1
|
Padmakumar JP, Sun JJ, Cho W, Zhou Y, Krenz C, Han WZ, Densmore D, Sontag ED, Voigt CA. Partitioning of a 2-bit hash function across 66 communicating cells. Nat Chem Biol 2024:10.1038/s41589-024-01730-1. [PMID: 39317847 DOI: 10.1038/s41589-024-01730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Powerful distributed computing can be achieved by communicating cells that individually perform simple operations. Here, we report design software to divide a large genetic circuit across cells as well as the genetic parts to implement the subcircuits in their genomes. These tools were demonstrated using a 2-bit version of the MD5 hashing algorithm, which is an early predecessor to the cryptographic functions underlying cryptocurrency. One iteration requires 110 logic gates, which were partitioned across 66 Escherichia coli strains, requiring the introduction of a total of 1.1 Mb of recombinant DNA into their genomes. The strains were individually experimentally verified to integrate their assigned input signals, process this information correctly and propagate the result to the cell in the next layer. This work demonstrates the potential to obtain programable control of multicellular biological processes.
Collapse
Affiliation(s)
- Jai P Padmakumar
- MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica J Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William Cho
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yangruirui Zhou
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Christopher Krenz
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Woo Zhong Han
- Department of Computer Science, Boston University, Boston, MA, USA
| | - Douglas Densmore
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Eduardo D Sontag
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Christopher A Voigt
- MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Buson F, Gao Y, Wang B. Genetic Parts and Enabling Tools for Biocircuit Design. ACS Synth Biol 2024; 13:697-713. [PMID: 38427821 DOI: 10.1021/acssynbio.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Synthetic biology aims to engineer biological systems for customized tasks through the bottom-up assembly of fundamental building blocks, which requires high-quality libraries of reliable, modular, and standardized genetic parts. To establish sets of parts that work well together, synthetic biologists created standardized part libraries in which every component is analyzed in the same metrics and context. Here we present a state-of-the-art review of the currently available part libraries for designing biocircuits and their gene expression regulation paradigms at transcriptional, translational, and post-translational levels in Escherichia coli. We discuss the necessary facets to integrate these parts into complex devices and systems along with the current efforts to catalogue and standardize measurement data. To better display the range of available parts and to facilitate part selection in synthetic biology workflows, we established biopartsDB, a curated database of well-characterized and useful genetic part and device libraries with detailed quantitative data validated by the published literature.
Collapse
Affiliation(s)
- Felipe Buson
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Rueff AS, van Raaphorst R, Aggarwal SD, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Synthetic genetic oscillators demonstrate the functional importance of phenotypic variation in pneumococcal-host interactions. Nat Commun 2023; 14:7454. [PMID: 37978173 PMCID: PMC10656556 DOI: 10.1038/s41467-023-43241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation. In this study, we use synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference (CRISPRi) together with live cell imaging and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Surya D Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Barbier I, Kusumawardhani H, Chauhan L, Harlapur PV, Jolly MK, Schaerli Y. Synthetic Gene Circuits Combining CRISPR Interference and CRISPR Activation in E. coli: Importance of Equal Guide RNA Binding Affinities to Avoid Context-Dependent Effects. ACS Synth Biol 2023; 12:3064-3071. [PMID: 37813387 PMCID: PMC10594877 DOI: 10.1021/acssynbio.3c00375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 10/11/2023]
Abstract
Gene expression control based on clustered regularly interspaced short palindromic repeats (CRISPR) has emerged as a powerful approach for constructing synthetic gene circuits. While the use of CRISPR interference (CRISPRi) is already well-established in prokaryotic circuits, CRISPR activation (CRISPRa) is less mature, and a combination of the two in the same circuits is only just emerging. Here, we report that combining CRISPRi with SoxS-based CRISPRa in Escherichia coli can lead to context-dependent effects due to different affinities in the formation of CRISPRa and CRISPRi complexes, resulting in loss of predictable behavior. We show that this effect can be avoided by using the same scaffold guide RNA structure for both complexes.
Collapse
Affiliation(s)
- Içvara Barbier
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
| | | | - Lakshya Chauhan
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
- Department
of Bioengineering, Indian Institute of Science, 560012 Bengaluru, India
| | | | - Mohit Kumar Jolly
- Department
of Bioengineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Yolanda Schaerli
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Rueff AS, van Raaphorst R, Aggarwal S, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Rewiring capsule production by CRISPRi-based genetic oscillators demonstrates a functional role of phenotypic variation in pneumococcal-host interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543575. [PMID: 37398107 PMCID: PMC10312626 DOI: 10.1101/2023.06.03.543575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence1-8, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes9-14, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation15-20. In this study, we used synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference together with live cell microscopy and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Surya Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Present address: Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Marken JP, Murray RM. Addressable and adaptable intercellular communication via DNA messaging. Nat Commun 2023; 14:2358. [PMID: 37095088 PMCID: PMC10126159 DOI: 10.1038/s41467-023-37788-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Engineered consortia are a major research focus for synthetic biologists because they can implement sophisticated behaviors inaccessible to single-strain systems. However, this functional capacity is constrained by their constituent strains' ability to engage in complex communication. DNA messaging, by enabling information-rich channel-decoupled communication, is a promising candidate architecture for implementing complex communication. But its major advantage, its messages' dynamic mutability, is still unexplored. We develop a framework for addressable and adaptable DNA messaging that leverages all three of these advantages and implement it using plasmid conjugation in E. coli. Our system can bias the transfer of messages to targeted receiver strains by 100- to 1000-fold, and their recipient lists can be dynamically updated in situ to control the flow of information through the population. This work lays the foundation for future developments that further utilize the unique advantages of DNA messaging to engineer previously-inaccessible levels of complexity into biological systems.
Collapse
Affiliation(s)
- John P Marken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
7
|
Shaytan AK, Novikov RV, Vinnikov RS, Gribkova AK, Glukhov GS. From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems. Front Mol Biosci 2022; 9:1070526. [PMID: 36589238 PMCID: PMC9795063 DOI: 10.3389/fmolb.2022.1070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
In the last decade, the CRISPR-Cas technology has gained widespread popularity in different fields from genome editing and detecting specific DNA/RNA sequences to gene expression control. At the heart of this technology is the ability of CRISPR-Cas complexes to be programmed for targeting particular DNA loci, even when using catalytically inactive dCas-proteins. The repertoire of naturally derived and engineered dCas-proteins including fusion proteins presents a promising toolbox that can be used to construct functional synthetic genetic circuits. Rational genetic circuit design, apart from having practical relevance, is an important step towards a deeper quantitative understanding of the basic principles governing gene expression regulation and functioning of living organisms. In this minireview, we provide a succinct overview of the application of CRISPR-dCas-based systems in the emerging field of synthetic genetic circuit design. We discuss the diversity of dCas-based tools, their properties, and their application in different types of genetic circuits and outline challenges and further research directions in the field.
