metal-Organic Framework by Crystal Downsizing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22455-22464. [PMID: 38642370 DOI: 10.1021/acsami.4c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Improving the gas separation performance of metal-organic frameworks (MOFs) by crystal downsizing is an important but often overlooked issue. Here, we report three different-sized flexible ZUL-520 MOFs (according to the crystal size from large to small, the three samples are, respectively, named ZUL-520-0, ZUL-520-1, and ZUL-520-2) with the same chemical structure for optimizing trace acetylene (C2H2) removal from acetylene/ethylene (C2H2/C2H4) mixture. The three differently sized activated ZUL-520 (denoted as ZUL-520a) exhibited almost identical C2H2 uptake of 4.8 mmol/g at 100 kPa, while the C2H2 uptake at 1 kPa increased with a downsizing crystal. The C2H2 uptake of activated ZUL-520-2 (denoted as ZUL-520-2a) at 1 kPa was ∼55% higher than that of activated ZUL-520-0 (denoted as ZUL-520-0a). The adsorption isotherms and adsorption kinetics validated that gas adsorptive separation is governed not only by adsorption thermodynamics but also by adsorption kinetics. In addition, all three different-sized ZUL-520a MOFs showed high C2H2/C2H4 selectivity. Grand canonical Monte Carlo (GCMC) simulations and dispersion-corrected density functional theory (DFT-D) computations illustrated a plausible mechanism of C2H2 adsorption in MOFs. Importantly, breakthrough experiments demonstrated that ZUL-520a can effectively separate the C2H2/C2H4 (1/99, v/v) mixture and the C2H4 productivity obtained by ZUL-520-2a was much higher than that by ZUL-520-0a. Our work may provide an easy but powerful strategy for upgrading the performance of gas adsorptive separation in MOFs.
Collapse
Affiliation(s)
- Jianyao Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liu Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Baogen Su
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
5
|
Wang JW, Mu XB, Fan SC, Xiao Y, Fan GJ, Pan DC, Yuan W, Zhai QG. Maximizing Electrostatic Interaction in Ultramicroporous Metal-Organic Frameworks for the One-Step Purification of Acetylene from Ternary Mixture. Inorg Chem 2024; 63:3436-3443. [PMID: 38306691 DOI: 10.1021/acs.inorgchem.3c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Developing efficient adsorbents for acetylene purification from multicomponent mixtures is of critical significance in the chemical industry, but the trade-off between regenerability and selectivity significantly restricts practical industrial applications. Here, we report ultramicroporous metal-organic frameworks with acetylene-affinity channels to enhance electrostatic interaction between C2H2 and frameworks for the efficient one-step purification of C2H2 from C2H2/CO2/C2H4 mixtures, in which the electrostatic interaction led to high regenerability. The obtained SNNU-277 exhibits significantly higher adsorption capacity for C2H2 than that for both C2H4 and CO2 at 298 K and 0.1 bar, while an ultrahigh selectivity of C2H2/C2H4 (100.6 at 298 K) and C2H2/CO2 (32.8 at 298 K) were achieved at 1 bar. Breakthrough experiments validated that SNNU-277 can efficiently separate C2H2 from C2H2/C2H4/CO2 mixtures. CO2 and C2H4 broke through the adsorption column at 4 and 14.8 min g-1, whereas C2H2 was detected until 177.6 min g-1 at 298 K. Theoretical calculations suggest that the framework is electrostatically compatible with C2H2 and electrostatically repels C2H4 and CO2 in the mixed components. This work highlights the importance of rational pore engineering for maximizing the electrostatic effect with the preferentially absorbed guest molecule for efficient multicomponent separation.
