1
|
Gee M, Atai K, Coller HA, Yeates TO, Castells-Graells R. Designed fluorescent protein cages as fiducial markers for targeted cell imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582585. [PMID: 38464160 PMCID: PMC10925312 DOI: 10.1101/2024.02.28.582585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Understanding how proteins function within their cellular environments is essential for cellular biology and biomedical research. However, current imaging techniques exhibit limitations, particularly in the study of small complexes and individual proteins within cells. Previously, protein cages have been employed as imaging scaffolds to study purified small proteins using cryo-electron microscopy (cryo-EM). Here we demonstrate an approach to deliver designed protein cages - endowed with fluorescence and targeted binding properties - into cells, thereby serving as fiducial markers for cellular imaging. We used protein cages with anti-GFP DARPin domains to target a mitochondrial protein (MFN1) expressed in mammalian cells, which was genetically fused to GFP. We demonstrate that the protein cages can penetrate cells, are directed to specific subcellular locations, and are detectable with confocal microscopy. This innovation represents a milestone in developing tools for in-depth cellular exploration, especially in conjunction with methods such as cryo-correlative light and electron microscopy (cryo-CLEM).
Collapse
Affiliation(s)
- Morgan Gee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
| | - Kaiser Atai
- Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA 90095
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA 90095
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA 90095
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA 90095
| | | |
Collapse
|
2
|
Feng T, Liu J, Zhang X, Fan D, Bai Y. Protein engineering of multi-enzyme virus-like particle nanoreactors for enhanced chiral alcohol synthesis. NANOSCALE ADVANCES 2023; 5:6606-6616. [PMID: 38024302 PMCID: PMC10662152 DOI: 10.1039/d3na00515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
In the past decade, virus-like particles (VLPs) that can encapsulate single or multiple enzymes have been studied extensively as typical nanoreactors for biocatalysis in vitro, yet their catalytic efficiencies are usually inadequate for real applications. These biocatalytic nanoreactors should be engineered like their free-enzyme counterparts to improve their catalytic performance for potential applications. Herein we engineer biocatalytic VLPs for the enhanced synthesis of chiral alcohols. Different methods including directed evolution were applied to the entire bacteriophage P22 VLPs (except the coat protein), which encapsulated a carbonyl reductase from Scheffersomyces stipitis (SsCR) and a glucose dehydrogenase from Bacillus megaterium (BmGDH) in their capsids. The best variant, namely M5, showed an enhanced turnover frequency (TOF, min-1) up to 15-fold toward the majority of tested aromatic prochiral ketones, and gave up to 99% enantiomeric excess in the synthesis of chiral alcohol pharmaceutical intermediates. A comparison with the mutations of the free-enzyme counterparts showed that the same amino acid mutations led to different changes in the catalytic efficiencies of free and confined enzymes. Finally, the engineered M5 nanoreactor showed improved efficiency in the scale-up synthesis of chiral alcohols. The conversions of three substrates catalyzed by M5 were all higher than those catalyzed by the wild-type nanoreactor, demonstrating that enzyme-encapsulating VLPs can evolve to enhance their catalytic performance for potential applications.
Collapse
Affiliation(s)
- Taotao Feng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology Shanghai 200237 China
| | - Jiaxu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology Shanghai 200237 China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology Shanghai 200237 China
| | - Daidi Fan
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Xi'an Shaanxi 710069 China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
3
|
Kaltbeitzel J, Wich PR. Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew Chem Int Ed Engl 2023; 62:e202216097. [PMID: 36917017 DOI: 10.1002/anie.202216097] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
Proteins and enzymes are versatile biomaterials for a wide range of medical applications due to their high specificity for receptors and substrates, high degradability, low toxicity, and overall good biocompatibility. Protein nanoparticles are formed by the arrangement of several native or modified proteins into nanometer-sized assemblies. In this review, we will focus on artificial nanoparticle systems, where proteins are the main structural element and not just an encapsulated payload. While under natural conditions, only certain proteins form defined aggregates and nanoparticles, chemical modifications or a change in the physical environment can further extend the pool of available building blocks. This allows the assembly of many globular proteins and even enzymes. These advances in preparation methods led to the emergence of new generations of nanosystems that extend beyond transport vehicles to diverse applications, from multifunctional drug delivery to imaging, nanocatalysis and protein therapy.
