• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4639566)   Today's Articles (703)   Subscriber (50287)
For: Tan SZ, Manchester S, Prather KLJ. Controlling Central Carbon Metabolism for Improved Pathway Yields in Saccharomyces cerevisiae. ACS Synth Biol 2016;5:116-24. [PMID: 26544022 DOI: 10.1021/acssynbio.5b00164] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Number Cited by Other Article(s)
1
Zhong Y, Shang C, Tao H, Hou J, Cui Z, Qi Q. Boosting succinic acid production of Yarrowia lipolytica at low pH through enhancing product tolerance and glucose metabolism. Microb Cell Fact 2024;23:291. [PMID: 39443950 DOI: 10.1186/s12934-024-02565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]  Open
2
Rojo MC, Talia PM, Lerena MC, Ponsone ML, Gonzalez ML, Becerra LM, Mercado LA, Martín-Arranz V, Rodríguez-Gómez F, Arroyo-López FN, Combina M. Evaluation of different nitrogen sources on growth and fermentation performance for enhancing ethanol production by wine yeasts. Heliyon 2023;9:e22608. [PMID: 38213578 PMCID: PMC10782155 DOI: 10.1016/j.heliyon.2023.e22608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024]  Open
3
Wu Z, Liang X, Li M, Ma M, Zheng Q, Li D, An T, Wang G. Advances in the optimization of central carbon metabolism in metabolic engineering. Microb Cell Fact 2023;22:76. [PMID: 37085866 PMCID: PMC10122336 DOI: 10.1186/s12934-023-02090-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]  Open
4
Lane S, Turner TL, Jin YS. Glucose assimilation rate determines the partition of flux at pyruvate between lactic acid and ethanol in Saccharomyces cerevisiae. Biotechnol J 2023;18:e2200535. [PMID: 36723451 DOI: 10.1002/biot.202200535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023]
5
Su C, Zhou X, Lu P, Dai X, Chen Z, Liang B, Tian Y, Chen M. Role of coke media strategy in an adsorption-biological coupling technology for wastewater treatment performance, microbial community, and metabolic pathways features. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023;30:13469-13482. [PMID: 36131174 DOI: 10.1007/s11356-022-23090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
6
Gambacorta FV, Wagner ER, Jacobson TB, Tremaine M, Muehlbauer LK, McGee MA, Baerwald JJ, Wrobel RL, Wolters JF, Place M, Dietrich JJ, Xie D, Serate J, Gajbhiye S, Liu L, Vang-Smith M, Coon JJ, Zhang Y, Gasch AP, Amador-Noguez D, Hittinger CT, Sato TK, Pfleger BF. Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway. Synth Syst Biotechnol 2022;7:738-749. [PMID: 35387233 PMCID: PMC8938195 DOI: 10.1016/j.synbio.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022]  Open
7
Hoffman SM, Tang AY, Avalos JL. Optogenetics Illuminates Applications in Microbial Engineering. Annu Rev Chem Biomol Eng 2022;13:373-403. [PMID: 35320696 DOI: 10.1146/annurev-chembioeng-092120-092340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
8
Ma Y, Liu N, Greisen P, Li J, Qiao K, Huang S, Stephanopoulos G. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nat Commun 2022;13:572. [PMID: 35102143 PMCID: PMC8803881 DOI: 10.1038/s41467-022-28277-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/11/2022] [Indexed: 01/28/2023]  Open
9
Liu Y, Huang Y, Lu R, Xin F, Liu G. Synthetic biology applications of the yeast mating signal pathway. Trends Biotechnol 2021;40:620-631. [PMID: 34666896 DOI: 10.1016/j.tibtech.2021.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
10
Qiu X, Gu Y, Du G, Zhang J, Xu P, Li J. Conferring thermotolerant phenotype to wild-type Yarrowia lipolytica improves cell growth and erythritol production. Biotechnol Bioeng 2021;118:3117-3127. [PMID: 34009652 DOI: 10.1002/bit.27835] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/22/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022]
11
Zhao EM, Lalwani MA, Chen JM, Orillac P, Toettcher JE, Avalos JL. Optogenetic Amplification Circuits for Light-Induced Metabolic Control. ACS Synth Biol 2021;10:1143-1154. [PMID: 33835777 DOI: 10.1021/acssynbio.0c00642] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
12
Lovelett RJ, Zhao EM, Lalwani MA, Toettcher JE, Kevrekidis IG, L Avalos J. Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications. ACS Synth Biol 2021;10:219-227. [PMID: 33492138 PMCID: PMC10410538 DOI: 10.1021/acssynbio.0c00372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Du Q, Liu Y, Song Y, Qin Y. Creation of a Low-Alcohol-Production Yeast by a Mutated SPT15 Transcription Regulator Triggers Transcriptional and Metabolic Changes During Wine Fermentation. Front Microbiol 2021;11:597828. [PMID: 33381093 PMCID: PMC7768003 DOI: 10.3389/fmicb.2020.597828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]  Open
14
Zhao EM, Lalwani MA, Lovelett RJ, García-Echauri SA, Hoffman SM, Gonzalez CL, Toettcher JE, Kevrekidis IG, Avalos JL. Design and Characterization of Rapid Optogenetic Circuits for Dynamic Control in Yeast Metabolic Engineering. ACS Synth Biol 2020;9:3254-3266. [PMID: 33232598 PMCID: PMC10399620 DOI: 10.1021/acssynbio.0c00305] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
15