Collapse
Affiliation(s)
- A. K. Shaytan
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Computer Science, HSE University, Moscow, Russia,*Correspondence: A. K. Shaytan,
| | - R. V. Novikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - R. S. Vinnikov
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - A. K. Gribkova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - G. S. Glukhov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia,Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Specht DA, Cortes LB, Lambert G. Overcoming Leak Sensitivity in CRISPRi Circuits Using Antisense RNA Sequestration and Regulatory Feedback. ACS Synth Biol 2022; 11:2927-2937. [PMID: 36017994 PMCID: PMC9486968 DOI: 10.1021/acssynbio.2c00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 01/24/2023]
Abstract
The controlled binding of the catalytically dead CRISPR nuclease (dCas) to DNA can be used to create complex, programmable transcriptional genetic circuits, a fundamental goal of synthetic biology. This approach, called CRISPR interference (CRISPRi), is advantageous over existing methods because the programmable nature of CRISPR proteins in principle enables the simultaneous regulation of many different targets without crosstalk. However, the performance of dCas-based genetic circuits is limited by both the sensitivity to leaky repression within CRISPRi logic gates and retroactive effects due to a shared pool of dCas proteins. By utilizing antisense RNAs (asRNAs) to sequester gRNA transcripts as well as CRISPRi feedback to self-regulate asRNA production, we demonstrate a mechanism that suppresses unwanted repression by CRISPRi and improves logical gene circuit function in Escherichia coli. This improvement is particularly pronounced during stationary expression when CRISPRi circuits do not achieve the expected regulatory dynamics. Furthermore, the use of dual CRISPRi/asRNA inverters restores the logical performance of layered circuits such as a double inverter. By studying circuit induction at the single-cell level in microfluidic channels, we provide insight into the dynamics of antisense sequestration of gRNA and regulatory feedback on dCas-based repression and derepression. These results demonstrate how CRISPRi inverters can be improved for use in more complex genetic circuitry without sacrificing the programmability and orthogonality of dCas proteins.
Collapse
Affiliation(s)
- David A. Specht
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| | - Louis B. Cortes
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| | - Guillaume Lambert
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Mol Biol Rep 2022; 49:12133-12150. [PMID: 36030476 PMCID: PMC9420241 DOI: 10.1007/s11033-022-07880-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022]
Abstract
Genome engineering has always been a versatile technique in biological research and medicine, with several applications. In the last several years, the discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 technology has swept the scientific community and revolutionised the speed of modern biology, heralding a new era of disease detection and rapid biotechnology discoveries. It enables successful gene editing by producing targeted double-strand breaks in virtually any organism or cell type. So, this review presents a comprehensive knowledge about the mechanism and structure of Cas9-mediated RNA-guided DNA targeting and cleavage. In addition, genome editing via CRISPR-Cas9 technology in various animals which are being used as models in scientific research including Non-Human Primates Pigs, Dogs, Zebra, fish and Drosophila has been discussed in this review. This review also aims to understand the applications, serious concerns and future perspective of CRISPR/Cas9-mediated genome editing.
Collapse
|
10
|
Bellato M, Frusteri Chiacchiera A, Salibi E, Casanova M, De Marchi D, Castagliuolo I, Cusella De Angelis MG, Magni P, Pasotti L. CRISPR Interference Modules as Low-Burden Logic Inverters in Synthetic Circuits. Front Bioeng Biotechnol 2022; 9:743950. [PMID: 35155399 PMCID: PMC8831695 DOI: 10.3389/fbioe.2021.743950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR and CRISPRi systems have revolutionized our biological engineering capabilities by enabling the editing and regulation of virtually any gene, via customization of single guide RNA (sgRNA) sequences. CRISPRi modules can work as programmable logic inverters, in which the dCas9-sgRNA complex represses a target transcriptional unit. They have been successfully used in bacterial synthetic biology to engineer information processing tasks, as an alternative to the traditionally adopted transcriptional regulators. In this work, we investigated and modulated the transfer function of several model systems with specific focus on the cell load caused by the CRISPRi logic inverters. First, an optimal expression cassette for dCas9 was rationally designed to meet the low-burden high-repression trade-off. Then, a circuit collection was studied at varying levels of dCas9 and sgRNAs targeting three different promoters from the popular tet, lac and lux systems, placed at different DNA copy numbers. The CRISPRi NOT gates showed low-burden properties that were exploited to fix a high resource-consuming circuit previously exhibiting a non-functional input-output characteristic, and were also adopted to upgrade a transcriptional regulator-based NOT gate into a 2-input NOR gate. The obtained data demonstrate that CRISPRi-based modules can effectively act as low-burden components in different synthetic circuits for information processing.
Collapse
Affiliation(s)
- Massimo Bellato
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Angelica Frusteri Chiacchiera
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Elia Salibi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Michela Casanova
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Davide De Marchi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | | | - Maria Gabriella Cusella De Angelis
- Centre for Health Technologies, University of Pavia, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
- *Correspondence: Lorenzo Pasotti,
| |
Collapse
|
11
|
Backes N, Phillips GJ. Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales. EcoSal Plus 2021; 9:eESP00062020. [PMID: 34125584 PMCID: PMC11163844 DOI: 10.1128/ecosalplus.esp-0006-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
Over the last decade, the study of CRISPR-Cas systems has progressed from a newly discovered bacterial defense mechanism to a diverse suite of genetic tools that have been applied across all domains of life. While the initial applications of CRISPR-Cas technology fulfilled a need to more precisely edit eukaryotic genomes, creative "repurposing" of this adaptive immune system has led to new approaches for genetic analysis of microorganisms, including improved gene editing, conditional gene regulation, plasmid curing and manipulation, and other novel uses. The main objective of this review is to describe the development and current state-of-the-art use of CRISPR-Cas techniques specifically as it is applied to members of the Enterobacteriales. While many of the applications covered have been initially developed in Escherichia coli, we also highlight the potential, along with the limitations, of this technology for expanding the availability of genetic tools in less-well-characterized non-model species, including bacterial pathogens.
Collapse
Affiliation(s)
- Nicholas Backes
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
12
|
CRISPR-Based Genetic Switches and Other Complex Circuits: Research and Application. Life (Basel) 2021; 11:life11111255. [PMID: 34833131 PMCID: PMC8621321 DOI: 10.3390/life11111255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR-based enzymes have offered a unique capability to the design of genetic switches, with advantages in designability, modularity and orthogonality. CRISPR-based genetic switches operate on multiple levels of life, including transcription and translation. In both prokaryotic and eukaryotic cells, deactivated CRISPR endonuclease and endoribonuclease have served in genetic switches for activating or repressing gene expression, at both transcriptional and translational levels. With these genetic switches, more complex circuits have been assembled to achieve sophisticated functions including inducible switches, non-linear response and logical biocomputation. As more CRISPR enzymes continue to be excavated, CRISPR-based genetic switches will be used in a much wider range of applications.