Collapse
Affiliation(s)
- Jonas Kaltbeitzel
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Wang Y, Douglas T. Tuning Multistep Biocatalysis through Enzyme and Cofactor Colocalization in Charged Porous Protein Macromolecular Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43621-43632. [PMID: 37695852 DOI: 10.1021/acsami.3c10340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Spatial organization of biocatalytic activities is crucial to organisms to efficiently process complex metabolism. Inspired by this mechanism, artificial scaffold structures are designed to harbor functionally coupled biocatalysts, resulting in acellular materials that can complete multistep reactions at high efficiency and low cost. Substrate channeling is an approach for efficiency enhancement of multistep reactions, but fast diffusion of small molecule intermediates poses a major challenge to achieve channeling in vitro. Here, we explore how multistep biocatalysis is affected, and can be modulated, by cofactor-enzyme colocalization within a synthetic bioinspired material. In this material, a heterogeneous protein macromolecular framework (PMF) acts as a porous host matrix for colocalization of two coupled enzymes and their small molecule cofactor, nicotinamide adenine dinucleotide (NAD). After formation of the PMF from a higher order assembly of P22 virus-like particles (VLPs), the enzymes were partitioned into the PMF by covalent attachment and presentation on the VLP exterior. Using a collective property of the PMF (i.e., high density of negative charges in the PMF), NAD molecules were partitioned into the framework via electrostatic interactions after being conjugated to a polycationic species. This effectively controlled the localization and diffusion of NAD, resulting in substrate channeling between the enzymes. Changing ionic strength modulates the PMF-NAD interactions, tuning two properties that impact the multistep efficiency oppositely in response to ionic strength: cofactor partitioning (colocalization with the enzymes) and cofactor mobility (translocation between the enzymes). Within the range tested, we observed a maximum of 5-fold increase or 75% decrease in multistep efficiency as compared to free enzymes in solution, which suggest both the colocalization and the mobility are critical for the multistep efficiency. This work demonstrates utility of collective behaviors, exhibited by hierarchical bioassemblies, in the construction of functional materials for enzyme cascades, which possess properties such as tunable multistep biocatalysis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Hewagama ND, Uchida M, Wang Y, Kraj P, Lee B, Douglas T. Higher-Order VLP-Based Protein Macromolecular Framework Structures Assembled via Coiled-Coil Interactions. Biomacromolecules 2023; 24:3716-3728. [PMID: 37467146 DOI: 10.1021/acs.biomac.3c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Hierarchical organization is one of the fundamental features observed in biological systems that allows for efficient and effective functioning. Virus-like particles (VLPs) are elegant examples of a hierarchically organized supramolecular structure, where many subunits are self-assembled to generate the functional cage-like architecture. Utilizing VLPs as building blocks to construct two- and three-dimensional (3D) higher-order structures is an emerging research area in developing functional biomimetic materials. VLPs derived from P22 bacteriophages can be repurposed as nanoreactors by encapsulating enzymes and modular units to build higher-order catalytic materials via several techniques. In this study, we have used coiled-coil peptide interactions to mediate the P22 interparticle assembly into a highly stable, amorphous protein macromolecular framework (PMF) material, where the assembly does not depend on the VLP morphology, a limitation observed in previously reported P22 PMF assemblies. Many encapsulated enzymes lose their optimum functionalities under the harsh conditions that are required for the P22 VLP morphology transitions. Therefore, the coiled-coil-based PMF provides a fitting and versatile platform for constructing functional higher-order catalytic materials compatible with sensitive enzymes. We have characterized the material properties of the PMF and utilized the disordered PMF to construct a biocatalytic 3D material performing single- and multistep catalysis.
Collapse
Affiliation(s)
- Nathasha D Hewagama
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, California 93740, United States
| | - Yang Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Pawel Kraj
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Tan JS, Jaffar Ali MNB, Gan BK, Tan WS. Next-generation viral nanoparticles for targeted delivery of therapeutics: Fundamentals, methods, biomedical applications, and challenges. Expert Opin Drug Deliv 2023; 20:955-978. [PMID: 37339432 DOI: 10.1080/17425247.2023.2228202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION Viral nanoparticles (VNPs) are virus-based nanocarriers that have been studied extensively and intensively for biomedical applications. However, their clinical translation is relatively low compared to the predominating lipid-based nanoparticles. Therefore, this article describes the fundamentals, challenges, and solutions of the VNP-based platform, which will leverage the development of next-generation VNPs. AREAS COVERED Different types of VNPs and their biomedical applications are reviewed comprehensively. Strategies and approaches for cargo loading and targeted delivery of VNPs are examined thoroughly. The latest developments in controlled release of cargoes from VNPs and their mechanisms are highlighted too. The challenges faced by VNPs in biomedical applications are identified, and solutions are provided to overcome them. EXPERT OPINION In the development of next-generation VNPs for gene therapy, bioimaging and therapeutic deliveries, focus must be given to reduce their immunogenicity, and increase their stability in the circulatory system. Modular virus-like particles (VLPs) which are produced separately from their cargoes or ligands before all the components are coupled can speed up clinical trials and commercialization. In addition, removal of contaminants from VNPs, cargo delivery across the blood brain barrier (BBB), and targeting of VNPs to organelles intracellularly are challenges that will preoccupy researchers in this decade.
Collapse
Affiliation(s)
- Jia Sen Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhamad Norizwan Bin Jaffar Ali
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Bee Koon Gan
- Department of Biological Science, Faculty of Science, National University of Singapore, Singapore
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Wang Y, Selivanovitch E, Douglas T. Enhancing Multistep Reactions: Biomimetic Design of Substrate Channeling Using P22 Virus-Like Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206906. [PMID: 36815387 PMCID: PMC10161098 DOI: 10.1002/advs.202206906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Indexed: 05/06/2023]
Abstract
Many biocatalytic processes inside cells employ substrate channeling to control the diffusion of intermediates for improved efficiency of enzymatic cascade reactions. This inspirational mechanism offers a strategy for increasing efficiency of multistep biocatalysis, especially where the intermediates are expensive cofactors that require continuous regeneration. However, it is challenging to achieve substrate channeling artificially in vitro due to fast diffusion of small molecules. By mimicking some naturally occurring metabolons, nanoreactors are developed using P22 virus-like particles (VLPs), which enhance the efficiency of nicotinamide adenine dinucleotide (NAD)-dependent multistep biocatalysis by substrate channeling. In this design, NAD-dependent enzyme partners are coencapsulated inside the VLPs, while the cofactor is covalently tethered to the capsid interior through swing arms. The crowded environment inside the VLPs induces colocalization of the enzymes and the immobilized NAD, which shuttles between the enzymes for in situ regeneration without diffusing into the bulk solution. The modularity of the nanoreactors allows to tune their composition and consequently their overall activity, and also remodel them for different reactions by altering enzyme partners. Given the plasticity and versatility, P22 VLPs possess great potential for developing functional materials capable of multistep biotransformations with advantageous properties, including enhanced efficiency and economical usage of enzyme cofactors.
