1
|
Hao W, Yang S, Sheng Y, Ye C, Han L, Zhou Z, Cui W. Efficient expression of recombinant proteins in Bacillus subtilis using a rewired gene circuit of quorum sensing. Biotechnol Prog 2025:e70007. [PMID: 39968680 DOI: 10.1002/btpr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/15/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Bacillus subtilis is a favored chassis for high productivity of several high value-added product in synthetic biology. Efficient production of recombinant proteins is critical but challenging using this chassis because these expression systems in use, such as constitutive and inducible expression systems, demand for coordination of cell growth with production and addition of chemical inducers. These systems compete for intracellular resources with the host, eventually resulting in dysfunction of cell survival. To overcome the problem, in this study, LuxRI quorum sensing (QS) system from Aliivibrio fischeri was functionally reconstituted in B. subtilis for achieving coordinated protein overproduction with cell growth in a cell-density-dependent manner. Furthermore, the output-controlling promoter, PluxI, was engineered through two rounds of evolution, by which we identified four mutants, P22, P47, P56, and P58 that exhibited elevated activity compared to the original PluxI. By incorporating a strong terminator (TB5) downstream of the target gene further enhanced expression level. The expression level of this system surpasses commonly used promoter-based systems in B. subtilis like P43 and PylbP. The LuxRI QS system proves to be a potent platform for recombinant protein overproduction in B. subtilis.
Collapse
Affiliation(s)
- Wenliang Hao
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shihao Yang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuou Sheng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Chengfeng Ye
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Zong H, Zhang L, Cheng Y, Sheng Z, Zhuge B, Lu X. Efficient Autoinducible Expression of Recombinant Proteins via the DegSU Quorum Sensing System in a Robust Bacillus subtilis. ACS Synth Biol 2025; 14:273-284. [PMID: 39757760 DOI: 10.1021/acssynbio.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
DegSU quorum sensing (QS) system enables autoinducible expression of recombinant proteins in Bacillus subtilis . However, insufficient promoter strength and a complex regulatory circuit limit its practical application. Here, the QS-responsive promoter PaprE was modified by core region mutation, upstream truncation, and addition of activating binding sites, yielding PE742 with a 118.3% increase in strength. A mathematical model was developed to accurately quantify the regulatory process from a comprehensive perspective. Guided by this model, the DegSU QS system was further optimized in a robust B. subtilis by knocking out competitive target genes sacB and amyE, operons pgs and srfA, introducing variants degUL113F and degQ36Hy, and increasing regulatory strength by 84.0%. A 52.5% increase in acetoin titer and a 65.9% increase in extracellular carboxypeptidase activity validated the industrial value of this study. Overall, this study addresses the limitations of the DegSU QS system in practical application and demonstrates its potential for high-level recombinant protein production.
Collapse
Affiliation(s)
- Hong Zong
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liya Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yiwen Cheng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiying Sheng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Li Y, Wu Y, Xu X, Liu Y, Li J, Du G, Lv X, Li Y, Liu L. A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria. Nucleic Acids Res 2025; 53:gkae1315. [PMID: 39797735 PMCID: PMC11724366 DOI: 10.1093/nar/gkae1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system. By applying this approach, two reconstructed inducible systems (a 2,4-diacetylphloroglucinol-inducible system PphlF3R1 and an anhydrotetracycline-inducible system Ptet2R2*) were successfully developed and demonstrated to function in three model microorganisms, including Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. To enhance their practicality, both inducible systems were subsequently placed on the plasmid and genome for detailed characterization to determine the optimal expression conditions. Furthermore, the more efficient inducible system Ptet2R2* was employed to express various reporter proteins and gene clusters in these three strains. Moreover, the aTc-inducible system Ptet2R2*, combined with T7 RNA polymerase and dCas12a, was utilized to develop a single-input genetic circuit that enables the simultaneous activation and repression of gene expression. Overall, the cross-species inducible system serves as a stringent, controllable and effective tool for protein expression and metabolic pathway control in different bacteria.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Institute of Future Food Technology, JITRl, No.19 Wenzhuang Road, Yixing 214200, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Yangyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| |
Collapse
|
4
|
Cui W, Lin X, Hu R, Chen H, Xiao P, Tao M, Suo F, Han L, Zhou Z. Creation of an orthogonal and universal auto-inducible gene expression platform by reprogramming a two-component signal circuit for efficient production of industrial enzymes. Int J Biol Macromol 2024; 283:137781. [PMID: 39566785 DOI: 10.1016/j.ijbiomac.2024.137781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Bacterial gene expression systems play a crucial role in producing valuable biological macromolecules, such as recombinant proteins and polysaccharides. However, traditional inducible gene systems have limitations that need costly chemical inducers that can harm the host. To address these challenges, a novel peptide-activated auto-inducible gene expression system was developed in Bacillus subtilis, leveraging Accessory gene regulatory system (Agr), a two-component signal system, from Staphylococcus aureus to trigger gene expression in response to an auto-inducible peptide (AIP). This system mimics a cell density-dependent regulatory mechanism, allowing for the intuitive activation of gene expression as accumulation of AIP. By precisely tuning the level of AIP, the auto-induction time was successfully delayed, however, at the expense of slightly reducing the strength of effector promoter P3, thus decreasing level of output expression. Furthermore, modulation of the stoichiometry of sensor protein AgrC allowed for fine-tuning of the auto-induction time, temporal dynamics, and expression levels. The robustness of the system was improved by strengthening P3 while maintaining the delayed auto-induction time. The versatility and efficacy of the system was demonstrated by the efficient production of various industrial enzymes. This study paves the way for the application of bacterial two-component signal systems to design synthetic gene circuits.
