1
|
Santin A, Collura F, Singh G, Morlino MS, Bizzotto E, Bellan A, Gupte AP, Favaro L, Campanaro S, Treu L, Morosinotto T. Deciphering the genetic landscape of enhanced poly-3-hydroxybutyrate production in Synechocystis sp. B12. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:101. [PMID: 39014484 PMCID: PMC11253406 DOI: 10.1186/s13068-024-02548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium Synechocystis sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation. RESULTS Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing Synechocystis sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased Synechocystis sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, Synechocystis sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances. CONCLUSIONS Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of Synechocystis in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.
Collapse
Grants
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- Ministero dell’Istruzione, dell’Università e della Ricerca
- Università degli Studi di Padova
Collapse
Affiliation(s)
- Anna Santin
- Department of Biology, University of Padova, 35131, Padua, Italy.
| | - Flavio Collura
- Department of Biology, University of Padova, 35131, Padua, Italy
| | - Garima Singh
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Edoardo Bizzotto
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Ameya Pankaj Gupte
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
| | - Lorenzo Favaro
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Laura Treu
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | |
Collapse
|
2
|
Dong T, Zhang L, Hao S, Yang J, Peng Y. Interspecies cooperation-driven photogenerated electron transfer processes and efficient multi-pathway nitrogen removal in the g-C 3N 4-anammox consortia biohybrid system. WATER RESEARCH 2024; 255:121532. [PMID: 38564893 DOI: 10.1016/j.watres.2024.121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Photocatalytic materials-microbial biohybrid systems pave the way for solar-driven wastewater nitrogen removal. In this study, interspecies cooperation in photogenerated electron transfer and efficient nitrogen removal mechanism in the g-C3N4-anammox consortia biohybrid system were first deciphered. The results indicated that the essential extracellular electron carriers (cytochrome c and flavin) for anammox genomes were provided by associated bacteria (BACT3 and CHLO2). This cooperation, regulated by the ArcAB system and electron transfer flavoprotein, made anammox bacteria the primary photogenerated electron sink. Furthermore, an efficient photogenerated electron harness was used to construct a reductive glycine pathway (rGlyP) in anammox bacteria inventively, which coexisted with the Wood-Ljungdahl pathway (WLP), constituting a dual-pathway carbon fixation model, rGlyP-WLP. Carbon fixation products efficiently contributed to the tricarboxylic acid cycle, while inhibiting electron diversion in anabolism. Photogenerated electrons were targeted channeled into nitrogen metabolism-available electron carriers, enhancing anammox and dissimilatory nitrate reduction to ammonium (DNRA) processes. Moreover, ammonia assimilation by the glycine cleavage system in rGlyP established an alternative ammonia removal route. Ultimately, multi-pathway nitrogen removal involving anammox, DNRA, and rGlyP achieved 100 % ammonia removal and 94.25 % total nitrogen removal efficiency. This study has expanded understanding of anammox metabolic diversity, enhancing its potential application in carbon-neutral wastewater treatment.
Collapse
Affiliation(s)
- Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China.
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo, 100-0011, Japan
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China
| |
Collapse
|
3
|
Chen Z, Wu T, Yu S, Li M, Fan X, Huo YX. Self-assembly systems to troubleshoot metabolic engineering challenges. Trends Biotechnol 2024; 42:43-60. [PMID: 37451946 DOI: 10.1016/j.tibtech.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Enzyme self-assembly is a technology in which enzyme units can aggregate into ordered macromolecules, assisted by scaffolds. In metabolic engineering, self-assembly strategies have been explored for aggregating multiple enzymes in the same pathway to improve sequential catalytic efficiency, which in turn enables high-level production. The performance of the scaffolds is critical to the formation of an efficient and stable assembly system. This review comprehensively analyzes these scaffolds by exploring how they assemble, and it illustrates how to apply self-assembly strategies for different modules in metabolic engineering. Functional modifications to scaffolds will further promote efficient strategies for production.