Collapse
|
13
|
Bradley RW. An easy-to-use CRISPRi plasmid tool for inducible knockdown in E. coli. ACTA ACUST UNITED AC 2021; 32:e00680. [PMID: 34703773 PMCID: PMC8524100 DOI: 10.1016/j.btre.2021.e00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/03/2022]
Abstract
An easy-to-use plasmid tool for CRISPRi transcription repression in bacteria. Dual inducible promoters for tight control of CRISPRi components. One-day cloning protocol to insert targeting spacer sequences. Strong repression of plasmid-borne and chromosomal targets.
CRISPR-interference (CRISPRi) is a powerful genetic tool with wide application in bacteria. In this work a single plasmid system is presented which expresses deactivated Cas9 and a short guide RNA sequence from separate inducible promoters, enabling up to 40-fold repression of target genes with minimal leaky repression in the uninduced state. The plasmid is designed for rapid spacer insertion with easy screening for correct clones, and a simple one-day protocol with >99.9% assembly efficiency is described. This plasmid is made available to the research community with a view to facilitating wider use of CRISPRi in bacterial systems.
Collapse
Affiliation(s)
- Robert W Bradley
- Department of Life Sciences, Imperial College London, SW2 5LU, United Kingdom
| |
Collapse
|
14
|
Silva FSR, Santos SPO, Meyer R, Silva ES, Pinheiro CS, Alcantara-Neves NM, Pacheco LGC. In vivo cleavage of solubility tags as a tool to enhance the levels of soluble recombinant proteins in Escherichia coli. Biotechnol Bioeng 2021; 118:4159-4167. [PMID: 34370304 DOI: 10.1002/bit.27912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022]
Abstract
Recombinant proteins are generally fused with solubility enhancer tags to improve the folding and solubility of the target protein of interest. However, the fusion protein strategy usually requires expensive proteases to perform in vitro proteolysis and additional chromatographic steps to obtain tag-free recombinant proteins. Expression systems based on intracellular processing of solubility tags in Escherichia coli, through co-expression of a site-specific protease, simplify the recombinant protein purification process, and promote the screening of molecules that fail to remain soluble after tag removal. High yields of soluble target proteins have already been achieved using these protease co-expression systems. Herein, we review approaches for controlled intracellular processing systems tailored to produce soluble untagged proteins in E. coli. We discuss the different genetic systems available for intracellular processing of recombinant proteins regarding system design features, advantages, and limitations of the various strategies.
Collapse
Affiliation(s)
- Filipe S R Silva
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Sara P O Santos
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Roberto Meyer
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Eduardo S Silva
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Carina S Pinheiro
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Neuza M Alcantara-Neves
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Luis G C Pacheco
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Department of Biotechnology, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
15
|
Siew WS, Tang YQ, Kong CK, Goh BH, Zacchigna S, Dua K, Chellappan DK, Duangjai A, Saokaew S, Phisalprapa P, Yap WH. Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications. Int J Mol Sci 2021; 22:8422. [PMID: 34445123 PMCID: PMC8395110 DOI: 10.3390/ijms22168422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping. Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single-base DNA/RNA modifications. To date, many studies have utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.
Collapse
Affiliation(s)
- Wei Sheng Siew
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
| | - Yin Quan Tang
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor’s University, Subang Jaya 47500, Malaysia
| | - Chee Kei Kong
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Serena Zacchigna
- Centre for Translational Cardiology, Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, Strada di Fiume 447, 34149 Trieste, Italy;
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000, Malaysia;
| | - Acharaporn Duangjai
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.D.); (S.S.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.D.); (S.S.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Department of Pharmaceutical Care, Division of Pharmacy Practice, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Pochamana Phisalprapa
- Department of Medicine, Division of Ambulatory Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
16
|
Huang HH, Bellato M, Qian Y, Cárdenas P, Pasotti L, Magni P, Del Vecchio D. dCas9 regulator to neutralize competition in CRISPRi circuits. Nat Commun 2021; 12:1692. [PMID: 33727557 PMCID: PMC7966764 DOI: 10.1038/s41467-021-21772-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
CRISPRi-mediated gene regulation allows simultaneous control of many genes. However, highly specific sgRNA-promoter binding is, alone, insufficient to achieve independent transcriptional regulation of multiple targets. Indeed, due to competition for dCas9, the repression ability of one sgRNA changes significantly when another sgRNA becomes expressed. To solve this problem and decouple sgRNA-mediated regulatory paths, we create a dCas9 concentration regulator that implements negative feedback on dCas9 level. This allows any sgRNA to maintain an approximately constant dose-response curve, independent of other sgRNAs. We demonstrate the regulator performance on both single-stage and layered CRISPRi-based genetic circuits, zeroing competition effects of up to 15-fold changes in circuit I/O response encountered without the dCas9 regulator. The dCas9 regulator decouples sgRNA-mediated regulatory paths, enabling concurrent and independent regulation of multiple genes. This allows predictable composition of CRISPRi-based genetic modules, which is essential in the design of larger scale synthetic genetic circuits.
Collapse
Affiliation(s)
- Hsin-Ho Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Massimo Bellato
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Yili Qian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pablo Cárdenas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lorenzo Pasotti
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
17
|
Santos-Moreno J, Schaerli Y. CRISPR-based gene expression control for synthetic gene circuits. Biochem Soc Trans 2020; 48:1979-1993. [PMID: 32964920 PMCID: PMC7609024 DOI: 10.1042/bst20200020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Synthetic gene circuits allow us to govern cell behavior in a programmable manner, which is central to almost any application aiming to harness engineered living cells for user-defined tasks. Transcription factors (TFs) constitute the 'classic' tool for synthetic circuit construction but some of their inherent constraints, such as insufficient modularity, orthogonality and programmability, limit progress in such forward-engineering endeavors. Here we review how CRISPR (clustered regularly interspaced short palindromic repeats) technology offers new and powerful possibilities for synthetic circuit design. CRISPR systems offer superior characteristics over TFs in many aspects relevant to a modular, predictable and standardized circuit design. Thus, the choice of CRISPR technology as a framework for synthetic circuit design constitutes a valid alternative to complement or replace TFs in synthetic circuits and promises the realization of more ambitious designs.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Kirkpatrick RL, Lewis K, Langan RA, Lajoie MJ, Boyken SE, Eakman M, Baker D, Zalatan JG. Conditional Recruitment to a DNA-Bound CRISPR-Cas Complex Using a Colocalization-Dependent Protein Switch. ACS Synth Biol 2020; 9:2316-2323. [PMID: 32816470 PMCID: PMC7976376 DOI: 10.1021/acssynbio.0c00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To spatially control biochemical functions at specific sites within a genome, we have engineered a synthetic switch that activates when bound to its DNA target site. The system uses two CRISPR-Cas complexes to colocalize components of a de novo-designed protein switch (Co-LOCKR) to adjacent sites in the genome. Colocalization triggers a conformational change in the switch from an inactive closed state to an active open state with an exposed functional peptide. We prototype the system in yeast and demonstrate that DNA binding triggers activation of the switch, recruitment of a transcription factor, and expression of a downstream reporter gene. This DNA-triggered Co-LOCKR switch provides a platform to engineer sophisticated functions that should only be executed at a specific target site within the genome, with potential applications in a wide range of synthetic systems including epigenetic regulation, imaging, and genetic logic circuits.