Tian J, Yang G, Gu Y, Sun X, Lu Y, Jiang W. Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces. Nucleic Acids Res 2020;48:8188-8202. [PMID: 32672817 PMCID: PMC7430639 DOI: 10.1093/nar/gkaa602] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]  Open
16
Gambacorta FV, Dietrich JJ, Yan Q, Pfleger BF. Rewiring yeast metabolism to synthesize products beyond ethanol. Curr Opin Chem Biol 2020;59:182-192. [PMID: 33032255 DOI: 10.1016/j.cbpa.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
17
Dinh CV, Prather KLJ. Layered and multi-input autonomous dynamic control strategies for metabolic engineering. Curr Opin Biotechnol 2020;65:156-162. [DOI: 10.1016/j.copbio.2020.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
18
Hill BD, Prabhu P, Rizvi SM, Wen F. Yeast Intracellular Staining (yICS): Enabling High-Throughput, Quantitative Detection of Intracellular Proteins via Flow Cytometry for Pathway Engineering. ACS Synth Biol 2020;9:2119-2131. [PMID: 32603587 DOI: 10.1021/acssynbio.0c00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
19
Liu Y, Ghosh IN, Martien J, Zhang Y, Amador-Noguez D, Landick R. Regulated redirection of central carbon flux enhances anaerobic production of bioproducts in Zymomonas mobilis. Metab Eng 2020;61:261-274. [PMID: 32590077 DOI: 10.1016/j.ymben.2020.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 01/25/2023]
20
Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast. Cell Syst 2019;9:534-547.e5. [DOI: 10.1016/j.cels.2019.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/23/2019] [Accepted: 10/18/2019] [Indexed: 02/01/2023]
21
Lane S, Zhang Y, Yun EJ, Ziolkowski L, Zhang G, Jin YS, Avalos JL. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae. Biotechnol Bioeng 2019;117:372-381. [PMID: 31631318 DOI: 10.1002/bit.27202] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022]
22
Lee SW, Lee BY, Oh MK. Combination of Three Methods to Reduce Glucose Metabolic Rate For Improving N-Acetylglucosamine Production in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018;66:13191-13198. [PMID: 30463407 DOI: 10.1021/acs.jafc.8b04291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
23
Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and D-glucose from citrus peel waste. Nat Commun 2018;9:5059. [PMID: 30498222 PMCID: PMC6265301 DOI: 10.1038/s41467-018-07589-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/19/2018] [Indexed: 11/08/2022]  Open
24
Lalwani MA, Zhao EM, Avalos JL. Current and future modalities of dynamic control in metabolic engineering. Curr Opin Biotechnol 2018;52:56-65. [DOI: 10.1016/j.copbio.2018.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/11/2018] [Indexed: 12/30/2022]
25
Li T, Chen X, Cai Y, Dai J. Artificial Protein Scaffold System (AProSS): An efficient method to optimize exogenous metabolic pathways in Saccharomyces cerevisiae. Metab Eng 2018;49:13-20. [PMID: 30010058 DOI: 10.1016/j.ymben.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023]
26
Lane S, Dong J, Jin YS. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2018;260:380-394. [PMID: 29655899 DOI: 10.1016/j.biortech.2018.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 05/26/2023]
27
Zhao EM, Zhang Y, Mehl J, Park H, Lalwani MA, Toettcher JE, Avalos JL. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 2018;555:683-687. [PMID: 29562237 PMCID: PMC5876151 DOI: 10.1038/nature26141] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 02/13/2018] [Indexed: 12/29/2022]
28
Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. Proc Natl Acad Sci U S A 2018;115:2964-2969. [PMID: 29507236 DOI: 10.1073/pnas.1716920115] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
29
Brice C, Cubillos FA, Dequin S, Camarasa C, Martínez C. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. PLoS One 2018;13:e0192383. [PMID: 29432462 PMCID: PMC5809068 DOI: 10.1371/journal.pone.0192383] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/20/2018] [Indexed: 11/25/2022]  Open
30
Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
31
Porting the synthetic D‐glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae. Biotechnol J 2016;11:1201-8. [DOI: 10.1002/biot.201500563] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 01/14/2023]
32
Lee SW, Oh MK. Improved production ofN-acetylglucosamine inSaccharomyces cerevisiaeby reducing glycolytic flux. Biotechnol Bioeng 2016;113:2524-8. [DOI: 10.1002/bit.26014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 12/16/2022]
33
Liu Z, Liu P, Xiao D, Zhang X. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway. J Ind Microbiol Biotechnol 2016;43:851-60. [PMID: 26946319 DOI: 10.1007/s10295-016-1751-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 11/29/2022]
34
Ma CW, Zhou LB, Zeng AP. Engineering Biomolecular Switches for Dynamic Metabolic Control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016;162:45-76. [DOI: 10.1007/10_2016_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
35
Kuroda K, Ueda M. Cellular and molecular engineering of yeastSaccharomyces cerevisiaefor advanced biobutanol production. FEMS Microbiol Lett 2015;363:fnv247. [DOI: 10.1093/femsle/fnv247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/12/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA