1
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
2
|
Yang P, Qu C, Yuan M, Xi B, Jia X, Zhang B, Zhang L. Genetic Basis and Expression Pattern Indicate the Biocontrol Potential and Soil Adaption of Lysobacter capsici CK09. Microorganisms 2023; 11:1768. [PMID: 37512940 PMCID: PMC10384520 DOI: 10.3390/microorganisms11071768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Lysobacter species have attracted increasing attention in recent years due to their capacities to produce diverse secondary metabolites against phytopathogens. In this research, we analyzed the genomic and transcriptomic patterns of Lysobacter capsici CK09. Our data showed that L. capsici CK09 harbored various contact-independent biocontrol traits, such as fungal cell wall lytic enzymes and HSAF/WAP-8294A2 biosynthesis, as well as several contact-dependent machineries, including type 2/4/6 secretion systems. Additionally, a variety of hydrolytic enzymes, particularly extracellular enzymes, were found in the L. capsici CK09 genome and predicted to improve its adaption in soil. Furthermore, several systems, including type 4 pili, type 3 secretion system and polysaccharide biosynthesis, can provide a selective advantage to L. capsici CK09, enabling the species to live on the surface in soil. The expression of these genes was then confirmed via transcriptomic analysis, indicating the activities of these genes. Collectively, our research provides a comprehensive understanding of the biocontrol potential and soil adaption of L. capsici CK09 and implies the potential of this strain for application in the future.
Collapse
Affiliation(s)
- Pu Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Chaofan Qu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Miaomiao Yuan
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Bo Xi
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiu Jia
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Ben Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Xu Q, Zou H, Pan C, Wang H, Shen Y, Li Y. Lysohexaenetides A and B, linear lipopeptides from Lysobacter sp. DSM 3655 identified by heterologous expression in Streptomyces. Chin J Nat Med 2023; 21:454-458. [PMID: 37407176 DOI: 10.1016/s1875-5364(23)60473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Indexed: 07/07/2023]
Abstract
Lysobacter harbors a plethora of cryptic biosynthetic gene clusters (BGCs), albeit only a limited number have been analyzed to date. In this study, we described the activation of a cryptic polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) gene cluster (lsh) in Lysobacter sp. DSM 3655 through promoter engineering and heterologous expression in Streptomyces sp. S001. As a result of this methodology, we were able to isolate two novel linear lipopeptides, lysohexaenetides A (1) and B (2), from the recombinant strain S001-lsh. Furthermore, we proposed the biosynthetic pathway for lysohexaenetides and identified LshA as another example of entirely iterative bacterial PKSs. This study highlights the potential of heterologous expression systems in uncovering cryptic biosynthetic pathways in Lysobacter genomes, particularly in the absence of genetic manipulation tools.
Collapse
Affiliation(s)
- Qiushuang Xu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haochen Zou
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Pan
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
4
|
Miller AL, Li S, Eichhorn CD, Zheng Y, Du L. Identification and Biosynthetic Study of the Siderophore Lysochelin in the Biocontrol Agent Lysobacter enzymogenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7418-7426. [PMID: 37158236 DOI: 10.1021/acs.jafc.3c01250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Lysobacter is a genus of bacteria emerging as new biocontrol agents in agriculture. Although iron acquisition is essential for the bacteria, no siderophore has been identified from any Lysobacter. Here, we report the identification of the first siderophore, N1,N8-bis(2,3-dihydroxybenzoyl)spermidine (lysochelin), and its biosynthetic gene cluster from Lysobacter enzymogenes. Intriguingly, the deletion of the spermidine biosynthetic gene encoding arginine decarboxylase or SAM decarboxylase eliminated lysochelin and the antifungals, HSAF and its analogues, which are key to the disease control activity and to the survival of Lysobacter under oxidative stresses caused by excess iron. The production of lysochelin and the antifungals is greatly affected by iron concentration. Together, the results revealed a previously unrecognized system, in which L. enzymogenes produces a group of small molecules, lysochelin, spermidine, and HSAF and its analogues, that are affected by iron concentration and critical to the growth and survival of the biocontrol agent.