Collapse
Affiliation(s)
- Jia-Wen Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xiao-Bing Mu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yi Xiao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Guan-Jiang Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Dong-Chen Pan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Wenyu Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
6
|
Pan M, Li H, Yang J, Wang Y, Wang Y, Han X, Wang S. Review: Synthesis of metal organic framework-based composites for application as immunosensors in food safety. Anal Chim Acta 2023; 1266:341331. [PMID: 37244661 DOI: 10.1016/j.aca.2023.341331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
7
|
Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
8
|
Xu T, Zhang P, Cui F, Li J, Kan L, Tang B, Zou X, Liu Y, Zhu G. Fine-Tuned Ultra-Microporous Metal-Organic Framework in Mixed-Matrix Membrane: Pore-Tailoring Optimization for C 2 H 2 /C 2 H 4 Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204553. [PMID: 36573630 DOI: 10.1002/adma.202204553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/27/2022] [Indexed: 06/18/2023]
Abstract
Effective separation of ethyne from ethyne/ethylene (C2 H2 /C2 H4 ) mixtures is a challenging and crucial industrial process. Herein, an ultra-microporous metal-organic framework (MOF) platform, Cd(dicarboxylate)2 (ditriazole), with triangular channels is proposed for high-efficiency separation of C2 H2 from C2 H4 . The targeted structures are constructed via a mixed-ligand strategy by selecting different-sized ligands, allowing for tunable pore sizes and volumes. The pore properties can be further optimized by additional modification via pore environment tailoring. This concept leads to the successful synthesis of three ultra-microporous Cd-MOFs (JLU-MOF87-89). As intended, C2 H2 uptake and C2 H2 /C2 H4 selectivity gradually increase with progressively optimizing the pore structure by adjusting ligand length and substituents. JLU-MOF89, functionalized with methyl groups, features the most optimal pore chemistry and shows selective recognition of C2 H2 over C2 H4 , owing to the framework-C2 H2 host-guest interactions. Furthermore, JLU-MOFs are fabricated into mixed-matrix membranes for C2 H2 /C2 H4 separation. C2 H2 permeability and C2 H2 /C2 H4 permselectivity are substantially enhanced by ≥400% and ≥200%, respectively, after hybridization of JLU-MOF88 and JLU-MOF89 with a polyimide polymer (6FDA-ODA). These membranes can work efficiently and are stable under different conditions, demonstrating their potential in actual ethyne separation.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Panpan Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Fengchao Cui
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Liang Kan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Baobing Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
9
|
Wang JW, Fan SC, Li HP, Bu X, Xue YY, Zhai QG. De-Linker-Enabled Exceptional Volumetric Acetylene Storage Capacity and Benchmark C 2 H 2 /C 2 H 4 and C 2 H 2 /CO 2 Separations in Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202217839. [PMID: 36631412 DOI: 10.1002/anie.202217839] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
An ideal adsorbent for separation requires optimizing both storage capacity and selectivity, but maximizing both or achieving a desired balance remain challenging. Herein, a de-linker strategy is proposed to address this issue for metal-organic frameworks (MOFs). Broadly speaking, the de-linker idea targets a class of materials that may be viewed as being intermediate between zeolites and MOFs. Its feasibility is shown here by a series of ultra-microporous MOFs (SNNU-98-M, M=Mn, Co, Ni, Zn). SNNU-98 exhibit high volumetric C2 H2 uptake capacity under low and ambient pressures (175.3 cm3 cm-3 @ 0.1 bar, 222.9 cm3 cm-3 @ 1 bar, 298 K), as well as extraordinary selectivity (2405.7 for C2 H2 /C2 H4 , 22.7 for C2 H2 /CO2 ). Remarkably, SNNU-98-Mn can efficiently separate C2 H2 from C2 H2 /CO2 and C2 H2 /C2 H4 mixtures with a benchmark C2 H2 /C2 H4 (1/99) breakthrough time of 2325 min g-1 , and produce 99.9999 % C2 H4 with a productivity up to 64.6 mmol g-1 , surpassing values of reported MOF adsorbents.
