1
|
Li X, Liu X, Yang M, Wang B, Tan Y, Liao XP, Shi B. Enhanced undecylprodigiosin production using collagen hydrolysate: a cost-effective and high-efficiency synthesis strategy. J Mater Chem B 2025. [PMID: 39749654 DOI: 10.1039/d4tb02171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Undecylprodigiosin (UDP), a desirable pyrrole-based biomaterial, holds significant promise in pharmaceutical and medical applications due to its diverse biological activities. However, its application is usually hampered by low synthesis efficiency and high production costs. Here, we developed a high-efficiency and cost-effective strategy for UDP synthesis using collagen hydrolysate (COH) as a readily available and abundant precursor source in conjunction with Streptomyces sp. SLL-523. COH obviously accelerated the proliferation of Streptomyces sp. SLL-523. Replacing muscle hydrolysate with COH resulted in a 7-fold increase in UDP yield and a 10-fold reduction in fermentation time, indicating that COH significantly enhanced the synthesis efficiency of UDP. Besides, COH remarkably increased the intracellular levels of UDP precursor amino acids (AAs). Whole-genome analysis of Streptomyces sp. SLL-523 revealed the gene clusters responsible for UDP synthesis and COH utilization. COH markedly stimulated the expression of genes involved in the metabolism pathways of energy, transporters, peptides, and AAs, ultimately promoting the UDP synthesis. Significantly, COH efficiently triggered and boosted the expression of key genes in the UDP biosynthesis pathway, including redQ, redM, redN, and redL, leading to highly efficient UDP synthesis. Thus, this innovative approach provides a novel framework for the high-efficiency synthesis of natural pyrrole biomedical materials based on renewable nitrogen-contained biomass.
Collapse
Affiliation(s)
- Xia Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xian Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ming Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Bo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xue-Pin Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Cao L, Liu Y, Sun L, Zhu Z, Yang D, Xia Z, Jin D, Dai Z, Rang J, Xia L. Enhanced triacylglycerol metabolism contributes to the efficient biosynthesis of spinosad in Saccharopolyspora spinosa. Synth Syst Biotechnol 2024; 9:809-819. [PMID: 39072147 PMCID: PMC11277812 DOI: 10.1016/j.synbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024] Open
Abstract
Triacylglycerol (TAG) is crucial for antibiotic biosynthesis derived from Streptomyces, as it serves as an important carbon source. In this study, the supplementation of exogenous TAG led to a 3.92-fold augmentation in spinosad production. The impact of exogenous TAG on the metabolic network of Saccharopolyspora spinosa were deeply analyzed through comparative proteomics. To optimize TAG metabolism and enhance spinosad biosynthesis, the lipase-encoding genes lip886 and lip385 were overexpressed or co-expressed. The results shown that the yield of spinosad was increased by 0.8-fold and 0.4-fold when lip886 and lip385 genes were overexpressed, respectively. Synergistic co-expression of these genes resulted in a 2.29-fold increase in the yield of spinosad. Remarkably, the combined overexpression of lip886 and lip385 in the presence of exogenous TAG elevated spinosad yields by 5.5-fold, led to a drastic increase in spinosad production from 0.036 g/L to 0.234 g/L. This study underscores the modification of intracellular concentrations of free fatty acids (FFAs), short-chain acyl-CoAs, ATP, and NADPH as mechanisms by which exogenous TAG modulates spinosad biosynthesis. Overall, the findings validate the enhancement of TAG catabolism as a beneficial strategy for optimizing spinosad production and provide foundational insights for engineering secondary metabolite biosynthesis pathways in another Streptomyces.