Collapse
Affiliation(s)
- Yang Wang
- Department of ChemistryIndiana University800 E Kirkwood AveBloomingtonIN47405USA
| | | | - Trevor Douglas
- Department of ChemistryIndiana University800 E Kirkwood AveBloomingtonIN47405USA
| |
Collapse
|
8
|
McNeale D, Esquirol L, Okada S, Strampel S, Dashti N, Rehm B, Douglas T, Vickers C, Sainsbury F. Tunable In Vivo Colocalization of Enzymes within P22 Capsid-Based Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17705-17715. [PMID: 36995754 DOI: 10.1021/acsami.3c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Virus-like particles (VLPs) derived from bacteriophage P22 have been explored as biomimetic catalytic compartments. In vivo colocalization of enzymes within P22 VLPs uses sequential fusion to the scaffold protein, resulting in equimolar concentrations of enzyme monomers. However, control over enzyme stoichiometry, which has been shown to influence pathway flux, is key to realizing the full potential of P22 VLPs as artificial metabolons. We present a tunable strategy for stoichiometric control over in vivo co-encapsulation of P22 cargo proteins, verified for fluorescent protein cargo by Förster resonance energy transfer. This was then applied to a two-enzyme reaction cascade. l-homoalanine, an unnatural amino acid and chiral precursor to several drugs, can be synthesized from the readily available l-threonine by the sequential activity of threonine dehydratase and glutamate dehydrogenase. We found that the loading density of both enzymes influences their activity, with higher activity found at lower loading density implying an impact of molecular crowding on enzyme activity. Conversely, increasing overall loading density by increasing the amount of threonine dehydratase can increase activity from the rate-limiting glutamate dehydrogenase. This work demonstrates the in vivo colocalization of multiple heterologous cargo proteins in a P22-based nanoreactor and shows that controlled stoichiometry of individual enzymes in an enzymatic cascade is required for the optimal design of nanoscale biocatalytic compartments.
Collapse
Affiliation(s)
- Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
- CSIRO Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT 2601, Australia
| | - Shoko Okada
- CSIRO Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT 2601, Australia
| | - Shai Strampel
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
| | - Noor Dashti
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
| | - Bernd Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Indiana University, Bloomington, Indiana 47405, United States
| | - Claudia Vickers
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Biological and Environmental Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia
| |
Collapse
|
9
|
González-Davis O, Villagrana-Escareño MV, Trujillo MA, Gama P, Chauhan K, Vazquez-Duhalt R. Virus-like nanoparticles as enzyme carriers for Enzyme Replacement Therapy (ERT). Virology 2023; 580:73-87. [PMID: 36791560 DOI: 10.1016/j.virol.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Enzyme replacement therapy (ERT) has been used to treat a few of the many existing diseases which are originated from the lack of, or low enzymatic activity. Exogenous enzymes are administered to contend with the enzymatic activity deficiency. Enzymatic nanoreactors based on the enzyme encapsulation inside of virus-like particles (VLPs) appear as an interesting alternative for ERT. VLPs are excellent delivery vehicles for therapeutic enzymes as they are biodegradable, uniformly organized, and porous nanostructures that transport and could protect the biocatalyst from the external environment without much affecting the bioactivity. Consequently, significant efforts have been made in the production processes of virus-based enzymatic nanoreactors and their functionalization, which are critically reviewed. The use of virus-based enzymatic nanoreactors for the treatment of lysosomal storage diseases such as Gaucher, Fabry, and Pompe diseases, as well as potential therapies for galactosemia, and Hurler and Hunter syndromes are discussed.
Collapse
Affiliation(s)
- Oscar González-Davis
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Maria V Villagrana-Escareño
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Mario A Trujillo
- School of Medicine, Universidad Xochicalco, Ensenada, Baja California, Mexico
| | - Pedro Gama
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico.
| |
Collapse
|
10
|
Kraj P, Hewagama ND, Douglas T. Diffusion and molecular partitioning in hierarchically complex virus-like particles. Virology 2023; 580:50-60. [PMID: 36764014 DOI: 10.1016/j.virol.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Viruses are diverse infectious agents found in virtually every type of natural environment. Due to the range of conditions in which viruses have evolved, they exhibit a wide range of structure and function which has been exploited for biotechnology. The self-assembly process of virus-like particles (VLPs), derived from structural virus components, allows for the assembly of a hierarchy of materials. Because VLPs are robust in both their assembly and the final product, functionality can be incorporated through design of their building blocks or chemical modification after their synthesis and assembly. In particular, encapsulation of active enzymes inside VLP results in macromolecular concentration approximating that of cells, introducing excluded volume effects on encapsulated cargo which are not present in traditional experiments done on dilute proteins. This work reviews the hierarchical assembly of VLPs, experiments investigating diffusion in VLP systems, and methods for partitioning of chemical species in VLPs as functional biomaterials.
Collapse
Affiliation(s)
- Pawel Kraj
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Nathasha D Hewagama
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA.
| |
Collapse
|
11
|
Essus VA, Souza Júnior GSE, Nunes GHP, Oliveira JDS, de Faria BM, Romão LF, Cortines JR. Bacteriophage P22 Capsid as a Pluripotent Nanotechnology Tool. Viruses 2023; 15:516. [PMID: 36851730 PMCID: PMC9962691 DOI: 10.3390/v15020516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The Salmonella enterica bacteriophage P22 is one of the most promising models for the development of virus-like particle (VLP) nanocages. It possesses an icosahedral T = 7 capsid, assembled by the combination of two structural proteins: the coat protein (gp5) and the scaffold protein (gp8). The P22 capsid has the remarkable capability of undergoing structural transition into three morphologies with differing diameters and wall-pore sizes. These varied morphologies can be explored for the design of nanoplatforms, such as for the development of cargo internalization strategies. The capsid proteic nature allows for the extensive modification of its structure, enabling the addition of non-native structures to alter the VLP properties or confer them to diverse ends. Various molecules were added to the P22 VLP through genetic, chemical, and other means to both the capsid and the scaffold protein, permitting the encapsulation or the presentation of cargo. This allows the particle to be exploited for numerous purposes-for example, as a nanocarrier, nanoreactor, and vaccine model, among other applications. Therefore, the present review intends to give an overview of the literature on this amazing particle.