Collapse
Affiliation(s)
- Jia-Wen Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Hai-Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA-90840, USA
| | - Ying-Ying Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| |
Collapse
|
10
|
Zhang Q, Lian X, Krishna R, Yang SQ, Hu TL. An ultramicroporous metal-organic framework based on octahedral-like cages showing high-selective methane purification from a six-component C1/C2/C3 hydrocarbons mixture. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Li X, Bian H, Huang W, Yan B, Wang X, Zhu B. A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Li YZ, Krishna R, Xu F, Zhang WF, Sui Y, Hou L, Wang YY, Zhu Z. A novel C2H2-selective microporous Cd-MOF for C2H2/C2H4 and C2H2/CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Zhang W, Jia W, Qin J, Chen L, Ran Y, Krishna R, Wang L, Luo F. Efficient Separation of Trace SO 2 from SO 2/CO 2/N 2 Mixtures in a Th-Based MOF. Inorg Chem 2022; 61:11879-11885. [PMID: 35857411 DOI: 10.1021/acs.inorgchem.2c01634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emission of sulfur dioxide (SO2) from flue gases is harmful since trace SO2 impairs human health and the natural environment. Therefore, developing new metal organic frameworks (MOFs) to capture this toxic molecule is of great importance in flue gas desulfurization. In this work, we synthesized a new MOF, namely, ECUT-Th-60, which consists of two distinct channels (3.0 Å × 4.1 Å and 2.3 Å × 4.8 Å). It shows SO2 uptakes of around 2.5 mmol/g at 0.1 kPa and 3.35 mmol/g at 1 bar, which are higher than those of CO2 and N2 under identical conditions. Both simulated and experimental breakthrough tests proved that ECUT-Th-60 can separate trace SO2 from SO2/CO2 mixtures. Impressively, complete separation of SO2 from SO2/CO2/N2 mixtures under both dry and humid conditions was also proved in ECUT-Th-60, predicting its potential application in flue gas desulfurization.
Collapse
Affiliation(s)
- Wenhui Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Wansheng Jia
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Jie Qin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Lan Chen
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Youyuan Ran
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Li Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Feng Luo
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
14
|
Zhu BY, Zhang T, Li CH, Cao JW, Zhang ZQ, Qi W, Wang GY, Rong ZH, Wang Y, Chen KJ. A (3,8)-Connected Metal-Organic Framework with Bending Dicarboxylate Linkers for C 2H 2/CO 2 Separation. Inorg Chem 2022; 61:4555-4560. [PMID: 35257588 DOI: 10.1021/acs.inorgchem.2c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, by replacement of the linear terephthalate linker with the bending 2,5-thiophenedicarboxylate (tdc2-) linker in the typical (3,9)-connected metal-organic framework, with a reduced 8-connected hydroxyl-centered trinuclear cluster, a new (3,8)-connected network, [Ni3(μ3-OH)(tdc)3(tpp)] [DZU-1; tpp = 2,4,6-tris(4-pyridyl)pyridine], was synthesized. The modified pore environment enables DZU-1 to selectively adsorb C2H2 over CO2 in an efficient manner.
Collapse
Affiliation(s)
- Bao-Yong Zhu
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Tao Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Chun-Hui Li
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Jian-Wei Cao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhu-Qing Zhang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Wei Qi
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Guang-Yin Wang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Zhi-Hui Rong
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Yu Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
15
|
Efficient adsorption separation of xylene isomers in zeolitic imidazolate framework-67@MCF hybrid materials. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Li TT, Dang LL, Zhao CC, Lv ZY, Yang XG, Zhao Y, Zhang SH. A self-sensitized Co (II)-MOF for efficient visible-light-driven hydrogen evolution without additional cocatalysts. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Lv M, Sun DW, Huang L, Pu H. Precision release systems of food bioactive compounds based on metal-organic frameworks: synthesis, mechanisms and recent applications. Crit Rev Food Sci Nutr 2021; 62:3991-4009. [PMID: 34817301 DOI: 10.1080/10408398.2021.2004086] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Controlled release (CR) systems have become a powerful platform for accurate and effective delivery of bioactive compounds (BCs). Metal-organic frameworks (MOFs) are one of the best BCs-loaded carriers for CR systems. In the review, the principles and methods of the design and synthesis of MOFs-CR systems are summarized in detail, the encapsulation of BCs by MOFs and CR mechanisms are explored, and their biological toxicity and biocompatibility are highlighted and applications in the food industry are discussed. In addition, current challenges in this field and possible future development directions are also presented. MOFs have been proven to encapsulate BCs effectively, including gaseous and solid molecules, and control the release of BCs through spontaneous diffusion or stimulus-response. The solubility, stability and biocompatibility of BCs encapsulated by MOFs are greatly improved, which expands their applications in foods. The effective CR of BCs by MOFs-CR systems is beneficial to assist in maintaining or even improving the quality and safety of food, reduce the BCs usage while increasing the bioavailability. Low- or non-biotoxic MOFs, especially bio-MOFs, show greater application prospects in the food industry.
