1
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024; 124:12145-12175. [PMID: 39418482 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
3
|
Lino BR, Van Deventer JA. Genome-Wide Screen for Enhanced Noncanonical Amino Acid Incorporation in Yeast. Methods Mol Biol 2024; 2760:219-251. [PMID: 38468092 DOI: 10.1007/978-1-0716-3658-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Expanding the genetic code beyond the 20 canonical amino acids enables access to a wide range of chemical functionality that is inaccessible within conventionally biosynthesized proteins. The vast majority of efforts to expand the genetic code have focused on the orthogonal translation systems required to achieve the genetically encoded addition of noncanonical amino acids (ncAAs) into proteins. There remain tremendous opportunities for identifying genetic and genomic factors that enhance ncAA incorporation. Here we describe genome-wide screening strategies to identify factors that enable more efficient addition of ncAAs to biosynthesized proteins. These unbiased screens can reveal previously unknown genes or mutations that can enhance ncAA incorporation and deepen our understanding of the translation apparatus.
Collapse
Affiliation(s)
- Briana R Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, MA, USA
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA, USA.
- Biomedical Engineering Department, Tufts University, Medford, MA, USA.
| |
Collapse
|
4
|
Ornelas MY, Cournoyer JE, Bram S, Mehta AP. Evolution and synthetic biology. Curr Opin Microbiol 2023; 76:102394. [PMID: 37801925 PMCID: PMC10842511 DOI: 10.1016/j.mib.2023.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Evolutionary observations have often served as an inspiration for biological design. Decoding of the central dogma of life at a molecular level and understanding of the cellular biochemistry have been elegantly used to engineer various synthetic biology applications, including building genetic circuits in vitro and in cells, building synthetic translational systems, and metabolic engineering in cells to biosynthesize and even bioproduce complex high-value molecules. Here, we review three broad areas of synthetic biology that are inspired by evolutionary observations: (i) combinatorial approaches toward cell-based biomolecular evolution, (ii) engineering interdependencies to establish microbial consortia, and (iii) synthetic immunology. In each of the areas, we will highlight the evolutionary premise that was central toward designing these platforms. These are only a subset of the examples where evolution and natural phenomena directly or indirectly serve as a powerful source of inspiration in shaping synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Marya Y Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Jason E Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Stanley Bram
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana, Champaign, United States; Cancer Center at Illinois, University of Illinois at Urbana, Champaign, United States.
| |
Collapse
|
5
|
Lopez-Morales J, Vanella R, Appelt EA, Whillock S, Paulk AM, Shusta EV, Hackel BJ, Liu CC, Nash MA. Protein Engineering and High-Throughput Screening by Yeast Surface Display: Survey of Current Methods. SMALL SCIENCE 2023; 3:2300095. [PMID: 39071103 PMCID: PMC11271970 DOI: 10.1002/smsc.202300095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Yeast surface display (YSD) is a powerful tool in biotechnology that links genotype to phenotype. In this review, the latest advancements in protein engineering and high-throughput screening based on YSD are covered. The focus is on innovative methods for overcoming challenges in YSD in the context of biotherapeutic drug discovery and diagnostics. Topics ranging from titrating avidity in YSD using transcriptional control to the development of serological diagnostic assays relying on serum biopanning and mitigation of unspecific binding are covered. Screening techniques against nontraditional cellular antigens, such as cell lysates, membrane proteins, and extracellular matrices are summarized and techniques are further delved into for expansion of the chemical repertoire, considering protein-small molecule hybrids and noncanonical amino acid incorporation. Additionally, in vivo gene diversification and continuous evolution in yeast is discussed. Collectively, these techniques enhance the diversity and functionality of engineered proteins isolated via YSD, broadening the scope of applications that can be addressed. The review concludes with future perspectives and potential impact of these advancements on protein engineering. The goal is to provide a focused summary of recent progress in the field.
Collapse
Affiliation(s)
- Joanan Lopez-Morales
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland; Swiss Nanoscience Institute, University of Basel, Basel 4056, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Rosario Vanella
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Elizabeth A Appelt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah Whillock
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra M Paulk
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA 92697-2280, USA; Center for Synthetic Biology, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin J Hackel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chang C Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Center for Synthetic Biology, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Michael A Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland; Swiss Nanoscience Institute, University of Basel, Basel 4056, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| |
Collapse
|
6
|
Lahiri P, Martin MS, Lino BR, Scheck RA, Van Deventer JA. Dual Noncanonical Amino Acid Incorporation Enabling Chemoselective Protein Modification at Two Distinct Sites in Yeast. Biochemistry 2023; 62:2098-2114. [PMID: 37377426 PMCID: PMC11146674 DOI: 10.1021/acs.biochem.2c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Incorporation of more than one noncanonical amino acid (ncAA) within a single protein endows the resulting construct with multiple useful features such as augmented molecular recognition or covalent cross-linking capabilities. Herein, for the first time, we demonstrate the incorporation of two chemically distinct ncAAs into proteins biosynthesized in Saccharomyces cerevisiae. To complement ncAA incorporation in response to the amber (TAG) stop codon in yeast, we evaluated opal (TGA) stop codon suppression using three distinct orthogonal translation systems. We observed selective TGA readthrough without detectable cross-reactivity from host translation components. Readthrough efficiency at TGA was modulated by factors including the local nucleotide environment, gene deletions related to the translation process, and the identity of the suppressor tRNA. These observations facilitated systematic investigation of dual ncAA incorporation in both intracellular and yeast-displayed protein constructs, where we observed efficiencies up to 6% of wild-type protein controls. The successful display of doubly substituted proteins enabled the exploration of two critical applications on the yeast surface─(A) antigen binding functionality and (B) chemoselective modification with two distinct chemical probes through sequential application of two bioorthogonal click chemistry reactions. Lastly, by utilizing a soluble form of a doubly substituted construct, we validated the dual incorporation system using mass spectrometry and demonstrated the feasibility of conducting selective labeling of the two ncAAs sequentially using a "single-pot" approach. Overall, our work facilitates the addition of a 22nd amino acid to the genetic code of yeast and expands the scope of applications of ncAAs for basic biological research and drug discovery.
Collapse
Affiliation(s)
- Priyanka Lahiri
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - Meghan S. Martin
- Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
| | - Rebecca A. Scheck
- Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, USA
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
7
|
Pavão G, Sfalcin I, Bonatto D. Biocontainment Techniques and Applications for Yeast Biotechnology. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Biocontainment techniques for genetically modified yeasts (GMYs) are pivotal due to the importance of these organisms for biotechnological processes and also due to the design of new yeast strains by using synthetic biology tools and technologies. Due to the large genetic modifications that many yeast strains display, it is highly desirable to avoid the leakage of GMY cells into natural environments and, consequently, the spread of synthetic genes and circuits by horizontal or vertical gene transfer mechanisms within the microorganisms. Moreover, it is also desirable to avoid patented yeast gene technologies spreading outside the production facility. In this review, the different biocontainment technologies currently available for GMYs were evaluated. Interestingly, uniplex-type biocontainment approaches (UTBAs), which rely on nutrient auxotrophies induced by gene mutation or deletion or the expression of the simple kill switches apparatus, are still the major biocontainment approaches in use with GMY. While bacteria such as Escherichia coli account for advanced biocontainment technologies based on synthetic biology and multiplex-type biocontainment approaches (MTBAs), GMYs are distant from this scenario due to many reasons. Thus, a comparison of different UTBAs and MTBAs applied for GMY and genetically engineered microorganisms (GEMs) was made, indicating the major advances of biocontainment techniques for GMYs.
Collapse
|