Collapse
Affiliation(s)
- Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China.
| | - Xinyu Lin
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Ruichun Hu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Huating Chen
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Peiyuan Xiao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Mengrui Tao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China.
| |
Collapse
|
5
|
Zhang Z, Li Y, Zheng L, Jin M, Wu Y, Xu R, Luo Y, Wu J, Su W, Luo S, Huang Y, Wang C, Chang Z, Jiang D, Huang J. A novel method for high level production of protein glutaminase by sfGFP tag in Bacillus subtilis. Int J Biol Macromol 2024; 262:130092. [PMID: 38354920 DOI: 10.1016/j.ijbiomac.2024.130092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Protein glutaminase (PG; EC 3.5.1.44) is a novel deamidase that helps to improve functional properties of food proteins. Currently, the highest activated PG enzyme activity was 26 U/mg when recombinantly expressed via the twin-arginine translocation (Tat) pathway in Corynebacterium glutamicum. In this study, superfolder green fluorescent protein (sfGFP) was used to replace traditional signal peptides to facilitate efficient heterologous expression and secretion of Propeptide-Protein glutaminase (PP) in Bacillus subtilis. The fusion protein, sfGFP-PP, was secreted from 12 h of fermentation and reached its highest extracellular expression at 28 h, with a secretion efficiency of about 93 %. Moreover, when fusing sfGFP with PP at the N-terminus, it significantly enhances PG expression up to 26 U/mL by approximately 2.2-fold compared to conventional signal-peptides- guided PP with 11.9 U/mL. Finally, the PG enzyme activity increased from 26 U/mL to 36.9 U/mL after promoter and RBS optimization. This strategy not only provides a new approach to increase PG production as well as extracellular secretion but also offers sfGFP as an effective N-terminal tag for increased secreted production of difficult-to-express proteins.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yuxi Li
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Lihui Zheng
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Mingfei Jin
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Rui Xu
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yin Luo
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Jiajing Wu
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Wei Su
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Shijing Luo
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yuchen Huang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Cong Wang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Zhongyi Chang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Deming Jiang
- School of Life Science, East China Normal University, Shanghai 200241, PR China.
| | - Jing Huang
- School of Life Science, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
6
|
Wang J, Ping Y, Liu W, He X, Du C. Improvement of lipopeptide production in Bacillus subtilis HNDF2-3 by overexpression of the sfp and comA genes. Prep Biochem Biotechnol 2024; 54:184-192. [PMID: 37158496 DOI: 10.1080/10826068.2023.2209890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bacillus subtilis HNDF2-3 can produce a variety of lipopeptide antibiotics with lower production. To improve its lipopeptide production, three genetically engineered strains were constructed. The results of real-time PCR showed that the highest transcriptional levels of the sfp gene in F2-3sfp, F2-3comA and F2-3sfp-comA were 29.01, 6.65 and 17.50 times of the original strain, respectively, while the highest transcriptional levels of the comA gene in F2-3comA and F2-3sfp-comA were 10.44 and 4.13 times of the original strain, respectively. The results of ELISA showed that the malonyl-CoA transacylase activity of F2-3comA was the highest, reaching 18.53 IU/L at 24 h, the data was 32.74% higher than that of the original strain. The highest total lipopeptide production of F2-3sfp, F2-3comA and F2-3sfp-comA induced by IPTG at optimal concentration were 33.51, 46.05 and 38.96% higher than that of the original strain, respectively. The results of HPLC showed that iturin A production of F2-3sfp-comA was the highest, which was 63.16% higher than that of the original strain. This study laid the foundation for further construction of genetically engineered strains with high lipopeptide production.