Collapse
Affiliation(s)
- Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Tong Wu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Xuanhe Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China.
| |
Collapse
|
4
|
Song X, Ju Y, Chen L, Zhang W. Construction of Xylose-Utilizing Cyanobacterial Chassis for Bioproduction Under Photomixotrophic Conditions. Methods Mol Biol 2024; 2760:57-75. [PMID: 38468082 DOI: 10.1007/978-1-0716-3658-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Xylose is a major component of lignocellulose and the second most abundant sugar present in nature after glucose; it, therefore, has been considered to be a promising renewable resource for the production of biofuels and chemicals. However, no natural cyanobacterial strain is known capable of utilizing xylose. Here, we take the fast-growing cyanobacteria Synechococcus elongatus UTEX 2973 as an example to develop the synthetic biology-based methodology of constructing a new xylose-utilizing cyanobacterial chassis with increased acetyl-CoA for bioproduction.
Collapse
Affiliation(s)
- Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
- Key Laboratory of Systems Bioengineering and Frontier Science Center of Synthetic Biology, The Ministry of Education of China, Tianjin University, Tianjin, People's Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People's Republic of China
| | - Yue Ju
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
- Key Laboratory of Systems Bioengineering and Frontier Science Center of Synthetic Biology, The Ministry of Education of China, Tianjin University, Tianjin, People's Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
- Key Laboratory of Systems Bioengineering and Frontier Science Center of Synthetic Biology, The Ministry of Education of China, Tianjin University, Tianjin, People's Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China.
- Key Laboratory of Systems Bioengineering and Frontier Science Center of Synthetic Biology, The Ministry of Education of China, Tianjin University, Tianjin, People's Republic of China.
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
5
|
Lu KJ, Chang CW, Wang CH, Chen FYH, Huang IY, Huang PH, Yang CH, Wu HY, Wu WJ, Hsu KC, Ho MC, Tsai MD, Liao JC. An ATP-sensitive phosphoketolase regulates carbon fixation in cyanobacteria. Nat Metab 2023; 5:1111-1126. [PMID: 37349485 PMCID: PMC10365998 DOI: 10.1038/s42255-023-00831-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Regulation of CO2 fixation in cyanobacteria is important both for the organism and global carbon balance. Here we show that phosphoketolase in Synechococcus elongatus PCC7942 (SeXPK) possesses a distinct ATP-sensing mechanism, where a drop in ATP level allows SeXPK to divert precursors of the RuBisCO substrate away from the Calvin-Benson-Bassham cycle. Deleting the SeXPK gene increased CO2 fixation particularly during light-dark transitions. In high-density cultures, the Δxpk strain showed a 60% increase in carbon fixation and unexpectedly resulted in sucrose secretion without any pathway engineering. Using cryo-EM analysis, we discovered that these functions were enabled by a unique allosteric regulatory site involving two subunits jointly binding two ATP, which constantly suppresses the activity of SeXPK until the ATP level drops. This magnesium-independent ATP allosteric site is present in many species across all three domains of life, where it may also play important regulatory functions.