Collapse
Affiliation(s)
- Robin L. Kirkpatrick
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, 98195, United States
| | - Kieran Lewis
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Robert A. Langan
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, 98195, United States
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, United States
| | - Marc J. Lajoie
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, United States
| | - Scott E. Boyken
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, United States
| | - Madeleine Eakman
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, United States
| | - Jesse G. Zalatan
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
19
|
Abstract
Gene expression control based on CRISPRi (clustered regularly interspaced short palindromic repeats interference) has emerged as a powerful tool for creating synthetic gene circuits, both in prokaryotes and in eukaryotes; yet, its lack of cooperativity has been pointed out as a potential obstacle for dynamic or multistable synthetic circuit construction. Here we use CRISPRi to build a synthetic oscillator (“CRISPRlator”), bistable network (toggle switch) and stripe pattern-forming incoherent feed-forward loop (IFFL). Our circuit designs, conceived to feature high predictability and orthogonality, as well as low metabolic burden and context-dependency, allow us to achieve robust circuit behaviors in Escherichia coli populations. Mathematical modeling suggests that unspecific binding in CRISPRi is essential to establish multistability. Our work demonstrates the wide applicability of CRISPRi in synthetic circuits and paves the way for future efforts towards engineering more complex synthetic networks, boosted by the advantages of CRISPR technology. Synthetic circuits based on CRISPRi have not achieved multistable and dynamic behaviors. Here the authors build an oscillator, a toggle switch and an incoherent feed-forward loop using CRISPRi, and provide a mathematical model suggesting that unspecific binding in CRISPRi enables multistability.
Collapse
|
20
|
Specht DA, Xu Y, Lambert G. Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding. Proc Natl Acad Sci U S A 2020; 117:11274-11282. [PMID: 32376630 PMCID: PMC7260945 DOI: 10.1073/pnas.1918685117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The versatility of CRISPR-Cas endonucleases as a tool for biomedical research has led to diverse applications in gene editing, programmable transcriptional control, and nucleic acid detection. Most CRISPR-Cas systems, however, suffer from off-target effects and unpredictable nonspecific binding that negatively impact their reliability and broader applicability. To better evaluate the impact of mismatches on DNA target recognition and binding, we develop a massively parallel CRISPR interference (CRISPRi) assay to measure the binding energy between tens of thousands of CRISPR RNA (crRNA) and target DNA sequences. By developing a general thermodynamic model of CRISPR-Cas binding dynamics, our results unravel a comprehensive map of the energetic landscape of nuclease-dead Cas12a (dCas12a) from Francisella novicida as it inspects and binds to its DNA target. Our results reveal concealed thermodynamic factors affecting dCas12a DNA binding, which should guide the design and optimization of crRNA that limits off-target effects, including the crucial role of an extended protospacer adjacent motif (PAM) sequence and the impact of the specific base composition of crRNA-DNA mismatches. Our generalizable approach should also provide a mechanistic understanding of target recognition and DNA binding when applied to other CRISPR-Cas systems.
Collapse
Affiliation(s)
- David A Specht
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Yasu Xu
- Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Guillaume Lambert
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
21
|
Cooper RM, Hasty J. One-Day Construction of Multiplex Arrays to Harness Natural CRISPR-Cas Systems. ACS Synth Biol 2020; 9:1129-1137. [PMID: 32271547 DOI: 10.1021/acssynbio.9b00489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas systems are prokaryotic immune systems that have proliferated widely not only in bacteria and archaea, but also much more recently, in human biological research and applications. Much work to date has utilized synthetic sgRNAs along with the CRISPR nuclease Cas9, but the discovery of array-processing nucleases now allows the use of more compact, natural CRISPR arrays in heterologous hosts, in addition to organisms with endogenous systems. Unfortunately, the construction of multiplex natural CRISPR arrays remains technically challenging, expensive, and/or time-consuming. This limitation hampers research involving natural CRISPR arrays in both native and heterologous hosts. To address this problem, we present a method to assemble CRISPR arrays that is simple, rapid, affordable, and highly scalable-we assembled 9-spacer arrays with 1 day's worth of work. We used this method to harness the endogenous CRISPR-Cas system of the highly competent bacterium Acinetobacter baylyi, showing that while single spacers are not always completely effective at blocking DNA acquisition through natural competence, multiplex natural CRISPR arrays enable both nearly complete DNA exclusion and genome editing, including with multiple targets for both. In addition to demonstrating a CRISPR array assembly method that will benefit a variety of applications, we also find a potential bet-hedging strategy for balancing CRISPR defense versus DNA acquisition in naturally competent A. baylyi.
Collapse
Affiliation(s)
- Robert M. Cooper
- BioCircuits Institute, University of California, San Diego, La Jolla, California 92093, United States
- San Diego Center for Systems Biology, La Jolla, California 92093, United States
| | - Jeff Hasty
- BioCircuits Institute, University of California, San Diego, La Jolla, California 92093, United States
- San Diego Center for Systems Biology, La Jolla, California 92093, United States
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Khanzadi MN, Khan AA. CRISPR/Cas9: Nature's gift to prokaryotes and an auspicious tool in genome editing. J Basic Microbiol 2019; 60:91-102. [PMID: 31693214 DOI: 10.1002/jobm.201900420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a family of DNA direct repeats found in many prokaryotic genomes. It was discovered in bacteria as their (adaptive) immune system against invading viruses. Cas9 is an endonuclease enzyme linked with the CRISPR system in bacteria. Bacteria use the Cas9 enzyme to chop viral DNA sequences by unwinding it and then finding the complementary base pairs to the guide RNA. CRISPR/Cas9 is a modern and powerful molecular biology approach that is widely used in genome engineering (to activate/repress gene expression). It can be used in vivo to cause targeted genome modifications with better efficiency as compared to meganucleases, zinc-finger nucleases and transcription activator-like effector nucleases. CRISPR/Cas9 is a simple, reliable, and rapid method for causing gene alterations that open new horizons of gene editing in a variety of living organisms, including humans, for the treatment of several diseases. In this short review, we explored the basic mechanisms underlying its working principles along with some of its current applications in a number of diverse fields.