Collapse
Affiliation(s)
- Victor Alejandro Essus
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Getúlio Silva e Souza Júnior
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Gabriel Henrique Pereira Nunes
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Juliana dos Santos Oliveira
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Bruna Mafra de Faria
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, Rio de Janeiro 21941-590, Brazil
| | - Luciana Ferreira Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, Rio de Janeiro 21941-590, Brazil
| | - Juliana Reis Cortines
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| |
Collapse
|
12
|
Ikwuagwu B, Hartman E, Mills CE, Tullman-Ercek D. Systematic engineering of virus-like particles to identify self-assembly rules for shifting particle size. Virology 2023; 579:137-147. [PMID: 36669330 PMCID: PMC10776172 DOI: 10.1016/j.virol.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Virus-like particles (VLPs) are promising scaffolds for biomaterials as well as diagnostic and therapeutic applications. However, there are some key challenges to be solved, such as the ability to engineer alternate sizes for varied use cases. To this end, we created a library of MS2 VLP variants at two key residues in the coat protein which have been implicated as important to controlling VLP size and geometry. By adapting a method for systematic mutagenesis coupled with size-based selections and high-throughput sequencing as a readout, we developed a quantitative assessment of two residues in MS2 coat protein that govern the size shift in MS2 VLPs. We then applied the strategy to the equivalent residues in Qβ VLPs, an MS2 homolog, and demonstrate that the analogous pair of residues are also able to impact Qβ VLP size and shape. These results underscore the power of fitness landscapes in identifying critical features for assembly.
Collapse
Affiliation(s)
- Bon Ikwuagwu
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA
| | - Emily Hartman
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute B486, Evanston, IL, 60208, USA.
| |
Collapse
|
13
|
Uchida M, Selivanovitch E, McCoy K, Douglas T. Fabrication of Protein Macromolecular Frameworks (PMFs) and Their Application in Catalytic Materials. Methods Mol Biol 2023; 2671:111-120. [PMID: 37308641 PMCID: PMC11034859 DOI: 10.1007/978-1-0716-3222-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The construction of three-dimensional (3D) array materials from nanoscale building blocks has drawn significant interest because of their potential to exhibit collective properties and functions arising from the interactions between individual building blocks. Protein cages such as virus-like particles (VLPs) have distinct advantages as building blocks for higher-order assemblies because they are extremely homogeneous in size and can be engineered with new functionalities by chemical and/or genetic modification. In this chapter, we describe a protocol for constructing a new class of protein-based superlattices, called protein macromolecular frameworks (PMFs). We also describe an exemplary method to evaluate the catalytic activity of enzyme-enclosed PMFs, which exhibit enhanced catalytic activity due to the preferential partitioning of charged substrates into the PMF.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, Fresno, CA, USA.
| | | | - Kimberly McCoy
- Department of Chemistry and Biochemistry, California State University, Fresno, Fresno, CA, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| |
Collapse
|
14
|
Zhang L, Tang L, Jiang Y, Wang C, Huang L, Ding T, Zhang T, Li H, Xie L. GE11-antigen-loaded hepatitis B virus core antigen virus-like particles efficiently bind to TNBC tumor. Front Oncol 2023; 13:1110751. [PMID: 37020877 PMCID: PMC10067716 DOI: 10.3389/fonc.2023.1110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Purpose This study aimed to explore the possibility of utilizing hepatitis B core protein (HBc) virus-like particles (VLPs) encapsulate doxorubicin (Dox) to reduce the adverse effect caused by its off-target and toxic side effect. Methods Here, a triple-negative breast cancer (TNBC) tumor-targeting GE11-HBc VLP was constructed through genetic engineering. The GE11 peptide, a 12-amino-acid peptide targeting epidermal growth factor receptor (EGFR), was inserted into the surface protein loops of VLPs. The Dox was loaded into HBc VLPs by a thermal-triggered encapsulation strategy. The in vitro release, cytotoxicity, and cellular uptake of TNBC tumor-targeting GE11-HBc VLPs was then evaluated. Results These VLPs possessed excellent stability, DOX loading efficiency, and preferentially released drug payload at high GSH levels. The insertion of GE11 targeting peptide caused improved cellular uptake and enhanced cell viability inhibitory in EGFR high-expressed TNBC cells. Conclusion Together, these results highlight DOX-loaded, EGFR-targeted VLPs as a potentially useful therapeutic choice for EGFR-overexpressing TNBC.
Collapse
Affiliation(s)
- Long Zhang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Lin Tang
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongsheng Jiang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Chenou Wang
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Ting Ding
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Tinghong Zhang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- *Correspondence: Tinghong Zhang, ; Huaqiong Li, ; Longteng Xie,
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Tinghong Zhang, ; Huaqiong Li, ; Longteng Xie,
| | - Longteng Xie
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- *Correspondence: Tinghong Zhang, ; Huaqiong Li, ; Longteng Xie,
| |
Collapse
|
15
|
Ikwuagwu B, Tullman-Ercek D. Virus-like particles for drug delivery: a review of methods and applications. Curr Opin Biotechnol 2022; 78:102785. [PMID: 36099859 DOI: 10.1016/j.copbio.2022.102785] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Virus-like particles (VLPs) are self-assembling protein nanoparticles that have great promise as vectors for drug delivery. VLPs are derived from viruses but retain none of their infection or replication capabilities. These protein particles have defined surface chemistries, uniform sizes, and stability properties that make them attractive starting points for drug-delivery scaffolds. Here, we review recent advances in tailoring VLPs for drug-delivery applications, including VLP platform engineering approaches as well as methods for cargo loading, activation, and release. Finally, we highlight several successes using VLPs for drug delivery in model systems.
Collapse
Affiliation(s)
- Bon Ikwuagwu
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL 60208, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute B486, Evanston, IL 60208, USA.
| |
Collapse
|
16
|
Assembly of Protein Cages for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122609. [PMID: 36559102 PMCID: PMC9785872 DOI: 10.3390/pharmaceutics14122609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs) have been widely used as target delivery vehicles for therapeutic goods; however, compared with inorganic and organic nanomaterials, protein nanomaterials have better biocompatibility and can self-assemble into highly ordered cage-like structures, which are more favorable for applications in targeted drug delivery. In this review, we concentrate on the typical protein cage nanoparticles drugs encapsulation processes, such as drug fusion expression, diffusion, electrostatic contact, covalent binding, and protein cage disassembly/recombination. The usage of protein cage nanoparticles in biomedicine is also briefly discussed. These materials can be utilized to transport small molecules, peptides, siRNA, and other medications for anti-tumor, contrast, etc.
Collapse
|
17
|
McNeale D, Dashti N, Cheah LC, Sainsbury F. Protein cargo encapsulation by
virus‐like
particles: Strategies and applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1869. [PMID: 36345849 DOI: 10.1002/wnan.1869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Viruses and the recombinant protein cages assembled from their structural proteins, known as virus-like particles (VLPs), have gained wide interest as tools in biotechnology and nanotechnology. Detailed structural information and their amenability to genetic and chemical modification make them attractive systems for further engineering. This review describes the range of non-enveloped viruses that have been co-opted for heterologous protein cargo encapsulation and the strategies that have been developed to drive encapsulation. Spherical capsids of a range of sizes have been used as platforms for protein cargo encapsulation. Various approaches, based on native and non-native interactions between the cargo proteins and inner surface of VLP capsids, have been devised to drive encapsulation. Here, we outline the evolution of these approaches, discussing their benefits and limitations. Like the viruses from which they are derived, VLPs are of interest in both biomedical and materials applications. The encapsulation of protein cargo inside VLPs leads to numerous uses in both fundamental and applied biocatalysis and biomedicine, some of which are discussed herein. The applied science of protein-encapsulating VLPs is emerging as a research field with great potential. Developments in loading control, higher order assembly, and capsid optimization are poised to realize this potential in the near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery Griffith University Nathan Queensland Australia
| | - Noor Dashti
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| | - Li Chen Cheah
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery Griffith University Nathan Queensland Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| |
Collapse
|
18
|
Kwon S, Giessen TW. Engineered Protein Nanocages for Concurrent RNA and Protein Packaging In Vivo. ACS Synth Biol 2022; 11:3504-3515. [PMID: 36170610 PMCID: PMC9944510 DOI: 10.1021/acssynbio.2c00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein nanocages have emerged as an important engineering platform for biotechnological and biomedical applications. Among naturally occurring protein cages, encapsulin nanocompartments have recently gained prominence due to their favorable physico-chemical properties, ease of shell modification, and highly efficient and selective intrinsic protein packaging capabilities. Here, we expand encapsulin function by designing and characterizing encapsulins for concurrent RNA and protein encapsulation in vivo. Our strategy is based on modifying encapsulin shells with nucleic acid-binding peptides without disrupting the native protein packaging mechanism. We show that our engineered encapsulins reliably self-assemble in vivo, are capable of efficient size-selective in vivo RNA packaging, can simultaneously load multiple functional RNAs, and can be used for concurrent in vivo packaging of RNA and protein. Our engineered encapsulation platform has potential for codelivery of therapeutic RNAs and proteins to elicit synergistic effects and as a modular tool for other biotechnological applications.
Collapse
Affiliation(s)
- Seokmu Kwon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tobias W. Giessen
- Department of Biological Chemistry and Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Chauhan K, Olivares-Medina CN, Villagrana-Escareño MV, Juárez-Moreno K, Cadena-Nava RD, Rodríguez-Hernández AG, Vazquez-Duhalt R. Targeted Enzymatic VLP-Nanoreactors with β-Glucocerebrosidase Activity as Potential Enzyme Replacement Therapy for Gaucher's Disease. ChemMedChem 2022; 17:e202200384. [PMID: 35918294 DOI: 10.1002/cmdc.202200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 01/07/2023]
Abstract
Gaucher disease is a genetic disorder and the most common lysosomal disease caused by the deficiency of enzyme β-glucocerebrosidase (GCase). Although enzyme replacement therapy (ERT) is successfully applied using mannose-exposed conjugated glucocerebrosidase, the lower stability of the enzyme in blood demands periodic intravenous administration that adds to the high cost of treatment. In this work, the enzyme β-glucocerebrosidase was encapsulated inside virus-like nanoparticles (VLPs) from brome mosaic virus (BMV), and their surface was functionalized with mannose groups for targeting to macrophages. The VLP nanoreactors showed significant GCase catalytic activity. Moreover, the Michaelis-Menten constants for the free GCase enzyme (KM =0.29 mM) and the functionalized nanoreactors (KM =0.32 mM) were similar even after chemical modification. Importantly, the stability of enzymes under physiological conditions (pH 7.4, 37 °C) was enhanced by ≈11-fold after encapsulation; this is beneficial for obtaining a higher blood circulation half-life, which may decrease the cost of therapy by reducing the requirement of multiple intravenous injections. Finally, the mannose receptor targeted enzymatic nanoreactors showed enhanced internalization into macrophage cells. Thus, the catalytic activity and cell targeting suggest the potential of these nanoreactors in ERT of Gaucher's disease.