Collapse
Affiliation(s)
- Amanda Lynn Miller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Shanren Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Catherine D Eichhorn
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Yongbiao Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
5
|
The Potential Use of Fungal Co-Culture Strategy for Discovery of New Secondary Metabolites. Microorganisms 2023; 11:microorganisms11020464. [PMID: 36838429 PMCID: PMC9965835 DOI: 10.3390/microorganisms11020464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Fungi are an important and prolific source of secondary metabolites (SMs) with diverse chemical structures and a wide array of biological properties. In the past two decades, however, the number of new fungal SMs by traditional monoculture method had been greatly decreasing. Fortunately, a growing number of studies have shown that co-culture strategy is an effective approach to awakening silent SM biosynthetic gene clusters (BGCs) in fungal strains to produce cryptic SMs. To enrich our knowledge of this approach and better exploit fungal biosynthetic potential for new drug discovery, this review comprehensively summarizes all fungal co-culture methods and their derived new SMs as well as bioactivities on the basis of an extensive literature search and data analysis. Future perspective on fungal co-culture study, as well as its interaction mechanism, is supplied.
Collapse
|
6
|
Evidente A. Bioactive Lipodepsipeptides Produced by Bacteria and Fungi. Int J Mol Sci 2022; 23:12342. [PMID: 36293201 PMCID: PMC9659194 DOI: 10.3390/ijms232012342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 10/05/2024] Open
Abstract
Natural products are a vital source for agriculture, medicine, cosmetics and other fields. Lipodepsipeptides (LPDs) are a wide group of natural products distributed among living organisms such as bacteria, fungi, yeasts, virus, insects, plants and marine organisms. They are a group of compounds consisting of a lipid connected to a peptide, which are able to self-assemble into several different structures. They have shown different biological activities such as phytotoxic, antibiotic, antiviral, antiparasitic, antifungal, antibacterial, immunosuppressive, herbicidal, cytotoxic and hemolytic activities. Their biological activities seem to be due to their interactions with the plasma membrane (MP) because they are able to mimic the architecture of the native membranes interacting with their hydrophobic segment. LPDs also have surfactant properties. The review has been focused on the lipodepsipeptides isolated from fungal and bacterial sources, on their biological activity, on the structure-activity relationships of some selected LPD subgroups and on their potential application in agriculture and medicine. The chemical and biological characterization of lipodepsipeptides isolated in the last three decades and findings that resulted from SCI-FINDER research are reported. A critical evaluation of the most recent reviews dealing with the same argument has also been described.
Collapse
Affiliation(s)
- Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
7
|
Microbial communities of ascocarps and soils in a natural habitat of Tuber indicum. Arch Microbiol 2022; 204:189. [PMID: 35194691 DOI: 10.1007/s00203-022-02763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Truffles are the fruiting bodies of hypogeous fungi in the genus Tuber. Some truffle species usually grow in an area devoid of vegetation, called brûlé, but limited knowledge is available on the microbial composition and structure of them. Here, we investigated the bacterial and fungal communities of Tuber indicum ascocarps and soils inside and outside a characteristic brûlé from a poplar plantation with no truffle production history in northeastern China using a high-throughput sequencing approach. A predominance of members of the bacterial phylum Proteobacteria was observed in all samples. Members of Bacillus were the main genera in the ascocarps, while members of Lysobacter and unidentified Acidobacteria were more abundant in the soil. In addition, members of Gibberella, Fusarium, and Absidia were the dominant fungi in the ascocarps, while members of Tuber were enriched in the ascocarps and soils inside the brûlé. Some mycorrhization helper bacteria (Rhizobium) and ectomycorrhiza-associated bacteria (Lysobacter) were detected, indicating their potential roles in the complex development of underground fruiting bodies and brûlé formation. These findings may contribute to the protection and cultivation of truffles.