Collapse
Affiliation(s)
- Jiawen Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xin He
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| |
Collapse
|
7
|
Zhang G, An Y, Zabed HM, Yun J, Parvez A, Zhao M, Zhang C, Ravikumar Y, Li J, Qi X. Rewiring Bacillus subtilis and bioprocess optimization for oxidoreductive reaction-mediated biosynthesis of D-tagatose. BIORESOURCE TECHNOLOGY 2023; 389:129843. [PMID: 37820967 DOI: 10.1016/j.biortech.2023.129843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
D-tagatose holds significant importance as a functional monosaccharide with diverse applications in food, medicine, and other fields. This study aimed to explore the oxidoreductive pathway for D-tagatose production, surpassing the contemporary isomerization-mediated biosynthesis approach in order to enhance the thermodynamic equilibrium of the reactions. Initially, a novel galactitol dehydrogenase was discovered through biochemical and bioinformatics analyses. By co-expressing the galactitol dehydrogenase and xylose reductase, the oxidoreductive pathway for D-tagatose synthesis was successfully established in Bacillus subtilis. Subsequently, pathway fine-tuning was achieved via promoter regulation and dehydrogenase-mediated cofactor regeneration, resulting in 6.75-fold higher D-tagatose compared to that produced by the strain containing the unmodified promoter. Finally, optimization of fermentation conditions and medium composition produced 39.57 g/L D-tagatose in a fed-batch experiment, with a productivity of 0.33 g/L/h and a yield of 0.55 mol/mol D-galactose. These findings highlight the potential of the constructed redox pathway as an effective approach for D-tagatose production.
Collapse
Affiliation(s)
- Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110161, Liaoning, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Amreesh Parvez
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, RP, South Africa
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jia Li
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
8
|
He H, Yang M, Li S, Zhang G, Ding Z, Zhang L, Shi G, Li Y. Mechanisms and biotechnological applications of transcription factors. Synth Syst Biotechnol 2023; 8:565-577. [PMID: 37691767 PMCID: PMC10482752 DOI: 10.1016/j.synbio.2023.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks. These crucial bioactive functions rely on their ability to respond to effectors and concurrently interact with binding sites. Recent advancements have brought innovative insights into the understanding of transcription factors. In this review, we comprehensively summarize the mechanisms by which transcription factors carry out their functions, along with calculation and experimental-based methods employed in their identification. Additionally, we highlight recent achievements in the application of transcription factors in various biotechnological fields, including cell engineering, human health, and biomanufacturing. Finally, the current limitations of research and provide prospects for future investigations are discussed. This review will provide enlightening theoretical guidance for transcription factors engineering.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Mingfei Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Siyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Gaoyang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| |
Collapse
|
9
|
Yuan P, Xu M, Mao C, Zheng H, Sun D. Dynamically Regulating Glucose Uptake to Reduce Overflow Metabolism with a Quorum-Sensing Circuit for the Efficient Synthesis of d-Pantothenic Acid in Bacillus subtilis. ACS Synth Biol 2023; 12:2983-2995. [PMID: 37664894 DOI: 10.1021/acssynbio.3c00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In response to a high concentration of glucose, Bacillus subtilis, a microbial chassis for producing many industrial metabolites, rapidly takes up glucose using the phosphotransferase system (PTS), leading to overflow metabolism, a common phenomenon observed in many bacteria. Although overflow metabolism affects cell growth and reduces the production of many metabolites, effective strategies that reduce overflow metabolism while maintaining normal cell growth remain to be developed. Here, we used a quorum sensing (QS)-mediated circuit to tune the glucose uptake rate and thereby relieve overflow metabolism in an engineered B. subtilis for producing d-pantothenic acid (DPA). A low-efficiency non-PTS system was used for glucose uptake at the early growth stages to avoid a rapid glycolytic flux, while an efficient PTS system, which was activated by a QS circuit, was automatically activated at the late growth stages after surpassing a threshold cell density. This strategy was successfully applied as a modular metabolic engineering process for the high production of DPA. By enhancing the translation levels of key enzymes (3-methyl-2-oxobutanoate hydroxymethytransferase, pantothenate synthetase, aspartate 1-decarboxylase proenzyme, 2-dehydropantoate 2-reductase, dihydroxy-acid dehydratase, and acetolactate synthase) with engineered 5'-untranslated regions (UTRs) of mRNAs, the metabolic flux was promoted in the direction of DPA production, elevating the yield of DPA to 5.11 g/L in shake flasks. Finally, the engineered B. subtilis produced 21.52 g/L of DPA in fed-batch fermentations. Our work not only revealed a new strategy for reducing overflow metabolism by adjusting the glucose uptake rate in combination with promoting the translation of key metabolic enzymes through engineering the 5'-UTR of mRNAs but also showed its power in promoting the bioproduction of DPA in B. subtilis, exhibiting promising application prospects.