Collapse
Affiliation(s)
- Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Cindy N Olivares-Medina
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Maria V Villagrana-Escareño
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Karla Juárez-Moreno
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Rubén D Cadena-Nava
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Ana G Rodríguez-Hernández
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
20
|
P Patterson D, Hjorth C, Hernandez Irias A, Hewagama N, Bird J. Delayed In Vivo Encapsulation of Enzymes Alters the Catalytic Activity of Virus-Like Particle Nanoreactors. ACS Synth Biol 2022; 11:2956-2968. [PMID: 36073831 DOI: 10.1021/acssynbio.1c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Encapsulation of enzymes inside protein cage structures, mimicking protein-based organelle structures found in nature, has great potential for the development of new catalytic materials with enhanced properties. In vitro and in vivo methodologies have been developed for the encapsulation of enzymes within protein cage structures of several types, particularly virus-like particles (VLPs), with the ability to retain the activity of the encapsulated enzymes. Here, we examine the in vivo encapsulation of enzymes within the bacteriophage P22 derived VLP and show that some enzymes may require a delay in encapsulation to allow proper folding and maturation before they can be encapsulated inside P22 as fully active enzymes. Using a sequential expression strategy, where enzyme cargoes are first expressed, allowed to fold, and later encapsulated by the expression of the P22 coat protein, altered enzymatic activities are obtained in comparison to enzymes encapsulated in P22 VLPs using a simultaneous coexpression strategy. The strategy and results discussed here highlight important considerations for researchers investigating the encapsulation of enzymes inside confined reaction environments via in vivo routes and provide a potential solution for those that have been unable to produce active enzymes upon encapsulation.
Collapse
Affiliation(s)
- Dustin P Patterson
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| | - Christy Hjorth
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| | - Andrea Hernandez Irias
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| | - Nathasha Hewagama
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jessica Bird
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| |
Collapse
|
21
|
Mejía-Méndez JL, Vazquez-Duhalt R, Hernández LR, Sánchez-Arreola E, Bach H. Virus-like Particles: Fundamentals and Biomedical Applications. Int J Mol Sci 2022; 23:8579. [PMID: 35955711 PMCID: PMC9369363 DOI: 10.3390/ijms23158579] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nanotechnology is a fast-evolving field focused on fabricating nanoscale objects for industrial, cosmetic, and therapeutic applications. Virus-like particles (VLPs) are self-assembled nanoparticles whose intrinsic properties, such as heterogeneity, and highly ordered structural organization are exploited to prepare vaccines; imaging agents; construct nanobioreactors; cancer treatment approaches; or deliver drugs, genes, and enzymes. However, depending upon the intrinsic features of the native virus from which they are produced, the therapeutic performance of VLPs can vary. This review compiles the recent scientific literature about the fundamentals of VLPs with biomedical applications. We consulted different databases to present a general scenario about viruses and how VLPs are produced in eukaryotic and prokaryotic cell lines to entrap therapeutic cargo. Moreover, the structural classification, morphology, and methods to functionalize the surface of VLPs are discussed. Finally, different characterization techniques required to examine the size, charge, aggregation, and composition of VLPs are described.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada 22860, Baja California, Mexico;
| | - Luis R. Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Eugenio Sánchez-Arreola
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
22
|
Esquirol L, McNeale D, Douglas T, Vickers CE, Sainsbury F. Rapid Assembly and Prototyping of Biocatalytic Virus-like Particle Nanoreactors. ACS Synth Biol 2022; 11:2709-2718. [PMID: 35880829 DOI: 10.1021/acssynbio.2c00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein cages are attractive as molecular scaffolds for the fundamental study of enzymes and metabolons and for the creation of biocatalytic nanoreactors for in vitro and in vivo use. Virus-like particles (VLPs) such as those derived from the P22 bacteriophage capsid protein make versatile self-assembling protein cages and can be used to encapsulate a broad range of protein cargos. In vivo encapsulation of enzymes within VLPs requires fusion to the coat protein or a scaffold protein. However, the expression level, stability, and activity of cargo proteins can vary upon fusion. Moreover, it has been shown that molecular crowding of enzymes inside VLPs can affect their catalytic properties. Consequently, testing of numerous parameters is required for production of the most efficient nanoreactor for a given cargo enzyme. Here, we present a set of acceptor vectors that provide a quick and efficient way to build, test, and optimize cargo loading inside P22 VLPs. We prototyped the system using a yellow fluorescent protein and then applied it to mevalonate kinases (MKs), a key enzyme class in the industrially important terpene (isoprenoid) synthesis pathway. Different MKs required considerably different approaches to deliver maximal encapsulation as well as optimal kinetic parameters, demonstrating the value of being able to rapidly access a variety of encapsulation strategies. The vector system described here provides an approach to optimize cargo enzyme behavior in bespoke P22 nanoreactors. This will facilitate industrial applications as well as basic research on nanoreactor-cargo behavior.