Collapse
Affiliation(s)
- Manzoor N Khanzadi
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Abid A Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
23
|
Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat Commun 2019; 10:3751. [PMID: 31434894 PMCID: PMC6704175 DOI: 10.1038/s41467-019-11793-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Synthetic biology aims to develop programmable tools to perform complex functions such as redistributing metabolic flux in industrial microorganisms. However, development of protein-level circuits is limited by availability of designable, orthogonal, and composable tools. Here, with the aid of engineered viral proteases and proteolytic signals, we build two sets of controllable protein units, which can be rationally configured to three tools. Using a protease-based dynamic regulation circuit to fine-tune metabolic flow, we achieve 12.63 g L−1 shikimate titer in minimal medium without inducer. In addition, the carbon catabolite repression is alleviated by protease-based inverter-mediated flux redistribution under multiple carbon sources. By coordinating reaction rate using a protease-based oscillator in E. coli, we achieve d-xylonate productivity of 7.12 g L−1 h−1 with a titer of 199.44 g L−1. These results highlight the applicability of programmable protein switches to metabolic engineering for valuable chemicals production. Current flux rewiring technologies in metabolic engineering are mainly transcriptional regulation. Here, the authors build two sets of controllable protein units using engineered viral proteases and proteolytic signals, and utilize for increasing titers of shikimate and D-xylonate in E. coli.
Collapse
|
24
|
Santos-Moreno J, Schaerli Y. A Framework for the Modular and Combinatorial Assembly of Synthetic Gene Circuits. ACS Synth Biol 2019; 8:1691-1697. [PMID: 31185158 DOI: 10.1021/acssynbio.9b00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synthetic gene circuits emerge from iterative design-build-test cycles. Most commonly, the time-limiting step is the circuit construction process. Here, we present a hierarchical cloning scheme based on the widespread Gibson assembly method and make the set of constructed plasmids freely available. Our two-step modular cloning scheme allows for simple, fast, efficient, and accurate assembly of gene circuits and combinatorial circuit libraries in Escherichia coli. The first step involves Gibson assembly of transcriptional units from constituent parts into individual intermediate plasmids. In the second step, these plasmids are digested with specific sets of restriction enzymes. The resulting flanking regions have overlaps that drive a second Gibson assembly into a single plasmid to yield the final circuit. This approach substantially reduces time and sequencing costs associated with gene circuit construction and allows for modular and combinatorial assembly of circuits. We demonstrate the usefulness of our framework by assembling a CRISPR-based double-inverter circuit and a combinatorial library of 3-node networks.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Hussey BJ, McMillen DR. Programmable T7-based synthetic transcription factors. Nucleic Acids Res 2019; 46:9842-9854. [PMID: 30169636 PMCID: PMC6182181 DOI: 10.1093/nar/gky785] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
Despite recent progress on synthetic transcription factor generation in eukaryotes, there remains a need for high-activity bacterial versions of these systems. In synthetic biology applications, it is useful for transcription factors to have two key features: they should be orthogonal (influencing only their own targets, with minimal off-target effects), and programmable (able to be directed to a wide range of user-specified transcriptional start sites). The RNA polymerase of the bacteriophage T7 has a number of appealing properties for synthetic biological designs: it can produce high transcription rates; it is a compact, single-subunit polymerase that has been functionally expressed in a variety of organisms; and its viral origin reduces the connection between its activity and that of its host's transcriptional machinery. We have created a system where a T7 RNA polymerase is recruited to transcriptional start sites by DNA binding proteins, either directly or bridged through protein–protein interactions, yielding a modular and programmable system for strong transcriptional activation of multiple orthogonal synthetic transcription factor variants in Escherichia coli. To our knowledge this is the first exogenous, programmable activator system in bacteria.
Collapse
Affiliation(s)
- Brendan J Hussey
- Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Impact Centre, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - David R McMillen
- Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Impact Centre, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
26
|
Zhao J, Pokhilko A, Ebenhöh O, Rosser SJ, Colloms SD. A single-input binary counting module based on serine integrase site-specific recombination. Nucleic Acids Res 2019; 47:4896-4909. [PMID: 30957849 PMCID: PMC6511857 DOI: 10.1093/nar/gkz245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023] Open
Abstract
A device that counts and records the number of events experienced by an individual cell could have many uses in experimental biology and biotechnology. Here, we report a DNA-based 'latch' that switches between two states upon each exposure to a repeated stimulus. The key component of the latch is a DNA segment whose orientation is inverted by the actions of ϕC31 integrase and its recombination directionality factor (RDF). Integrase expression is regulated by an external input, while RDF expression is controlled by the state of the latch, such that the orientation of the invertible segment switches efficiently each time the device receives an input pulse. Recombination occurs over a time scale of minutes after initiation of integrase expression. The latch requires a delay circuit, implemented with a transcriptional repressor expressed in only one state, to ensure that each input pulse results in only one inversion of the DNA segment. Development and optimization of the latch in living cells was driven by mathematical modelling of the recombination reactions and gene expression regulated by the switch. We discuss how N latches built with orthogonal site-specific recombination systems could be chained together to form a binary ripple counter that could count to 2N - 1.
Collapse
Affiliation(s)
- Jia Zhao
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, Scotland
| | - Alexandra Pokhilko
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, Scotland
| | - Oliver Ebenhöh
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, D-40225 Düsseldorf, Germany,Institute of Quantitative and Theoretical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Susan J Rosser
- SynthSys - Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JD, Scotland,Correspondence may also be addressed to Susan J. Rosser. Tel. +44 131 650 50 86;
| | - Sean D Colloms
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, Scotland,To whom correspondence should be addressed. Tel: +44 141 330 6236; Fax: +44 141 330 4878;
| |
Collapse
|
27
|
A CRISPR/Cas9-based central processing unit to program complex logic computation in human cells. Proc Natl Acad Sci U S A 2019; 116:7214-7219. [PMID: 30923122 PMCID: PMC6462112 DOI: 10.1073/pnas.1821740116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Controlling gene expression with sophisticated logic gates has been and remains one of the central aims of synthetic biology. However, conventional implementations of biocomputers use central processing units (CPUs) assembled from multiple protein-based gene switches, limiting the programming flexibility and complexity that can be achieved within single cells. Here, we introduce a CRISPR/Cas9-based core processor that enables different sets of user-defined guide RNA inputs to program a single transcriptional regulator (dCas9-KRAB) to perform a wide range of bitwise computations, from simple Boolean logic gates to arithmetic operations such as the half adder. Furthermore, we built a dual-core CPU combining two orthogonal core processors in a single cell. In principle, human cells integrating multiple orthogonal CRISPR/Cas9-based core processors could offer enormous computational capacity.