Collapse
Affiliation(s)
- Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yangchun Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Lin Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Danlu Yang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Duo Jin
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zirui Dai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
3
|
He F, Liu X, Tang M, Wang H, Wu Y, Liang S. CRISETR: an efficient technology for multiplexed refactoring of biosynthetic gene clusters. Nucleic Acids Res 2024; 52:11378-11393. [PMID: 39271125 PMCID: PMC11472037 DOI: 10.1093/nar/gkae781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The efficient refactoring of natural product biosynthetic gene clusters (BGCs) for activating silent BGCs is a central challenge for the discovery of new bioactive natural products. Herein, we have developed a simple and robust CRISETR (CRISPR/Cas9 and RecET-mediated Refactoring) technique, combining clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 and RecET, for the multiplexed refactoring of natural product BGCs. By this approach, natural product BGCs can be refactored through the synergistic interaction between RecET-mediated efficient homologous recombination and the CRISPR/Cas9 system. We first performed a proof-of-concept validation of the ability of CRISETR, and CRISETR can achieve simultaneous replacement of four promoter sites and marker-free replacement of single promoter site in natural product BGCs. Subsequently, we applied CRISETR to the promoter engineering of the 74-kb daptomycin BGC containing a large number of direct repeat sequences for enhancing the heterologous production of daptomycin. We used combinatorial design to build multiple refactored daptomycin BGCs with diverse combinations of promoters different in transcriptional strengths, and the yield of daptomycin was improved 20.4-fold in heterologous host Streptomyces coelicolor A3(2). In general, CRISETR exhibits enhanced tolerance to repetitive sequences within gene clusters, enabling efficient refactoring of diverse and complex BGCs, which would greatly accelerate discovery of novel bioactive metabolites present in microorganism.
Collapse
Affiliation(s)
- Fuqiang He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xinpeng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Haiyi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Yun Wu
- Department of Cell Biology, College of Life Science, Sichuan Normal University, Chengdu, Sichuan, 610101, P.R. China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
4
|
Zhao M, Zhang XS, Xiong LB, Liu K, Li XF, Liu Y, Wang FQ. Establishment of an Efficient Expression and Regulation System in Streptomyces for Economical and High-Level Production of the Natural Blue Pigment Indigoidine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:483-492. [PMID: 38146267 DOI: 10.1021/acs.jafc.3c05696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Indigoidine, as a kind of natural blue pigment, is widely used in textiles, food, and pharmaceuticals and is mainly synthesized from l-glutamine via a condensation reaction by indigoidine synthetases, most of which originates from Streptomyces species. However, due to the complex metabolic switches of Streptomyces, most of the researchers choose to overexpress indigoidine synthetases in the heterologous host to achieve high-level production of indigoidine. Considering the advantages of low-cost culture medium and simple culture conditions during the large-scale culture of Streptomyces, here, an updated regulation system derived from the Streptomyces self-sustaining system, constructed in our previous study, was established for the highly efficient production of indigoidine in Streptomyces lividans TK24. The updated system was constructed via promoter mining and σhrdB expression optimization, and this system was applied to precisely and continuously regulate the expression of indigoidine synthetase IndC derived from Streptomyces albus J1704. Finally, the engineered strain was cultured with cheap industrial glycerol as a supplementary carbon source, and 14.3 and 46.27 g/L indigoidine could be achieved in a flask and a 4 L fermentor, respectively, reaching the highest level of microbial synthesis of indigoidine. This study will lay a foundation for the industrial application of Streptomyces cell factories to produce indigoidine.
Collapse
Affiliation(s)
- Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiu-Shan Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Liang-Bin Xiong
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Kun Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiang-Fei Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yan Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Cardarelli M, El Chami A, Rouphael Y, Ciriello M, Bonini P, Erice G, Cirino V, Basile B, Corrado G, Choi S, Kim HJ, Colla G. Plant biostimulants as natural alternatives to synthetic auxins in strawberry production: physiological and metabolic insights. FRONTIERS IN PLANT SCIENCE 2024; 14:1337926. [PMID: 38264017 PMCID: PMC10803581 DOI: 10.3389/fpls.2023.1337926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
The demand for high-quality strawberries continues to grow, emphasizing the need for innovative agricultural practices to enhance both yield and fruit quality. In this context, the utilization of natural products, such as biostimulants, has emerged as a promising avenue for improving strawberry production while aligning with sustainable and eco-friendly agricultural approaches. This study explores the influence of a bacterial filtrate (BF), a vegetal-derived protein hydrolysate (PH), and a standard synthetic auxin (SA) on strawberry, investigating their effects on yield, fruit quality, mineral composition and metabolomics of leaves and fruits. Agronomic trial revealed that SA and BF significantly enhanced early fruit yield due to their positive influence on flowering and fruit set, while PH treatment favored a gradual and prolonged fruit set, associated with an increased shoot biomass and sustained production. Fruit quality analysis showed that PH-treated fruits exhibited an increase of firmness and soluble solids content, whereas SA-treated fruits displayed lower firmness and soluble solids content. The ionomic analysis of leaves and fruits indicated that all treatments provided sufficient nutrients, with heavy metals within regulatory limits. Metabolomics indicated that PH stimulated primary metabolites, while SA and BF directly affected flavonoid and anthocyanin biosynthesis, and PH increased fruit quality through enhanced production of beneficial metabolites. This research offers valuable insights for optimizing strawberry production and fruit quality by harnessing the potential of natural biostimulants as viable alternative to synthetic compounds.