Collapse
Affiliation(s)
- Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
18
|
Khanpour Matikolaei M, Binaeian E. Boosting Ammonia Uptake within Metal-Organic Frameworks by Anion Modulating Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27159-27168. [PMID: 34087069 DOI: 10.1021/acsami.1c03242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonia with toxic and corrosive features needs advanced protective materials and removal tools, although it is a vital component in human food supply processes. So, to satisfy these requirements, materials with high adsorption capacity and affinity for ammonia should be developed. The present research has been focused on a series zinc-based metal-organic frameworks (MOF) containing mixed ligands, biphenyl dicarboxylic acid (BPDA) and tris(4-(4H-1,2,4-triazol-4-yl)phenyl)amine (TTPA), which are modulated by different anions including CH3COO-, CF3COO-, and CF3SO3-. Ammonia uptake capacity was measured via static and dynamic conditions under 50% relative humidity. Among all compounds, CF3SO3- anion could enhance the ammonia uptake capacity of MOFs up to 177.85 and 349 mg/g during static and breakthrough measurements, respectively, so that 83.30% of the total uptake capacity (at P/Po = 1.0 and 298 K) was achieved at low relative pressure range (up to 0.1). The isosteric heats of ammonia adsorption on PFC-27 and derivatives were calculated in the range of 7.03-10.16 kJ mol-1 so that they increased upon CF3SO3-, CF3COO-, and CH3COO- ion incorporation. This is potentially beneficial for enhanced ammonia adsorption. Interestingly, adsorption capacities were retained with only slight changes after five cycles and three regeneration temperatures, 25 °C, 60 °C, and 120 °C, under vacuum. The special affinity for NH3 adsorption and MOF phase stability after desorption is clearly proved by FTIR spectra and PXRD analysis, respectively. Generally, the results suggest that ion insertion modification is an efficient strategy for enhancement of MOF adsorption performance.
Collapse
Affiliation(s)
- Mojtaba Khanpour Matikolaei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, 350002, China
| | - Ehsan Binaeian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, 350002, China
- Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, 4765161964, Iran
| |
Collapse
|
19
|
Lin S, Zhou P, Xu T, Fan L, Wang X, Yue L, Jiang Z, Zhang Y, Zhang Z, He Y. Modulation of Topological Structures and Adsorption Properties of Copper-Tricarboxylate Frameworks Enabled by the Effect of the Functional Group and Its Position. Inorg Chem 2021; 60:8111-8122. [PMID: 34019764 DOI: 10.1021/acs.inorgchem.1c00753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To push forward the structural development and fully explore the potential utility, it is highly desired but challenging to regulate in a controllable manner the structures and properties of MOFs. In this work, we reported the structural and functional modulation of Cu(II)-tricarboxylate frameworks by employing a strategy of engineering the functionalities and their positions. Two pairs of unsymmetrical biaryl tricarboxylate ligands modified with a methyl group and a pyridinic-N atom at distinct positions were logically designed and synthesized, and their corresponding Cu(II)-based MOFs were solvothermally constructed. Diffraction analyses revealed that the variation of functionalities and their positions furnished three different types of topological structures, which we ascribed to the steric effect exerted by the methyl group and the chelating effect involving the pyridinic-N atom. Furthermore, gas adsorption studies showed that three of them are potential candidates as solid separation media for acetylene (C2H2) purification, with the separation potential tailorable by altering functionalities and their locations. At 106.7 kPa and 298 K, the C2H2 uptake capacity varies from 64.1 to 132.4 cm3 (STP) g-1, while the adsorption selectivities of C2H2 over its coexisting components of CO2 and CH4 fall in the ranges of 3.28-4.60 and 14.1-21.9, respectively.