Collapse
Affiliation(s)
- Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Claudia E Vickers
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane 4000 Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia
| |
Collapse
|
23
|
Wang Y, Douglas T. Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Materials. Acc Chem Res 2022; 55:1349-1359. [PMID: 35507643 DOI: 10.1021/acs.accounts.2c00056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ConspectusWhen viewed through the lens of materials science, nature provides a vast library of hierarchically organized structures that serve as inspiration and raw materials for new synthetic materials. The structural organization of complex bioarchitectures with advanced functions arises from the association of building blocks and is strongly supported by ubiquitous mechanisms of self-assembly, where interactions among components result in spontaneous assembly into defined structures. Viruses are exemplary, where a capsid structure, often formed from the self-assembly of many individual protein subunits, serves as a vehicle for the transport and protection of the viral genome. Higher-order assemblies of viral particles are also found in nature with unexpected collective behaviors. When the infectious aspect of viruses is removed, the self-assembly of viral particles and their potential for hierarchical assembly become an inspiration for the design and construction of a new class of functional materials at a range of different length scales.Salmonella typhimurium bacteriophage P22 is a well-studied model for understanding viral self-assembly and the construction of virus-like particle (VLP)-based materials. The formation of cage-like P22 VLP structures results from scaffold protein (SP)-directed self-assembly of coat protein (CP) subunits into icosahedral capsids with encapsulation of SP inside the capsid. Employing the CP-SP interaction during self-assembly, the encapsulation of guest protein cargos inside P22 VLPs can be achieved with control over the composition and the number of guest cargos. The morphology of cargo-loaded VLPs can be altered, along with changes in both the physical properties of the capsid and the cargo-capsid interactions, by mimicking aspects of the infectious P22 viral maturation. The structure of the capsid differentiates the inside cavity from the outside environment and serves as a protecting layer for the encapsulated cargos. Pores in the capsid shell regulate molecular exchange between inside and outside, where small molecules can traverse the capsid freely while the diffusion of larger molecules is limited by the pores. The interior cavity of the P22 capsid can be packed with hundreds of copies of cargo proteins (especially enzymes), enforcing intermolecular proximity, making this an ideal model system in which to study enzymatic catalysis in crowded and confined environments. These aspects highlight the development of functional nanomaterials from individual P22 VLPs, through biomimetic design and self-assembly, resulting in fabrication of nanoreactors with controlled catalytic behaviors.Individual P22 VLPs have been used as building blocks for the self-assembly of higher-order structures. This relies on a balance between the intrinsic interparticle repulsion and a tunable interparticle attraction. The ordering of VLPs within three-dimensional assemblies is dependent on the balance between repulsive and attractive interactions: too strong an attraction results in kinetically trapped disordered structures, while decreasing the attraction can lead to more ordered arrays. These higher-order assemblies display collective behavior of high charge density beyond those of the individual VLPs.The development of synthetic nanomaterials based on P22 VLPs demonstrates how the potential for hierarchical self-assembly can be applied to other self-assembling capsid structures across multiple length scales toward future bioinspired functional materials.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
24
|
Sato W, Zajkowski T, Moser F, Adamala KP. Synthetic cells in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1761. [PMID: 34725945 PMCID: PMC8918002 DOI: 10.1002/wnan.1761] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense-and-respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life-like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Wakana Sato
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- USRA at NASA Ames Research Center, Mountain View, CA 94035
- Blue Marble Space Institute of Science, 600 1st Avenue, Seattle WA 98104
| | - Felix Moser
- Synlife, Inc., One Kendall Square Suite B4401, Cambridge, MA 20139
| | - Katarzyna P. Adamala
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| |
Collapse
|
25
|
Uchida M, Manzo E, Echeveria D, Jiménez S, Lovell L. Harnessing physicochemical properties of virus capsids for designing enzyme confined nanocompartments. Curr Opin Virol 2022; 52:250-257. [PMID: 34974380 PMCID: PMC8939255 DOI: 10.1016/j.coviro.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Viruses have drawn significant scientific interest from a wide variety of disciplines beyond virology because of their elegant architectures and delicately balanced activities. A virus-like particle (VLP), a noninfectious protein cage derived from viruses or other cage-forming proteins, has been exploited as a nano-scale platform for bioinspired engineering and synthetic manipulation with a range of applications. Encapsulation of functional proteins, especially enzymes, is an emerging use of VLPs that is promising not only for developing efficient and robust catalytic materials, but also for providing fundamental insights into the effects of enzyme compartmentalization commonly observed in cells. This review highlights recent advances in employing VLPs as a container for confining enzymes. To accomplish larger and more controlled enzyme loading, various different enzyme encapsulation strategies have been developed; many of these strategies are inspired from assembly and genome loading mechanisms of viral capsids. Characterization of VLPs' physicochemical properties, such as porosity, could lead to rational manipulation and a better understanding of the catalytic behavior of the materials.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA.
| | - Elia Manzo
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Dustin Echeveria
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Sophie Jiménez
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Logan Lovell
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| |
Collapse
|
26
|
Paiva TO, Schneider A, Bataille L, Chovin A, Anne A, Michon T, Wege C, Demaille C. Enzymatic activity of individual bioelectrocatalytic viral nanoparticles: dependence of catalysis on the viral scaffold and its length. NANOSCALE 2022; 14:875-889. [PMID: 34985473 DOI: 10.1039/d1nr07445h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enzymatic activity of tobacco mosaic virus (TMV) nanorod particles decorated with an integrated electro-catalytic system, comprising the quinoprotein glucose-dehydrogenase (PQQ-GDH) enzyme and ferrocenylated PEG chains as redox mediators, is probed at the individual virion scale by atomic force microscopy-scanning electrochemical atomic force microscopy (AFM-SECM). A marked dependence of the catalytic activity on the particle length is observed. This finding can be explained by electron propagation along the viral backbone, resulting from electron exchange between ferrocene moieties, coupled with enzymatic catalysis. Thus, the use of a simple 1D diffusion/reaction model allows the determination of the kinetic parameters of the virus-supported enzyme. Comparative analysis of the catalytic behavior of the Fc-PEG/PQQ-GDH system assembled on two differing viral scaffolds, TMV (this work) and bacteriophage-fd (previous work), reveals two distinct kinetic effects of scaffolding: An enhancement of catalysis that does not depend on the virus type and a modulation of substrate inhibition that depends on the virus type. AFM-SECM detection of the enzymatic activity of a few tens of PQQ-GDH molecules, decorating a 40 nm-long viral domain, is also demonstrated, a record in terms of the lowest number of enzyme molecules interrogated by an electrochemical imaging technique.