Collapse
|
28
|
Miao C, Zhao H, Qian L, Lou C. Systematically investigating the key features of the DNase deactivated Cpf1 for tunable transcription regulation in prokaryotic cells. Synth Syst Biotechnol 2018; 4:1-9. [PMID: 30505961 PMCID: PMC6251280 DOI: 10.1016/j.synbio.2018.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/06/2018] [Accepted: 11/06/2018] [Indexed: 01/23/2023] Open
Abstract
With a unique crRNA processing capability, the CRISPR associated Cpf1 protein holds great potential for multiplex gene regulation. Unlike the well-studied Cas9 protein, however, conversion of Cpf1 to a transcription regulator and its related properties have not been systematically explored yet. In this study, we investigated the mutation schemes and crRNA requirements for the DNase deactivated Cpf1 (dCpf1). By shortening the direct repeat sequence, we obtained genetically stable crRNA co-transcripts and improved gene repression with multiplex targeting. A screen of diversity-enriched PAM library was designed to investigate the PAM-dependency of gene regulation by dCpf1 from Francisella novicida and Lachnospiraceae bacterium. We found novel PAM patterns that elicited strong or medium gene repressions. Using a computational algorithm, we predicted regulatory outputs for all possible PAM sequences, which spanned a large dynamic range that could be leveraged for regulatory purposes. These newly identified features will facilitate the efficient design of CRISPR-dCpf1 based systems for tunable multiplex gene regulation.
Collapse
Affiliation(s)
- Chensi Miao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Science and Technology of China, Hefei, 230027, China
| | - Huiwei Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Qian
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
- Corresponding author.
| | - Chunbo Lou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Science, Beijing, 100149, China
- Corresponding author. CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
Zhang S, Voigt CA. Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design. Nucleic Acids Res 2018; 46:11115-11125. [PMID: 30289463 PMCID: PMC6237744 DOI: 10.1093/nar/gky884] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022] Open
Abstract
Large synthetic genetic circuits require the simultaneous expression of many regulators. Deactivated Cas9 (dCas9) can serve as a repressor by having a small guide RNA (sgRNA) direct it to bind a promoter. The programmability and specificity of RNA:DNA basepairing simplifies the generation of many orthogonal sgRNAs that, in theory, could serve as a large set of regulators in a circuit. However, dCas9 is toxic in many bacteria, thus limiting how high it can be expressed, and low concentrations are quickly sequestered by multiple sgRNAs. Here, we construct a non-toxic version of dCas9 by eliminating PAM (protospacer adjacent motif) binding with a R1335K mutation (dCas9*) and recovering DNA binding by fusing it to the PhlF repressor (dCas9*_PhlF). Both the 30 bp PhlF operator and 20 bp sgRNA binding site are required to repress a promoter. The larger region required for recognition mitigates toxicity in Escherichia coli, allowing up to 9600 ± 800 molecules of dCas9*_PhlF per cell before growth or morphology are impacted, as compared to 530 ± 40 molecules of dCas9. Further, PhlF multimerization leads to an increase in average cooperativity from n = 0.9 (dCas9) to 1.6 (dCas9*_PhlF). A set of 30 orthogonal sgRNA-promoter pairs are characterized as NOT gates; however, the simultaneous use of multiple sgRNAs leads to a monotonic decline in repression and after 15 are co-expressed the dynamic range is <10-fold. This work introduces a non-toxic variant of dCas9, critical for its use in applications in metabolic engineering and synthetic biology, and exposes a limitation in the number of regulators that can be used in one cell when they rely on a shared resource.
Collapse
Affiliation(s)
- Shuyi Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
31
|
Xiang Y, Dalchau N, Wang B. Scaling up genetic circuit design for cellular computing: advances and prospects. NATURAL COMPUTING 2018; 17:833-853. [PMID: 30524216 PMCID: PMC6244767 DOI: 10.1007/s11047-018-9715-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthetic biology aims to engineer and redesign biological systems for useful real-world applications in biomanufacturing, biosensing and biotherapy following a typical design-build-test cycle. Inspired from computer science and electronics, synthetic gene circuits have been designed to exhibit control over the flow of information in biological systems. Two types are Boolean logic inspired TRUE or FALSE digital logic and graded analog computation. Key principles for gene circuit engineering include modularity, orthogonality, predictability and reliability. Initial circuits in the field were small and hampered by a lack of modular and orthogonal components, however in recent years the library of available parts has increased vastly. New tools for high throughput DNA assembly and characterization have been developed enabling rapid prototyping, systematic in situ characterization, as well as automated design and assembly of circuits. Recently implemented computing paradigms in circuit memory and distributed computing using cell consortia will also be discussed. Finally, we will examine existing challenges in building predictable large-scale circuits including modularity, context dependency and metabolic burden as well as tools and methods used to resolve them. These new trends and techniques have the potential to accelerate design of larger gene circuits and result in an increase in our basic understanding of circuit and host behaviour.
Collapse
Affiliation(s)
- Yiyu Xiang
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF UK
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3JR UK
| | | | - Baojun Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF UK
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3JR UK
| |
Collapse
|
32
|
Tarasava K, Oh EJ, Eckert CA, Gill RT. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes. Biotechnol J 2018; 13:e1700586. [DOI: 10.1002/biot.201700586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Katia Tarasava
- Chemical and Biological Engineering, University of Colorado; Boulder CO USA
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| | - Eun Joong Oh
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
- Biosciences Center, National Renewable Energy Laboratory; Golden CO USA
| | - Ryan T. Gill
- Chemical and Biological Engineering, University of Colorado; Boulder CO USA
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| |
Collapse
|
33
|
Tomazou M, Barahona M, Polizzi KM, Stan GB. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation. Cell Syst 2018; 6:508-520.e5. [PMID: 29680377 DOI: 10.1016/j.cels.2018.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/14/2017] [Accepted: 03/19/2018] [Indexed: 01/27/2023]
Abstract
To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable.
Collapse
Affiliation(s)
- Marios Tomazou
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Karen M Polizzi
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
34
|
Bittihn P, Din MO, Tsimring LS, Hasty J. Rational engineering of synthetic microbial systems: from single cells to consortia. Curr Opin Microbiol 2018; 45:92-99. [PMID: 29574330 DOI: 10.1016/j.mib.2018.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/06/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
One promise of synthetic biology is to provide solutions for biomedical and industrial problems by rational design of added functionality in living systems. Microbes are at the forefront of this biological engineering endeavor due to their general ease of handling and their relevance in many potential applications from fermentation to therapeutics. In recent years, the field has witnessed an explosion of novel regulatory tools, from synthetic orthogonal transcription factors to posttranslational mechanisms for increased control over the behavior of synthetic circuits. Tool development has been paralleled by the discovery of principles that enable increased modularity and the management of host-circuit interactions. Engineered cell-to-cell communication bridges the scales from intracellular to population-level coordination. These developments facilitate the translation of more than a decade of circuit design into applications.