Collapse
Affiliation(s)
- Shengjie Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ping Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tingting Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lihui Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenzhen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhengyi Zhang
- Bruker (Beijing) Scientific Technology Co., Ltd, Beijing 100192, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
20
|
Chen DM, Zheng YP, Fang SM. Microporous mixed-ligand metal–organic framework with fluorine-decorated pores for efficient C2H2/C2H4 separation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
|
22
|
Xia YP, Wang CX, Yu MH, Bu XH. A unique 3D microporous MOF constructed by cross-linking 1D coordination polymer chains for effectively selective separation of CO2/CH4 and C2H2/CH4. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Chen H, Feng L, Zhang X, Gao ZY, Sun D. Robust Heterometallic CoIILaIII2–Organic Framework for the Highly Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. Inorg Chem 2021; 60:2878-2882. [DOI: 10.1021/acs.inorgchem.0c03537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, and Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, People’s Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People’s Republic of China
| |
Collapse
|
24
|
Li YZ, Wang GD, Ma LN, Hou L, Wang YY, Zhu Z. Multiple Functions of Gas Separation and Vapor Adsorption in a New MOF with Open Tubular Channels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4102-4109. [PMID: 33463146 DOI: 10.1021/acsami.0c21554] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Separation or purification is one of the difficult problems in the petrochemical industry. To help solve the difficulty of separation or purification for C2H2/CO2 and C2Hn/CH4 in the chemical industry, we synthesized a new metal-organic framework (MOF), [Ni(dpip)]·2.5DMF·H2O (1), by a bipyridyl-substituted isophthalic acid ligand. The MOF includes two types of one-dimensional (1D) tubular channels with different sizes and porous environments. The unique tubular channels lead to not only remarkable gas sorption capacity of C2H4, C2H2, and CO2, but also good selectivity for C2H2/CH4, C2H2/CH4, CO2/CH4, and C2H2/CO2, as demonstrated by single-component sorption isotherm results, ideal adsorbed solution theory calculations, and dynamic breakthrough curves. Grand canonical Monte Carlo (GCMC) simulation reveals preferential adsorption sites in the MOF for CO2, C2H2, and C2H4. The MOF also exhibits an obvious size-selective absorption effect on vapor molecules.
Collapse
Affiliation(s)
- Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
25
|
Li X, Yan B, Huang W, Fu L, Sun X, Lv A. Research Progress in Metal-Organic Framework and Its Composites for Separation of C2 Based on Sieving Multiple Effects. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20100494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Mukherjee S, Sensharma D, Chen KJ, Zaworotko MJ. Crystal engineering of porous coordination networks to enable separation of C2 hydrocarbons. Chem Commun (Camb) 2020; 56:10419-10441. [PMID: 32760960 DOI: 10.1039/d0cc04645k] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Crystal engineering, the field of chemistry that studies the design, properties, and applications of crystals, is exemplified by the emergence over the past thirty years of porous coordination networks (PCNs), including metal-organic frameworks (MOFs) and hybrid coordination networks (HCNs). PCNs have now come of age thanks to their amenability to design from first principles and how this in turn can result in new materials with task-specific features. Herein, we focus upon how control over the pore chemistry and pore size of PCNs has been leveraged to create a new generation of physisorbents for efficient purification of light hydrocarbons (LHs). The impetus for this research comes from the need to address LH purification processes based upon cryogenic separation, distillation, chemisorption or solvent extraction, each of which is energy intensive. Adsorptive separation by physisorbents (in general) and PCNs (in particular) can offer two advantages over these existing approaches: improved energy efficiency; lower plant size/cost. Unfortunately, most existing physisorbents suffer from low uptake and/or poor sorbate selectivity and are therefore unsuitable for trace separations of LHs including the high volume C2 LHs (C2Hx, x = 2, 4, 6). This situation is rapidly changing thanks to PCN sorbents that have set new performance benchmarks for several C2 separations. Herein, we review and analyse PCN sorbents with respect to the supramolecular chemistry of sorbent-sorbate binding and detail the crystal engineering approaches that have enabled the exquisite control over pore size and pore chemistry that affords highly selective binding sites. Whereas the structure-function relationships that have emerged offer important design principles, several development roadblocks remain to be overcome.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
| | | | | | | |
Collapse
|
27
|
Li Z, Li L, Guo L, Wang J, Yang Q, Zhang Z, Yang Y, Bao Z, Ren Q. Gallate-Based Metal–Organic Frameworks for Highly Efficient Removal of Trace Propyne from Propylene. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhu Li
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Liangying Li