Collapse
Affiliation(s)
- Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chiung-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Irene Y Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pin-Hsuan Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Chen Y, Ge P, Sun T, Feng J, Li G, Zhang J, Zhou J, Jiang J. Coexpression of Tail Fiber and Tail Protein Genes of the Cyanophage PP Using a Synthetic Genomics Approach Enhances the Salt Tolerance of Synechocystis PCC 6803. Microbiol Spectr 2023; 11:e0500922. [PMID: 37125914 PMCID: PMC10269589 DOI: 10.1128/spectrum.05009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Cyanophages are viruses that specifically infect cyanobacteria and are capable of regulating the population densities and seasonal distributions of cyanobacteria. However, few studies have investigated the interactions between cyanophages and heterologous hosts, owing to the inability of cyanophages to infect heterologous cyanobacterial hosts. Here, a truncated artificial cyanophage genome, Syn-P4-8, was designed and assembled that contained 18 genes for viral coat assembly proteins but not genes related to host infection or DNA replication. Syn-P4-8 was transferred into the heterologous host Synechocystis sp. PCC 6803 by conjugation. The growth of strain CS-02 carrying Syn-P4-8 was significantly better than that of the control strain when grown in medium containing 5% NaCl. Only two cyanophage genes, encoding the tail protein (open reading frame 25 [ORF25]) and the tail fiber protein (ORF26), were transcribed in Synechocystis PCC 6803 grown in BG11 medium supplemented with 5% NaCl. However, expression of either ORF25 or ORF26 alone could not recover this phenotype. In addition, transcriptomic analysis revealed the presence of 334 differentially expressed genes in CS-02 compared to the control strain, corresponding to 151 downregulated and 183 upregulated genes that may affect cyanobacterial salt tolerances. In this study, synthetic biology methods were used to strengthen our understanding of the interactions between cyanophage genes and heterologous hosts. IMPORTANCE We synthesized and assembled a truncated cyanophage genome called Syn-P4-8, containing 18 genes for viral coat assembly proteins, and transferred it into a nonhost strain, Synechocystis sp. PCC 6803, to investigate interactions between Syn-P4-8 and Synechocystis PCC 6803. We found that coexpression of tail fiber and tail protein genes enhanced the salt tolerance of Synechocystis PCC 6803.
Collapse
Affiliation(s)
- Yu Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
| | - Pingbo Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
| | - Tao Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Jia Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
| | - Guorui Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
| | - Jiabao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
| | - Jianting Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin, China
| | - Jianlan Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Ma J, Guo T, Ren M, Chen L, Song X, Zhang W. Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic–heterotrophic coculture system revealed by integrated omics analysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:69. [PMID: 35733176 PMCID: PMC9219151 DOI: 10.1186/s13068-022-02163-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/04/2022] [Indexed: 01/21/2023]
Abstract
Background Light-driven consortia, which consist of sucrose-secreting cyanobacteria and heterotrophic species, have attracted considerable attention due to their capability for the sustainable production of valuable chemicals directly from CO2. In a previous study, we achieved a one-step conversion of sucrose secreted from cyanobacteria to fine chemicals by constructing an artificial coculture system consisting of sucrose-secreting Synechococcus elongateus cscB+ and 3-hydroxypropionic acid (3-HP) producing Escherichia coli ABKm. Analyses of the coculture system showed that the cyanobacterial cells grew better than their corresponding axenic cultures. To explore the underlying mechanism and to identify the metabolic nodes with the potential to further improve the coculture system, we conducted integrated transcriptomic, proteomic and metabolomic analyses. Results We first explored how the relieved oxidative stress affected cyanobacterial cell growth in a coculture system by supplementing additional ascorbic acid to CoBG-11 medium. We found that the cell growth of cyanobacteria was clearly improved with an additional 1 mM ascorbic acid under axenic culture; however, its growth was still slower than that in the coculture system, suggesting that the improved growth of Synechococcus cscB+ may be caused by multiple factors, including reduced oxidative stress. To further explore the cellular responses of cyanobacteria in the system, quantitative transcriptomics, proteomics and metabolomics were applied to Synechococcus cscB+. Analyses of differentially regulated genes/proteins and the abundance change of metabolites in the photosystems revealed that the photosynthesis of the cocultured Synechococcus cscB+ was enhanced. The decreased expression of the CO2 transporter suggested that the heterotrophic partner in the system might supplement additional CO2 to support the cell growth of Synechococcus cscB+. In addition, the differentially regulated genes and proteins involved in the nitrogen and phosphate assimilation pathways suggested that the supply of phosphate and nitrogen in the Co-BG11 medium might be insufficient. Conclusion An artificial coculture system capable of converting CO2 to fine chemicals was established and then analysed by integrated omics analysis, which demonstrated that in the coculture system, the relieved oxidative stress and increased CO2 availability improved the cell growth of cyanobacteria. In addition, the results also showed that the supply of phosphate and nitrogen in the Co-BG11 medium might be insufficient, which paves a new path towards the optimization of the coculture system in the future. Taken together, these results from the multiple omics analyses provide strong evidence that beneficial interactions can be achieved from cross-feeding and competition between phototrophs and prokaryotic heterotrophs and new guidelines for engineering more intelligent artificial consortia in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02163-5.