Collapse
Affiliation(s)
- Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Mengtao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Chengyao Mao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Han Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
10
|
Tavares LF, Ribeiro NV, Zocca VFB, Corrêa GG, Amorim LAS, Lins MRCR, Pedrolli DB. Preventing Production Escape Using an Engineered Glucose-Inducible Genetic Circuit. ACS Synth Biol 2023; 12:3124-3130. [PMID: 37772403 DOI: 10.1021/acssynbio.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A proper balance of metabolic pathways is crucial for engineering microbial strains that can efficiently produce biochemicals on an industrial scale while maintaining cell fitness. High production loads can negatively impact cell fitness and hinder industrial-scale production. To address this, fine-tuning gene expression using engineered promoters and genetic circuits can promote control over multiple targets in pathways and reduce the burden. We took advantage of the robust carbon catabolite repression system of Bacillus subtilis to engineer a glucose-inducible genetic circuit that supports growth and production. The circuit is resilient, enabling a quick switch in the production status when exposed to the correct carbon source. By performing serial cultivations for 61 generations under repressive conditions, we preserved the production capacity of the cells, which could be fully accessed by switching to glucose in the next cultivation step. Switching to glucose after 61 generations resulted in 34-fold activation and generated 70% higher production in comparison to standard cultivation in glucose. Conversely, serial cultivation under permanent induction resulted in 62% production loss after 67 generations alongside an increase in the culture growth rate. As a pathway-independent circuit activated by the preferred carbon source, our engineered glucose-inducible genetic circuit is broadly useful and imposes no additional cost to traditional production processes.
Collapse
Affiliation(s)
- Leonardo F Tavares
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Nathan V Ribeiro
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Vitória F B Zocca
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Graciely G Corrêa
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Laura A S Amorim
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Milca R C R Lins
- Federal University of ABC (UFABC), Center for Natural and Human Sciences, Campus Santo André, 09210-580, Brazil
| | - Danielle B Pedrolli
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| |
Collapse
|
11
|
Zhou J, Wu G, Zheng J, Abdalmegeed D, Wang M, Sun S, Sedjoah RCAA, Shao Y, Sun S, Xin Z. Research on the Regulation of Plipastatin Production by the Quorum-Sensing ComQXPA System of Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37427858 DOI: 10.1021/acs.jafc.3c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Plipastatin is a cyclic lipopeptide synthesized by non-ribosomal peptide synthetases (NRPS), which has a diverse range of applications in postharvest preservation of fruits and vegetables, biological control, and feed processing. Whereas the yield of plipastatin in wild Bacillus sp. is low, its chemical structure is complex and challenging to synthesize, significantly limiting its production and application. ComQXPA-PsrfA, a quorum-sensing (QS) circuit from Bacillus amyloliquefaciens, was constructed in this study. Two QS promoters MuPsrfA and MtPsrfA, with 35 and 100% increased activity, respectively, were obtained by mutating the original promoter PsrfA. Thus, the natural promoter of plipastatin was replaced by a QS promoter to achieve the dynamic regulation of plipastatin, which increased the yield of plipastatin by 3.5 times. Integrating ComQXPA into plipastatin mono-producing M-24:MtPsrfA increased the yield of plipastatin to 3850 mg/L, representing the highest yield reported to date. Four new plipastatins were identified via UPLC-ESI-MS/MS and GC-MS analysis of fermentation products of mono-producing engineered strains. Among them, three plipastatins contained two double bonds in the fatty acid side chain, representing the first example of a new type of plipastatin. Our results indicate that the QS system ComQXPA-PsrfA of Bacillus can dynamically regulate plipastatin production, and the pipeline could be extended to the other strains to regulate target products dynamically.