Collapse
|
8
|
Yue H, Miller AL, Khetrapal V, Jayaseker V, Wright S, Du L. Biosynthesis, regulation, and engineering of natural products from Lysobacter. Nat Prod Rep 2022; 39:842-874. [PMID: 35067688 DOI: 10.1039/d1np00063b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: up to August 2021Lysobacter is a genus of Gram-negative bacteria that was classified in 1987. Several Lysobacter species are emerging as new biocontrol agents for crop protection in agriculture. Lysobacter are prolific producers of new bioactive natural products that are largely underexplored. So far, several classes of structurally interesting and biologically active natural products have been isolated from Lysobacter. This article reviews the progress in Lysobacter natural product research over the past ten years, including molecular mechanisms for biosynthesis, regulation and mode of action, genome mining of cryptic biosynthetic gene clusters, and metabolic engineering using synthetic biology tools.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Amanda Lynn Miller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vimmy Khetrapal
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vishakha Jayaseker
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Stephen Wright
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
9
|
Li L, Koirala B, Hernandez Y, MacIntyre LW, Ternei MA, Russo R, Brady SF. Identification of structurally diverse menaquinone-binding antibiotics with in vivo activity against multidrug-resistant pathogens. Nat Microbiol 2022; 7:120-131. [PMID: 34949828 PMCID: PMC8732328 DOI: 10.1038/s41564-021-01013-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
The emergence of multidrug-resistant bacteria poses a threat to global health and necessitates the development of additional in vivo active antibiotics with diverse modes of action. Directly targeting menaquinone (MK), which plays an important role in bacterial electron transport, is an appealing, yet underexplored, mode of action due to a dearth of MK-binding molecules. Here we combine sequence-based metagenomic mining with a motif search of bioinformatically predicted natural product structures to identify six biosynthetic gene clusters that we predicted encode MK-binding antibiotics (MBAs). Their predicted products (MBA1-6) were rapidly accessed using a synthetic bioinformatic natural product approach, which relies on bioinformatic structure prediction followed by chemical synthesis. Among these six structurally diverse MBAs, four make up two new MBA structural families. The most potent member of each new family (MBA3, MBA6) proved effective at treating methicillin-resistant Staphylococcus aureus infection in a murine peritonitis-sepsis model. The only conserved feature present in all MBAs is the sequence 'GXLXXXW', which we propose represents a minimum MK-binding motif. Notably, we found that a subset of MBAs were active against Mycobacterium tuberculosis both in vitro and in macrophages. Our findings suggest that naturally occurring MBAs are a structurally diverse and untapped class of mechanistically interesting, in vivo active antibiotics.
Collapse
Affiliation(s)
- Lei Li
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Bimal Koirala
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Yozen Hernandez
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Logan W MacIntyre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Melinda A Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Riccardo Russo
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Traykovska M, Popova KB, Penchovsky R. Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development. ACS Synth Biol 2021; 10:3167-3176. [PMID: 34734706 DOI: 10.1021/acssynbio.1c00443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to the steady rise of multidrug-resistant pathogenic bacteria worldwide, it is critical to develop novel antibacterial drugs. This article presents chimeric antisense oligonucleotides that inhibit the bacterial growth of Staphylococcus aureus, one of the most frequent causes of hospital-acquired infections. The chimeric antisense oligonucleotides have a combination of first- and second-generation chemical modification. To deliver the antisense oligonucleotides into a cell, we apply a cell-penetrating oligopeptide attached to them. We have performed complete bioinformatics analyses of the glmS ribozyme present in S. aureus and its essential role in the biochemical pathway of glucosamine-6-phosphate synthesis. Besides, we have analyzed the bacteria for alternative metabolic pathways, such as the nagA gene. The first antisense oligonucleotide explicitly targets the glmS riboswitch, while the second explicitly targets the nagA mRNA. We have evaluated that combined, the antisense oligonucleotides block the synthesis of glucosamine-6-phosphate entirely and inhibit the bacterial growth of S. aureus. However, the glmS riboswitch targeting the antisense oligonucleotide is sufficient to inhibit the growth of S. aureus with a MIC80 of 5 μg/mL. The glmS ribozyme is a very suitable target for antibacterial drug development with antisense oligonucleotides.
Collapse
Affiliation(s)
- Martina Traykovska
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Boulevard, 1164 Sofia, Bulgaria
| | - Katya B. Popova
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Boulevard, 1164 Sofia, Bulgaria
| | - Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Boulevard, 1164 Sofia, Bulgaria
| |
Collapse
|