Collapse
|
8
|
Smolinski SL, Lubner CE, Guo Z, Artz JH, Brown KA, Mulder DW, King PW. The influence of electron utilization pathways on photosystem I photochemistry in Synechocystis sp. PCC 6803. RSC Adv 2022; 12:14655-14664. [PMID: 35702219 PMCID: PMC9109680 DOI: 10.1039/d2ra01295b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/06/2022] [Indexed: 01/24/2023] Open
Abstract
The capacity of cyanobacteria to adapt to highly dynamic photon flux and nutrient availability conditions results from controlled management and use of reducing power, and is a major contributing factor to the efficiency of photosynthesis in aquatic environments. The response to changing conditions includes modulating gene expression and protein-protein interactions that serve to adjust the use of electron flux and mechanisms that control photosynthetic electron transport (PET). In this regard, the photochemical activity of photosystem I (PSI) reaction centers can support balancing of cyclic (CEF) and linear electron flow (LEF), and the coupling of redox carriers for use by electron utilization pathways. Therefore, changes in the utilization of reducing power might be expected to result in compensating changes at PSI as a means to support balance of electron flux. To understand this functional relationship, we investigated the properties of PSI and its photochemical activity in cells that lack flavodiiron 1 catalyzed oxygen reduction activity (ORR1). In the absence of ORR1, the oxygen evolution and consumption rates declined together with a shift in the oligomeric form of PSI towards monomers. The effect of these changes on PSI energy and electron transfer properties was examined in isolated trimer and monomer fractions of PSI reaction centers. Collectively, the results demonstrate that PSI photochemistry is modulated through coordination with the depletion of electron demand in the absence of ORR1.
Collapse
Affiliation(s)
- Sharon L. Smolinski
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - Carolyn E. Lubner
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - Zhanjun Guo
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - Jacob H. Artz
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - Katherine A. Brown
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - David W. Mulder
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - Paul W. King
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| |
Collapse
|
9
|
Schulze D, Kohlstedt M, Becker J, Cahoreau E, Peyriga L, Makowka A, Hildebrandt S, Gutekunst K, Portais JC, Wittmann C. GC/MS-based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner-Doudoroff and phosphoketolase pathways. Microb Cell Fact 2022; 21:69. [PMID: 35459213 PMCID: PMC9034593 DOI: 10.1186/s12934-022-01790-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cyanobacteria receive huge interest as green catalysts. While exploiting energy from sunlight, they co-utilize sugar and CO2. This photomixotrophic mode enables fast growth and high cell densities, opening perspectives for sustainable biomanufacturing. The model cyanobacterium Synechocystis sp. PCC 6803 possesses a complex architecture of glycolytic routes for glucose breakdown that are intertwined with the CO2-fixing Calvin-Benson-Bassham (CBB) cycle. To date, the contribution of these pathways to photomixotrophic metabolism has remained unclear. RESULTS Here, we developed a comprehensive approach for 13C metabolic flux analysis of Synechocystis sp. PCC 6803 during steady state photomixotrophic growth. Under these conditions, the Entner-Doudoroff (ED) and phosphoketolase (PK) pathways were found inactive but the microbe used the phosphoglucoisomerase (PGI) (63.1%) and the oxidative pentose phosphate pathway (OPP) shunts (9.3%) to fuel the CBB cycle. Mutants that lacked the ED pathway, the PK pathway, or phosphofructokinases were not affected in growth under metabolic steady-state. An ED pathway-deficient mutant (Δeda) exhibited an enhanced CBB cycle flux and increased glycogen formation, while the OPP shunt was almost inactive (1.3%). Under fluctuating light, ∆eda showed a growth defect, different to wild type and the other deletion strains. CONCLUSIONS The developed approach, based on parallel 13C tracer studies with GC-MS analysis of amino acids, sugars, and sugar derivatives, optionally adding NMR data from amino acids, is valuable to study fluxes in photomixotrophic microbes to detail. In photomixotrophic cells, PGI and OPP form glycolytic shunts that merge at switch points and result in synergistic fueling of the CBB cycle for maximized CO2 fixation. However, redirected fluxes in an ED shunt-deficient mutant and the impossibility to delete this shunt in a GAPDH2 knockout mutant, indicate that either minor fluxes (below the resolution limit of 13C flux analysis) might exist that could provide catalytic amounts of regulatory intermediates or alternatively, that EDA possesses additional so far unknown functions. These ideas require further experiments.