Collapse
Affiliation(s)
- Telmo O Paiva
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| | - Angela Schneider
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, 70569 Stuttgart, Germany.
| | - Laure Bataille
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d'Ornon, France.
| | - Arnaud Chovin
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| | - Agnès Anne
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| | - Thierry Michon
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d'Ornon, France.
| | - Christina Wege
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, 70569 Stuttgart, Germany.
| | - Christophe Demaille
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| |
Collapse
|
27
|
Cheah LC, Stark T, Adamson LSR, Abidin RS, Lau YH, Sainsbury F, Vickers CE. Artificial Self-assembling Nanocompartment for Organizing Metabolic Pathways in Yeast. ACS Synth Biol 2021; 10:3251-3263. [PMID: 34591448 PMCID: PMC8689640 DOI: 10.1021/acssynbio.1c00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/29/2022]
Abstract
Metabolic pathways are commonly organized by sequestration into discrete cellular compartments. Compartments prevent unfavorable interactions with other pathways and provide local environments conducive to the activity of encapsulated enzymes. Such compartments are also useful synthetic biology tools for examining enzyme/pathway behavior and for metabolic engineering. Here, we expand the intracellular compartmentalization toolbox for budding yeast (Saccharomyces cerevisiae) with Murine polyomavirus virus-like particles (MPyV VLPs). The MPyV system has two components: VP1 which self-assembles into the compartment shell and a short anchor, VP2C, which mediates cargo protein encapsulation via binding to the inner surface of the VP1 shell. Destabilized green fluorescent protein (GFP) fused to VP2C was specifically sorted into VLPs and thereby protected from host-mediated degradation. An engineered VP1 variant displayed improved cargo capture properties and differential subcellular localization compared to wild-type VP1. To demonstrate their ability to function as a metabolic compartment, MPyV VLPs were used to encapsulate myo-inositol oxygenase (MIOX), an unstable and rate-limiting enzyme in d-glucaric acid biosynthesis. Strains with encapsulated MIOX produced ∼20% more d-glucaric acid compared to controls expressing "free" MIOX─despite accumulating dramatically less expressed protein─and also grew to higher cell densities. This is the first demonstration in yeast of an artificial biocatalytic compartment that can participate in a metabolic pathway and establishes the MPyV platform as a promising synthetic biology tool for yeast engineering.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- CSIRO
Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Terra Stark
- Metabolomics
Australia (Queensland Node), The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Lachlan S. R. Adamson
- School
of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Rufika S. Abidin
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yu Heng Lau
- School
of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Frank Sainsbury
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- CSIRO
Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, Queensland 4102, Australia
- Centre
for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Claudia E. Vickers
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- CSIRO
Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, Queensland 4102, Australia
- Centre
for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
- ARC Centre
of Excellence in Synthetic Biology, Queensland
University of Technology, Brisbane
City, Queensland 4000, Australia
| |
Collapse
|
28
|
Chauhan K, Zárate‐Romero A, Sengar P, Medrano C, Vazquez‐Duhalt R. Catalytic Kinetics Considerations and Molecular Tools for the Design of Multienzymatic Cascade Nanoreactors. ChemCatChem 2021. [DOI: 10.1002/cctc.202100604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kanchan Chauhan
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Andrés Zárate‐Romero
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
- Cátedra Consejo Nacional de Ciencia y Tecnología CNyN-UNAM Ensenada Baja California 22860 Mexico
| | - Prakhar Sengar
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Carlos Medrano
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Rafael Vazquez‐Duhalt
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| |
Collapse
|
29
|
Waghwani HK, Douglas T. Cytochrome C with peroxidase-like activity encapsulated inside the small DPS protein nanocage. J Mater Chem B 2021; 9:3168-3179. [PMID: 33885621 DOI: 10.1039/d1tb00234a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes self-assembled protein-based structures as subcellular compartments in prokaryotes to sequester catalysts for specialized biochemical reactions. These protein cage structures provide unique isolated environments for the encapsulated enzymes. Understanding these systems is useful in the bioinspired design of synthetic catalytic organelle-like nanomaterials. The DNA binding protein from starved cells (Dps), isolated from Sulfolobus solfataricus, is a 9 nm dodecameric protein cage making it the smallest known naturally occurring protein cage. It is naturally over-expressed in response to oxidative stress. The small size, natural biodistribution to the kidney, and ability to cross the glomerular filtration barrier in in vivo experiments highlight its potential as a synthetic antioxidant. Cytochrome C (CytC) is a small heme protein with peroxidase-like activity involved in the electron transport chain and also plays a critical role in cellular apoptosis. Here we report the encapsulation of CytC inside the 5 nm interior cavity of Dps and demonstrate the catalytic activity of the resultant Dps nanocage with enhanced antioxidant behavior. The small cavity can accommodate a single CytC and this was achieved through self-assembly of chimeric cages comprising Dps subunits and a Dps subunit to which the CytC was fused. For selective isolation of CytC containing Dps cages, we utilized engineered polyhistidine tag present only on the enzyme fused Dps subunits (6His-Dps-CytC). The catalytic activity of encapsulated CytC was studied using guaiacol and 3,3',5,5'-tetramethylbenzidine (TMB) as two different peroxidase substrates and compared to the free (unencapsulated) CytC activity. The encapsulated CytC showed better pH dependent catalytic activity compared to free enzyme and provides a proof-of-concept model to engineer these small protein cages for their potential as catalytic nanoreactors.
Collapse
Affiliation(s)
- Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
30
|
Tan YQ, Xue B, Yew WS. Genetically Encodable Scaffolds for Optimizing Enzyme Function. Molecules 2021; 26:molecules26051389. [PMID: 33806660 PMCID: PMC7961827 DOI: 10.3390/molecules26051389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Enzyme engineering is an indispensable tool in the field of synthetic biology, where enzymes are challenged to carry out novel or improved functions. Achieving these goals sometimes goes beyond modifying the primary sequence of the enzyme itself. The use of protein or nucleic acid scaffolds to enhance enzyme properties has been reported for applications such as microbial production of chemicals, biosensor development and bioremediation. Key advantages of using these assemblies include optimizing reaction conditions, improving metabolic flux and increasing enzyme stability. This review summarizes recent trends in utilizing genetically encodable scaffolds, developed in line with synthetic biology methodologies, to complement the purposeful deployment of enzymes. Current molecular tools for constructing these synthetic enzyme-scaffold systems are also highlighted.
Collapse
Affiliation(s)
- Yong Quan Tan
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Bo Xue
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-6516-8624
| |
Collapse
|