Collapse
Affiliation(s)
- Jingjie Zhou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Guojun Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zheng
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Dyaaaldin Abdalmegeed
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Mengxi Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Rita-Cindy Aye-Ayire Sedjoah
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Sen Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
12
|
Xu K, Tong Y, Li Y, Tao J, Rao S, Li J, Zhou J, Liu S. Autoinduction AND Gate Inhibits Cell Lysis to Enhance Protein Production in Bacillus subtilis Controlled by Population Density and Cell Physiological State. ACS Synth Biol 2023; 12:842-851. [PMID: 36881491 DOI: 10.1021/acssynbio.2c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The extracellular protease-deficient strain Bacillus subtilis WB600 is commonly used as a chassis cell for the production of industrial proteins. However, B. subtilis WB600 exhibits an increased susceptibility to cell lysis and a reduction in biomass. Inhibition of cell lysis by knocking out lytic genes will impair physiological function. Here, we dynamically inhibited cell lysis in B. subtilis WB600 to balance the impairment of physiological function with the accumulation of biomass. First, the inducible protein degradation systems (IPDSs) were constructed and used to investigate the effects of inhibiting cell lysis on biomass, cell morphology, and protein production at different times (using pullulanase as a test). The highest pullulanase activity was obtained at 20 h of inhibiting cell lysis, 184.8 U/mL, which was 44% higher than the activity of B. subtilis WB600. Then, to avoid addition of inducers, we introduced orthogonal quorum sensing and constructed autoinduction protein degradation systems (AIPDSs). The optimized AIPDS showed similar pullulanase activity to the optimal IPDS (20 h), 181.3 U/mL. Next, we constructed dual-signal input autoinduction protein degradation systems (DSI-AIPDSs) via AND gate to further address two deficiencies of AIPDS, one-time activation and damage to new cells. These DSI-AIPDSs were controlled by quorum sensing and stationary phase promoters that respond to population density and single-cell physiological state, respectively. Finally, the OD600 and pullulanase activity of the strain with optimal DSI-AIPDS were 51% and 115% higher than those of B. subtilis WB600 in pullulanase production, respectively. We provided a B. subtilis chassis strain with considerable potential for biomass accumulation and enhanced protein production.
Collapse
Affiliation(s)
- Kuidong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd., Changchun 130033, China
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd., Changchun 130033, China
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd., Changchun 130033, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Xu K, Tong Y, Li Y, Tao J, Rao S, Li J, Zhou J, Liu S. Autoinduction Expression Modules for Regulating Gene Expression in Bacillus subtilis. ACS Synth Biol 2022; 11:4220-4225. [PMID: 36468943 DOI: 10.1021/acssynbio.2c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although quorum sensing (QS) promoters that can autonomously activate gene expression have been identified and engineered in Bacillus subtilis, researchers focus on quantifying individual promoters while ignoring the interaction between other genetic regulatory elements. Here, we constructed the autoinduction expression modules consisting of promoters responsive to QS ComQXPA, ribosome binding sites (RBSs), and terminators. Using superfolder green fluorescent protein (sfGFP) as a reporter gene, three individual element libraries were generated from 945 promoters, 12,000 RBSs, and 425 terminators by random mutation, de novo design, and database mining strategies, respectively. Then, the efficiency of three libraries in regulating gene expression was further enhanced by engineering the core region of each optimal element. After hybridizing the element libraries, the generated expression modules exhibited a 627-fold range in regulating gene expression without significantly affecting the autoinduction initiation. Here, the hybrid modules with broad expression strength may benefit the application of QS-based autoinduction systems in B. subtilis.
Collapse
Affiliation(s)
- Kuidong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022; 59:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The cryptic secondary metabolite biosynthetic gene clusters (BGCs) far outnumber currently known secondary metabolites. Heterologous production of secondary metabolite BGCs in suitable chassis facilitates yield improvement and discovery of new-to-nature compounds. The two juxtaposed conventional model microorganisms, Escherichia coli, Saccharomyces cerevisiae, have been harnessed as microbial chassis to produce a bounty of secondary metabolites with the help of certain host engineering. In last decade, engineering non-model microbes to efficiently biosynthesize secondary metabolites has received increasing attention due to their peculiar advantages in metabolic networks and/or biosynthesis. The state-of-the-art synthetic biology tools lead the way in operating genetic manipulation in non-model microorganisms for phenotypic optimization or yields improvement of desired secondary metabolites. In this review, we firstly discuss the pros and cons of several model and non-model microbial chassis, as well as the importance of developing broader non-model microorganisms as alternative programmable heterologous hosts to satisfy the desperate needs of biosynthesis study and industrial production. Then we highlight the lately advances in the synthetic biology tools and engineering strategies for optimization of non-model microbial chassis, in particular, the successful applications for efficient heterologous production of multifarious complex secondary metabolites, e.g., polyketides, nonribosomal peptides, as well as ribosomally synthesized and post-translationally modified peptides. Lastly, emphasis is on the perspectives of chassis cells development to access the ideal cell factory in the artificial intelligence-driven genome era.
Collapse
Affiliation(s)
- Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China; Present address: Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|