Collapse
Affiliation(s)
- Dennis Schulze
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Lindsay Peyriga
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | | | | | - Kirstin Gutekunst
- Institute of Botany, Christian-Albrecht University, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
10
|
Treece TR, Gonzales JN, Pressley JR, Atsumi S. Synthetic Biology Approaches for Improving Chemical Production in Cyanobacteria. Front Bioeng Biotechnol 2022; 10:869195. [PMID: 35372310 PMCID: PMC8965691 DOI: 10.3389/fbioe.2022.869195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 11/15/2022] Open
Abstract
Biological chemical production has gained traction in recent years as a promising renewable alternative to traditional petrochemical based synthesis. Of particular interest in the field of metabolic engineering are photosynthetic microorganisms capable of sequestering atmospheric carbon dioxide. CO2 levels have continued to rise at alarming rates leading to an increasingly uncertain climate. CO2 can be sequestered by engineered photosynthetic microorganisms and used for chemical production, representing a renewable production method for valuable chemical commodities such as biofuels, plastics, and food additives. The main challenges in using photosynthetic microorganisms for chemical production stem from the seemingly inherent limitations of carbon fixation and photosynthesis resulting in slower growth and lower average product titers compared to heterotrophic organisms. Recently, there has been an increase in research around improving photosynthetic microorganisms as renewable chemical production hosts. This review will discuss the various efforts to overcome the intrinsic inefficiencies of carbon fixation and photosynthesis, including rewiring carbon fixation and photosynthesis, investigating alternative carbon fixation pathways, installing sugar catabolism to supplement carbon fixation, investigating newly discovered fast growing photosynthetic species, and using new synthetic biology tools such as CRISPR to radically alter metabolism.
Collapse
Affiliation(s)
- Tanner R. Treece
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Jake N. Gonzales
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Joseph R. Pressley
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, United States
- *Correspondence: Shota Atsumi,
| |
Collapse
|
11
|
Tan LR, Cao YQ, Li JW, Xia PF, Wang SG. Transcriptomics and metabolomics of engineered Synechococcus elongatus during photomixotrophic growth. Microb Cell Fact 2022; 21:31. [PMID: 35248031 PMCID: PMC8897908 DOI: 10.1186/s12934-022-01760-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Background Converting carbon dioxide (CO2) into value-added chemicals using engineered cyanobacteria is a promising strategy to tackle the global warming and energy shortage issues. However, most cyanobacteria are autotrophic and use CO2 as a sole carbon source, which makes it hard to compete with heterotrophic hosts in either growth or productivity. One strategy to overcome this bottleneck is to introduce sugar utilization pathways to enable photomixotrophic growth with CO2 and sugar (e.g., glucose and xylose). Advances in engineering mixotrophic cyanobacteria have been obtained, while a systematic interrogation of these engineered strains is missing. This work aimed to fill the gap at omics level. Results We first constructed two engineered Synechococcus elongatus YQ2-gal and YQ3-xyl capable of utilizing glucose and xylose, respectively. To investigate the metabolic mechanism, transcriptomic and metabolomic analysis were then performed in the engineered photomixotrophic strains YQ2-gal and YQ3-xyl. Transcriptome and metabolome of wild-type S. elongatus were set as baselines. Increased abundance of metabolites in glycolysis or pentose phosphate pathway indicated that efficient sugar utilization significantly