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiawei Wang
- Hangzhou Hangyang Co., Ltd, Hangzhou 310014, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| |
Collapse
|
28
|
Xu Z, Xiong X, Xiong J, Krishna R, Li L, Fan Y, Luo F, Chen B. A robust Th-azole framework for highly efficient purification of C 2H 4 from a C 2H 4/C 2H 2/C 2H 6 mixture. Nat Commun 2020; 11:3163. [PMID: 32572030 PMCID: PMC7308359 DOI: 10.1038/s41467-020-16960-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/21/2020] [Indexed: 11/28/2022] Open
Abstract
Separation of C2H4 from C2H4/C2H2/C2H6 mixture with high working capacity is still a challenging task. Herein, we deliberately design a Th-metal-organic framework (MOF) for highly efficient separation of C2H4 from a binary C2H6/C2H4 and ternary C2H4/C2H2/C2H6 mixture. The synthesized MOF Azole-Th-1 shows a UiO-66-type structure with fcu topology built on a Th6 secondary building unit and a tetrazole-based linker. Such noticeable structure, is connected by a N,O-donor ligand with high chemical stability. At 100 kPa and 298 K Azole-Th-1 performs excellent separation of C2H4 (purity > 99.9%) from not only a binary C2H6/C2H4 (1:9, v/v) mixture but also a ternary mixture of C2H6/C2H2/C2H4 (9:1:90, v/v/v), and the corresponding working capacity can reach up to 1.13 and 1.34 mmol g-1, respectively. The separation mechanism, as unveiled by the density functional theory calculation, is due to a stronger van der Waals interaction between ethane and the MOF skeleton.
Collapse
Affiliation(s)
- Zhenzhen Xu
- State key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, P. R. China
| | - Xiaohong Xiong
- State key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, P. R. China
| | - Jianbo Xiong
- State key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, 030024, Taiyuan, Shanxi, China
| | - Yaling Fan
- State key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, P. R. China
| | - Feng Luo
- State key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, P. R. China.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
29
|
Wang J, Zhang Y, Zhang P, Hu J, Lin RB, Deng Q, Zeng Z, Xing H, Deng S, Chen B. Optimizing Pore Space for Flexible-Robust Metal–Organic Framework to Boost Trace Acetylene Removal. J Am Chem Soc 2020; 142:9744-9751. [DOI: 10.1021/jacs.0c02594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Wang
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yan Zhang
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 East Tyler Mall, Tempe, Arizona 85287, United States
| | - Peixin Zhang
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jianbo Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Rui-Biao Lin
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| | - Qiang Deng
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zheling Zeng
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Huabin Xing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 East Tyler Mall, Tempe, Arizona 85287, United States
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
30
|
Chen Y, Luo L, Zhang SG, Ding R, Zhou J, Yang C. A porous Co(II)–MOF for selective C 2H 2/CO 2 separation and treatment activity on virus-induced COPD via reducing tlr3 gene expression. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1786886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yu Chen
- Department of Respiration, Huai’an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai’an, China
| | - Li Luo
- Department of Cardiology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, China
| | - Shu-Guang Zhang
- Department of Cardiology, Huai’an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai’an, China
| | - Rong Ding
- Blood Rheumatology and Lmmunology, Lianshui County People's Hospital, Lianshui, China
| | - Jie Zhou
- Department of Respiratory, Anhui Medical University, Hefei, China
| | - Chao Yang
- Department of Respiratory, Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Gao X, Zhong H, Zhang Y, Yao Y, Chen D, He Y. A Microporous MOF with Inorganic Nitrate Ions Immobilized on a Porous Surface Displaying Efficient C
2
H
2
Separation and Purification. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoxia Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Haoyan Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Yingying Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Yongna Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - De‐li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University 321004 Jinhua China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| |
Collapse
|
32
|
A microporous metal-organic framework with basic sites for efficient C2H2/CO2 separation. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Rasheed T, Rizwan K, Bilal M, Iqbal HMN. Metal-Organic Framework-Based Engineered Materials-Fundamentals and Applications. Molecules 2020; 25:E1598. [PMID: 32244456 PMCID: PMC7180910 DOI: 10.3390/molecules25071598] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a fascinating class of porous crystalline materials constructed by organic ligands and inorganic connectors. Owing to their noteworthy catalytic chemistry, and matching or compatible coordination with numerous materials, MOFs offer potential applications in diverse fields such as catalysis, proton conduction, gas storage, drug delivery, sensing, separation and other related biotechnological and biomedical applications. Moreover, their designable structural topologies, high surface area, ultrahigh porosity, and tunable functionalities all make them excellent materials of interests for nanoscale applications. Herein, an effort has been to summarize the current advancement of MOF-based materials (i.e., pristine MOFs, MOF derivatives, or MOF composites) for electrocatalysis, photocatalysis, and biocatalysis. In the first part, we discussed the electrocatalytic behavior of various MOFs, such as oxidation and reduction candidates for different types of chemical reactions. The second section emphasizes on the photocatalytic performance of various MOFs as potential candidates for light-driven reactions, including photocatalytic degradation of various contaminants, CO2 reduction, and water splitting. Applications of MOFs-based porous materials in the biomedical sector, such as drug delivery, sensing and biosensing, antibacterial agents, and biomimetic systems for various biological species is discussed in the third part. Finally, the concluding points, challenges, and future prospects regarding MOFs or MOF-based materials for catalytic applications are also highlighted.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico
| |
Collapse
|
34
|
Campanella AJ, Trump BA, Gosselin AJ, Bloch ED, Brown CM. Neutron diffraction structural study of CO 2 binding in mixed-metal CPM-200 metal-organic frameworks. Chem Commun (Camb) 2020; 56:2574-2577. [PMID: 32010906 PMCID: PMC7874966 DOI: 10.1039/c9cc09904b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks featuring open metal coordination sites have been widely studied for the separation of gas mixtures. For CO2/N2 separations, these materials have shown considerable promise. Herein, we report the characterization of a subset of the well-known PCN-250 class of frameworks upon CO2 adsorption via powder neutron diffraction methods. Noteably, in contrast to previously reported data, they display only moderate CO2 adsorption enthalpies, based on metal cation-CO2 interactions. Further, we show charge balance in these materials is likely achieved via ligand vacancies rather than the presence of μ3-OH groups in the trimetallic cluster that comprises them.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Benjamin A Trump
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Aeri J Gosselin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA.
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
35
|
|
36
|
Jiang Z, Zhou P, Xu T, Fan L, Hu S, Chen J, He Y. Two Co-based MOFs assembled from an amine-functionalized pyridinecarboxylate ligand: inorganic acid-directed structural variety and gas adsorption properties. CrystEngComm 2020. [DOI: 10.1039/d0ce00475h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair of Co-based MOFs exhibited inorganic acid-driven structural diversities, and one of them displayed the C2H2 separation and purification potential.
Collapse
Affiliation(s)
- Zhenzhen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Ping Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Tingting Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Lihui Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Simin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Jingxian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
37
|
Jiang Z, Fan L, Zhou P, Xu T, Chen J, Hu S, Chen DL, He Y. AnN-oxide-functionalized nanocage-based copper-tricarboxylate framework for the selective capture of C2H2. Dalton Trans 2020; 49:15672-15681. [DOI: 10.1039/d0dt03067h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AnN-oxide-functionalized copper-tricarboxylate framework displayed promising potential for use in C2H4and C2H2purification.
Collapse
Affiliation(s)
- Zhenzhen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Lihui Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Ping Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Tingting Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Jingxian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Simin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
38
|
Nath BD, Takaishi K, Ema T. Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01894h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent progress in homogeneous catalysis with macrocyclic multinuclear metal complexes (categories A–C) is overviewed.
Collapse
Affiliation(s)
- Bikash Dev Nath
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Tadashi Ema
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| |
Collapse
|
39
|
Sun X, Zhang J, Yuan X, Fu Z. A silicotungstate-based copper–viologen hybrid photocatalytic compound for efficient degradation of organic dyes under visible light. CrystEngComm 2019. [DOI: 10.1039/c9ce01075k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient visible light responsive compound [Cu(PBPY)]2[SiW12O40] (1) has been constructed by integrating a silicotungstate cluster into the copper–viologen framework. It shows high photocatalytic efficiency for the degradation of dye pollutants.
Collapse
Affiliation(s)
- Xiaojuan Sun
- Key Lab for Fuel Cell Technology of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Jie Zhang
- Key Lab for Fuel Cell Technology of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Xianzhi Yuan
- Key Lab for Fuel Cell Technology of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Zhiyong Fu
- Key Lab for Fuel Cell Technology of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|