Collapse
Affiliation(s)
| | - Antonio El Chami
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Gorka Erice
- Atens - Agrotecnologías Naturales, La Riera de Gaià, Spain
| | | | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Seunghyun Choi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX, United States
| | - Hye-Ji Kim
- Agri-tech and Food Innovation Department, Urban Food Solutions Division, Singapore Food Agency, Singapore, Singapore
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
6
|
Wang R, Nguyen J, Hecht J, Schwartz N, Brown KV, Ponomareva LV, Niemczura M, van Dissel D, van Wezel GP, Thorson JS, Metsä-Ketelä M, Shaaban KA, Nybo SE. A BioBricks Metabolic Engineering Platform for the Biosynthesis of Anthracyclinones in Streptomyces coelicolor. ACS Synth Biol 2022; 11:4193-4209. [PMID: 36378506 PMCID: PMC9764417 DOI: 10.1021/acssynbio.2c00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Actinomycetes produce a variety of clinically indispensable molecules, such as antineoplastic anthracyclines. However, the actinomycetes are hindered in their further development as genetically engineered hosts for the synthesis of new anthracycline analogues due to their slow growth kinetics associated with their mycelial life cycle and the lack of a comprehensive genetic toolbox for combinatorial biosynthesis. In this report, we tackled both issues via the development of the BIOPOLYMER (BIOBricks POLYketide Metabolic EngineeRing) toolbox: a comprehensive synthetic biology toolbox consisting of engineered strains, promoters, vectors, and biosynthetic genes for the synthesis of anthracyclinones. An improved derivative of the production host Streptomyces coelicolor M1152 was created by deleting the matAB gene cluster that specifies extracellular poly-β-1,6-N-acetylglucosamine (PNAG). This resulted in a loss of mycelial aggregation, with improved biomass accumulation and anthracyclinone production. We then leveraged BIOPOLYMER to engineer four distinct anthracyclinone pathways, identifying optimal combinations of promoters, genes, and vectors to produce aklavinone, 9-epi-aklavinone, auramycinone, and nogalamycinone at titers between 15-20 mg/L. Optimization of nogalamycinone production strains resulted in titers of 103 mg/L. We structurally characterized six anthracyclinone products from fermentations, including new compounds 9,10-seco-7-deoxy-nogalamycinone and 4-O-β-d-glucosyl-nogalamycinone. Lastly, we tested the antiproliferative activity of the anthracyclinones in a mammalian cancer cell viability assay, in which nogalamycinone, auramycinone, and aklavinone exhibited moderate cytotoxicity against several cancer cell lines. We envision that BIOPOLYMER will serve as a foundational platform technology for the synthesis of designer anthracycline analogues.
Collapse
Affiliation(s)
- Rongbin Wang
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Jennifer Nguyen
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Jacob Hecht
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Nora Schwartz
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Katelyn V. Brown
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Larissa V. Ponomareva
- §Center for Pharmaceutical
Research and Innovation, ∥Department of Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Magdalena Niemczura
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Dino van Dissel
- Institute
of Biology, Leiden University, Sylviusweg 72, 2333
BE Leiden, The Netherlands,Department
of Biotechnology and Nanomedicine, SINTEF
AS, P.O. Box 4760 Torgarden, NO-7465 Trondheim, Norway
| | - Gilles P. van Wezel
- Institute
of Biology, Leiden University, Sylviusweg 72, 2333
BE Leiden, The Netherlands
| | - Jon S. Thorson
- §Center for Pharmaceutical
Research and Innovation, ∥Department of Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Mikko Metsä-Ketelä
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland,
| | - Khaled A. Shaaban
- §Center for Pharmaceutical
Research and Innovation, ∥Department of Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States,
| | - S. Eric Nybo
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States,
| |
Collapse
|