enhanced carbon flux in S. elongatus as expected. However, carbon flux was redirected in strain YQ2-gal as more flowed into fatty acids biosynthesis but less into amino acids. In strain YQ3-xyl, more carbon flux was directed into synthesis of sucrose, glucosamine and acetaldehyde, while less into fatty acids and amino acids. Moreover, photosynthesis and bicarbonate transport could be affected by upregulated genes, while nitrogen transport and assimilation were regulated by less transcript abundance of related genes in strain YQ3-xyl with utilization of xylose. Conclusions Our work identified metabolic mechanism in engineered S. elongatus during photomixotrophic growth, where regulations of fatty acids metabolism, photosynthesis, bicarbonate transport, nitrogen assimilation and transport are dependent on different sugar utilization. Since photomixotrophic cyanobacteria is regarded as a promising cell factory for bioproduction, this comprehensive understanding of metabolic mechanism of engineered S. elongatus during photomixotrophic growth would shed light on the engineering of more efficient and controllable bioproduction systems based on this potential chassis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01760-1.
Collapse
|
12
|
Yao J, Wang J, Ju Y, Dong Z, Song X, Chen L, Zhang W. Engineering a Xylose-Utilizing Synechococcus elongatus UTEX 2973 Chassis for 3-Hydroxypropionic Acid Biosynthesis under Photomixotrophic Conditions. ACS Synth Biol 2022; 11:678-688. [PMID: 35119824 DOI: 10.1021/acssynbio.1c00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photomixotrophic cultivation of cyanobacteria is considered a promising strategy to achieve both high cell density and product accumulation, since cyanobacteria can obtain carbon and energy sources from organic matter in addition to those obtained from CO2 and sunlight. Acetyl coenzyme A (acetyl-CoA) is a key precursor used for the biosynthesis of a wide variety of important value-added chemicals. However, the acetyl-CoA content in cyanobacteria is typically low under photomixotrophic conditions, which limits the productivity of the derived chemicals. In this study, a xylose utilization pathway from Escherichia coli was first engineered into fast-growing Synechococcus elongatus UTEX 2973 (hereafter Synechococcus 2973), enabling the xylose based photomixotrophy. Metabolomics analysis of the engineered strain showed that the utilization of xylose enhanced the carbon flow to the oxidative pentose phosphate (OPP) pathway, along with an increase in the intracellular abundance of metabolites such as fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (FBP), ribose-5-phosphate (R5P), erythrose-4-phosphate (E4P), and glyceraldehyde-3-phosphate (G3P). Then, the native glycolytic pathway was rewired via heterologous phosphoketolase (Pkt) gene expression, combined with phosphofructokinase (Pfk) gene knockout and fructose-1,6-bisphosphatase (Fbp) gene overexpression, to drive more carbon flux from xylose to acetyl-CoA. Finally, a heterologous 3-hydroxypropionic acid (3-HP) biosynthetic pathway was introduced. The results showed that 3-HP biosynthesis was improved by up to approximately 4.1-fold (from 22.5 mg/L to 91.3 mg/L) compared with the engineered strain without a rewired metabolism under photomixotrophic conditions and up to approximately 14-fold compared with the strain under photoautotrophic conditions. Using 3-HP as a "proof-of-molecule", our results demonstrated that this strategy could be applied to improve the intracellular pool of acetyl-CoA for the photomixotrophic production of value-added chemicals that require acetyl-CoA as a precursor in a cyanobacterial chassis.
Collapse
Affiliation(s)
- Jiaqi Yao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Jin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Yue Ju
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|