Collapse
Affiliation(s)
- Philip Bittihn
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - M Omar Din
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lev S Tsimring
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Donohoue PD, Barrangou R, May AP. Advances in Industrial Biotechnology Using CRISPR-Cas Systems. Trends Biotechnol 2018; 36:134-146. [PMID: 28778606 DOI: 10.1016/j.tibtech.2017.07.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022]
Abstract
The term 'clustered regularly interspaced short palindromic repeats' (CRISPR) has recently become synonymous with the genome-editing revolution. The RNA-guided endonuclease CRISPR-associated protein 9 (Cas9), in particular, has attracted attention for its promise in basic research and gene editing-based therapeutics. CRISPR-Cas systems are efficient and easily programmable nucleic acid-targeting tools, with uses reaching beyond research and therapeutic development into the precision breeding of plants and animals and the engineering of industrial microbes. CRISPR-Cas systems have potential for many microbial engineering applications, including bacterial strain typing, immunization of cultures, autoimmunity or self-targeted cell killing, and the engineering or control of metabolic pathways for improved biochemical synthesis. In this review, we explore the fundamental characteristics of CRISPR-Cas systems and highlight how these features can be used in industrial settings.
Collapse
Affiliation(s)
- Paul D Donohoue
- Caribou Biosciences, Inc., 2929 7th St., Suite 105, Berkeley, CA 94710, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Andrew P May
- Caribou Biosciences, Inc., 2929 7th St., Suite 105, Berkeley, CA 94710, USA; Current address: Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA.
| |
Collapse
|
36
|
Subramanian SK, Russ WP, Ranganathan R. A set of experimentally validated, mutually orthogonal primers for combinatorially specifying genetic components. SYNTHETIC BIOLOGY (OXFORD, ENGLAND) 2018; 3:ysx008. [PMID: 32995509 PMCID: PMC7445780 DOI: 10.1093/synbio/ysx008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 02/02/2023]
Abstract
The design and synthesis of novel genes and deoxyribonucleic acid (DNA) sequences is a central technique in synthetic biology. Current methods of high throughput gene synthesis use pooled oligonucleotides obtained from custom-designed DNA microarray chips, and rely on orthogonal (non-interacting) polymerase chain reaction primers to specifically de-multiplex, by amplification, the precise subset of oligonucleotides necessary to assemble a full length gene. The availability of a large validated set of mutually orthogonal primers is therefore a crucial reagent for high-throughput gene synthesis. Here, we present a set of 166 20-nucleotide primers that are experimentally verified to be non-interacting, capable of specifying 13 695 unique genes. These primers represent a valuable resource to the synthetic biology community for specifying genetic components that can be assembled through a scalable and modular architecture.
Collapse
Affiliation(s)
- Subu K Subramanian
- Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA,Corresponding authors: E-mail: ; E-mail:
| | - William P Russ
- Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rama Ranganathan
- Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA,Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA,Corresponding authors: E-mail: ; E-mail:
| |
Collapse
|
37
|
Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov 2017; 3:17018. [PMID: 28607761 PMCID: PMC5460296 DOI: 10.1038/celldisc.2017.18] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9 system has been widely applied in both transcriptional regulation and epigenetic studies. However, for multiple targets, independent expression of multiple single guide RNAs (sgRNAs) is needed, which is less convenient. To address the problem, we employed a DNase-dead Cpf1 mutant (ddCpf1) for multiplex gene regulation. We demonstrated that ddCpf1 alone could be employed for gene repression in Escherichia coli, and the repression was more effective with CRISPR RNAs (crRNAs) specifically targeting to the template strand of its target genes, which was different from that of dCas9. When targeting the promoter region, both strands showed effective repression by the ddCpf1/crRNA complex. The whole-transcriptome RNA-seq technique was further employed to demonstrate the high specificity of ddCpf1-mediated repression. Besides, we proved that the remaining RNase activity in ddCpf1 was capable of processing a precursor CRISPR array to simply generate multiple mature crRNAs in vivo, facilitating multiplex gene regulation. With the employment of this multiplex gene regulation strategy, we also showed how to quickly screen a library of candidate targets, that is, the two-component systems in E. coli. Therefore, based on our findings here, the CRISPR-ddCpf1 system may be further developed and widely applied in both biological research and clinical studies.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingman Wang
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuxiang Cheng
- Shanghai Tolo Biotechnology Company Limited, Shanghai, China
| | - Xuan Zheng
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Gander MW, Vrana JD, Voje WE, Carothers JM, Klavins E. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat Commun 2017; 8:15459. [PMID: 28541304 PMCID: PMC5458518 DOI: 10.1038/ncomms15459] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we designed dCas9-Mxi1-based NOR gates in Saccharomyces cerevisiae that allow arbitrary connectivity and large genetic circuits. Because we used the chromatin remodeller Mxi1, our gates showed minimal leak and digital responses. We built a combinatorial library of NOR gates that directly convert guide RNA (gRNA) inputs into gRNA outputs, enabling the gates to be 'wired' together. We constructed logic circuits with up to seven gRNAs, including repression cascades with up to seven layers. Modelling predicted the NOR gates have effectively zero transcriptional leak explaining the limited signal degradation in the circuits. Our approach enabled the largest, eukaryotic gene circuits to date and will form the basis for large, synthetic, cellular decision-making systems.
Collapse
Affiliation(s)
- Miles W. Gander
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Justin D. Vrana
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - William E. Voje
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - James M. Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, USA
| | - Eric Klavins
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
39
|
Mehrotra R, Renganaath K, Kanodia H, Loake GJ, Mehrotra S. Towards combinatorial transcriptional engineering. Biotechnol Adv 2017; 35:390-405. [PMID: 28300614 DOI: 10.1016/j.biotechadv.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 01/31/2023]
Abstract
The modular nature of the transcriptional unit makes it possible to design robust modules with predictable input-output characteristics using a ‘parts- off a shelf’ approach. Customized regulatory circuits composed of multiple such transcriptional units have immense scope for application in diverse fields of basic and applied research. Synthetic transcriptional engineering seeks to construct such genetic cascades. Here, we discuss the three principle strands of transcriptional engineering: promoter and transcriptional factor engineering, and programming inducibilty into synthetic modules. In this context, we review the scope and limitations of some recent technologies that seek to achieve these ends. Our discussion emphasizes a requirement for rational combinatorial engineering principles and the promise this approach holds for the future development of this field.
Collapse
Affiliation(s)
- Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India.
| | - Kaushik Renganaath
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Harsh Kanodia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| |
Collapse
|
40
|
Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 2017; 599:1-18. [DOI: 10.1016/j.gene.2016.11.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/18/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022]
|
41
|
Abstract
Recently developed DNA assembly methods have enabled the rapid and simultaneous assembly of multiple parts to create complex synthetic gene circuits. A number of groups have proposed the use of computationally designed orthogonal spacer sequences to guide the ordered assembly of parts using overlap-directed or homologous recombination-based methods. This approach is particularly useful for assembling multiple parts with repetitive elements. Orthogonal spacer sequences (sometimes called UNSs-unique nucleotide sequences) also have a number of other potential uses including in the design of synthetic promoters regulated by novel regulatory elements.
Collapse
Affiliation(s)
- James T MacDonald
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK. .,Department of Medicine, Imperial College, South Kensington Campus, London, SW7 2AZ, UK.
| | - Velia Siciliano
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK.,Department of Medicine, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
42
|
Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb Cell Fact 2016; 15:196. [PMID: 27846887 PMCID: PMC5111286 DOI: 10.1186/s12934-016-0595-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/06/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cyanobacterium Synechococcus elongatus PCC 7942 holds promise for biochemical conversion, but gene deletion in PCC 7942 is time-consuming and may be lethal to cells. CRISPR interference (CRISPRi) is an emerging technology that exploits the catalytically inactive Cas9 (dCas9) and single guide RNA (sgRNA) to repress sequence-specific genes without the need of gene knockout, and is repurposed to rewire metabolic networks in various procaryotic cells. RESULTS To employ CRISPRi for the manipulation of gene network in PCC 7942, we integrated the cassettes expressing enhanced yellow fluorescent protein (EYFP), dCas9 and sgRNA targeting different regions on eyfp into the PCC 7942 chromosome. Co-expression of dCas9 and sgRNA conferred effective and stable suppression of EYFP production at efficiencies exceeding 99%, without impairing cell growth. We next integrated the dCas9 and sgRNA targeting endogenous genes essential for glycogen accumulation (glgc) and succinate conversion to fumarate (sdhA and sdhB). Transcription levels of glgc, sdhA and sdhB were effectively suppressed with efficiencies depending on the sgRNA binding site. Targeted suppression of glgc reduced the expression to 6.2%, attenuated the glycogen accumulation to 4.8% and significantly enhanced the succinate titer. Targeting sdhA or sdhB also effectively downregulated the gene expression and enhanced the succinate titer ≈12.5-fold to ≈0.58-0.63 mg/L. CONCLUSIONS These data demonstrated that CRISPRi-mediated gene suppression allowed for re-directing the cellular carbon flow, thus paving a new avenue to rationally fine-tune the metabolic pathways in PCC 7942 for the production of biotechnological products.
Collapse
Affiliation(s)
- Chun-Hung Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Claire R Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Yu Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Meng-Ying Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
43
|
Bradley RW, Buck M, Wang B. Recognizing and engineering digital-like logic gates and switches in gene regulatory networks. Curr Opin Microbiol 2016; 33:74-82. [DOI: 10.1016/j.mib.2016.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/14/2016] [Accepted: 07/06/2016] [Indexed: 02/08/2023]
|
44
|
Choi KR, Lee SY. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnol Adv 2016; 34:1180-1209. [PMID: 27566508 DOI: 10.1016/j.biotechadv.2016.08.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now revolutionizing biotechnology as well as biology. Diverse technologies have been derived from CRISPR/Cas systems in bacteria, yet the applications unfortunately have not been actively employed in bacteria as extensively as in eukaryotic organisms. A recent trend of engineering less explored strains in industrial microbiology-metabolic engineering, synthetic biology, and other related disciplines-is demanding facile yet robust tools, and various CRISPR technologies have potential to cater to the demands. Here, we briefly review the science in CRISPR/Cas systems and the milestone inventions that enabled numerous CRISPR technologies. Next, we describe CRISPR/Cas-derived technologies for bacterial strain development, including genome editing and gene expression regulation applications. Then, other CRISPR technologies possessing great potential for industrial applications are described, including typing and tracking of bacterial strains, virome identification, vaccination of bacteria, and advanced antimicrobial approaches. For each application, we note our suggestions for additional improvements as well. In the same context, replication of CRISPR/Cas-based chromosome imaging technologies developed originally in eukaryotic systems is introduced with its potential impact on studying bacterial chromosomal dynamics. Also, the current patent status of CRISPR technologies is reviewed. Finally, we provide some insights to the future of CRISPR technologies for bacterial systems by proposing complementary techniques to be developed for the use of CRISPR technologies in even wider range of applications.
Collapse
Affiliation(s)
- Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea.
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea; BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm 2970, Denmark.
| |
Collapse
|
45
|
Kushwaha M, Rostain W, Prakash S, Duncan JN, Jaramillo A. Using RNA as Molecular Code for Programming Cellular Function. ACS Synth Biol 2016; 5:795-809. [PMID: 26999422 DOI: 10.1021/acssynbio.5b00297] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology.
Collapse
Affiliation(s)
- Manish Kushwaha
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - William Rostain
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| | - Satya Prakash
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - John N. Duncan
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - Alfonso Jaramillo
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| |
Collapse
|
46
|
Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications. Curr Opin Biotechnol 2016; 40:177-184. [PMID: 27344519 DOI: 10.1016/j.copbio.2016.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 11/21/2022]
Abstract
CRISPR-Cas9 has recently emerged as a promising system for multiplexed genome editing as well as epigenome and transcriptome perturbation. Due to its specificity, ease of use and highly modular programmable nature, it has been widely adopted for a variety of applications such as genome editing, transcriptional inhibition and activation, genetic screening, DNA localization imaging, and many more. In this review, we will discuss non-editing applications of CRISPR-Cas9 for transcriptome perturbation, metabolic engineering, and synthetic biology.
Collapse
|
47
|
Cress BF, Jones JA, Kim DC, Leitz QD, Englaender JA, Collins SM, Linhardt RJ, Koffas MAG. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli. Nucleic Acids Res 2016; 44:4472-85. [PMID: 27079979 PMCID: PMC4872105 DOI: 10.1093/nar/gkw231] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/28/2016] [Indexed: 12/19/2022] Open
Abstract
Robust gene circuit construction requires use of promoters exhibiting low crosstalk. Orthogonal promoters have been engineered utilizing an assortment of natural and synthetic transcription factors, but design of large orthogonal promoter-repressor sets is complicated, labor-intensive, and often results in unanticipated crosstalk. The specificity and ease of targeting the RNA-guided DNA-binding protein dCas9 to any 20 bp user-defined DNA sequence makes it a promising candidate for orthogonal promoter regulation. Here, we rapidly construct orthogonal variants of the classic T7-lac promoter using site-directed mutagenesis, generating a panel of inducible hybrid promoters regulated by both LacI and dCas9. Remarkably, orthogonality is mediated by only two to three nucleotide mismatches in a narrow window of the RNA:DNA hybrid, neighboring the protospacer adjacent motif. We demonstrate that, contrary to many reports, one PAM-proximal mismatch is insufficient to abolish dCas9-mediated repression, and we show for the first time that mismatch tolerance is a function of target copy number. Finally, these promoters were incorporated into the branched violacein biosynthetic pathway as dCas9-dependent switches capable of throttling and selectively redirecting carbon flux in Escherichia coli. We anticipate this strategy is relevant for any promoter and will be adopted for many applications at the interface of synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Brady F Cress
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - J Andrew Jones
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Daniel C Kim
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Quentin D Leitz
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jacob A Englaender
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shannon M Collins
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|