1
|
He J, Liu X, Li C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024; 29:2480. [PMID: 38893355 PMCID: PMC11173547 DOI: 10.3390/molecules29112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cytochrome P450s (P450s), a superfamily of heme-containing enzymes, existed in animals, plants, and microorganisms. P450s can catalyze various regional and stereoselective oxidation reactions, which are widely used in natural product biosynthesis, drug metabolism, and biotechnology. In a typical catalytic cycle, P450s use redox proteins or domains to mediate electron transfer from NAD(P)H to heme iron. Therefore, the main factors determining the catalytic efficiency of P450s include not only the P450s themselves but also their redox-partners and electron transfer pathways. In this review, the electron transfer pathway engineering strategies of the P450s catalytic system are reviewed from four aspects: cofactor regeneration, selection of redox-partners, P450s and redox-partner engineering, and electrochemically or photochemically driven electron transfer.
Collapse
Affiliation(s)
- Jingting He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi 832003, China;
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Xu R, Zhang W, Xi X, Chen J, Wang Y, Du G, Li J, Chen J, Kang Z. Engineering sulfonate group donor regeneration systems to boost biosynthesis of sulfated compounds. Nat Commun 2023; 14:7297. [PMID: 37949843 PMCID: PMC10638397 DOI: 10.1038/s41467-023-43195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Sulfonation as one of the most important modification reactions in nature is essential for many biological macromolecules to function. Development of green sulfonate group donor regeneration systems to efficiently sulfonate compounds of interest is always attractive. Here, we design and engineer two different sulfonate group donor regeneration systems to boost the biosynthesis of sulfated compounds. First, we assemble three modules to construct a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) regeneration system and demonstrate its applicability for living cells. After discovering adenosine 5'-phosphosulfate (APS) as another active sulfonate group donor, we engineer a more simplified APS regeneration system that couples specific sulfotransferase. Next, we develop a rapid indicating system for characterizing the activity of APS-mediated sulfotransferase to rapidly screen sulfotransferase variants with increased activity towards APS. Eventually, the active sulfonate group equivalent values of the APS regeneration systems towards trehalose and p-coumaric acid reach 3.26 and 4.03, respectively. The present PAPS and APS regeneration systems are environmentally friendly and applicable for scaling up the biomanufacturing of sulfated products.
Collapse
Affiliation(s)
- Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Weijao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xintong Xi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jiamin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Improvement of glucosinolates by metabolic engineering in Brassica crops. ABIOTECH 2021; 2:314-329. [PMID: 36303883 PMCID: PMC9590530 DOI: 10.1007/s42994-021-00057-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
Glucosinolates (GSLs) are a class of sulfur- and nitrogen-containing, and amino acid-derived important secondary metabolites, which mainly present in plants of Brassicaceae family, including Brassica crops, such as broccoli, cabbage, and oilseed rape. The bioactive GSL metabolites confer benefits to plant defense, human health, and the unique flavor of some Brassica crops. However, certain GSL profiles have adverse effects and are known as anti-nutritional factors. This has attracted mounting attempts to increase beneficial GSLs and reduce detrimental ones in the most commonly consumed Brassica crops. We provide a comprehensive overview of metabolic engineering applied in Brassica crops to achieve this purpose, including modulation of GSL biosynthesis, ablation of GSL hydrolysis, inhibition of GSL transport processes, and redirection of metabolic flux to GSL. Moreover, advances in omics approaches, i.e., genomics, transcriptome, and metabolome, applied in the elucidation of GSL metabolism in Brassica crops, as well as promising and potential genome-editing technologies are also discussed.
Collapse
|
4
|
Wang L, Jiang H, Liang X, Zhou W, Qiu Y, Xue C, Sun J, Mao X. Preparation of Sulforaphene from Radish Seed Extracts with Recombinant Food-Grade Yarrowia lipolytica Harboring High Myrosinase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5363-5371. [PMID: 33929187 DOI: 10.1021/acs.jafc.1c01400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulforaphene prepared from glucoraphenin by myrosinase is one of the main active ingredients of radish, which has various biological activities and brilliant potential for food and pharmaceutical applications. In this paper, a recombinant food-grade yeast transformant 20-8 with high-level myrosinase activity was constructed by over-expressing a myrosinase gene from Arabidopsis thaliana in Yarrowia lipolytica. The highest myrosinase activity produced by the transformant 20-8 reached 44.84 U/g dry cell weight when it was cultivated in a 10 L fermentor within 108 h. Under the optimal reaction conditions, 6.1 mg of sulforaphene was yielded from 1 g of radish seeds under the catalysis of the crude myrosinase preparation (4.95 U) at room temperature within 1.5 h. What is more is that when the whole yeast cells harboring myrosinase activity were reused 10 times, the sulforaphene yield still reached 92.53% of the initial level. Therefore, this efficient approach has broad application prospects in recyclable and large-scale preparation of sulforaphene.
Collapse
Affiliation(s)
- Lili Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| | - Xingxing Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenting Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yanjun Qiu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| |
Collapse
|
5
|
Zhou A, Zhou K, Li Y. Rational design strategies for functional reconstitution of plant cytochrome P450s in microbial systems. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102005. [PMID: 33647811 PMCID: PMC8435529 DOI: 10.1016/j.pbi.2021.102005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 05/08/2023]
Abstract
Plant natural products (NPs) are of pharmaceutical and agricultural significance, yet the low abundance is largely impeding the broad investigation and utilization. Microbial bioproduction is a promising alternative sourcing to plant NPs. Cytochrome P450s (CYPs) play an essential role in plant secondary metabolism, and functional reconstitution of plant CYPs in the microbial system is one of the major challenges in establishing efficient microbial plant NP bioproduction. In this review, we briefly summarized the recent progress in rational engineering strategies for enhanced activity of plant CYPs in Escherichia coli and Saccharomyces cerevisiae, two commonly used microbial hosts. We believe that in-depth foundational investigations on the native microenvironment of plant CYPs are necessary to adapt the microbial systems for more efficient functional reconstitution of plant CYPs.
Collapse
Affiliation(s)
- Anqi Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
6
|
Mitsiogianni M, Kyriakou S, Anestopoulos I, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. An Evaluation of the Anti-Carcinogenic Response of Major Isothiocyanates in Non-Metastatic and Metastatic Melanoma Cells. Antioxidants (Basel) 2021; 10:antiox10020284. [PMID: 33668498 PMCID: PMC7918923 DOI: 10.3390/antiox10020284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Malignant melanoma is one of the most deadly types of solid cancers, a property mainly attributed to its highly aggressive metastatic form. On the other hand, different classes of isothiocyanates, a class of phytochemicals, present in cruciferous vegetables have been characterized by considerable anti-cancer activity in both in vitro and in vivo experimental models. In the current study, we investigated the anti-cancer response of five isothiocyanates in an in vitro model of melanoma consisting of non-metastatic (A375, B16F-10) and metastatic (VMM1, Hs294T) malignant melanoma as well as non-melanoma epidermoid carcinoma (A431) and non-tumorigenic melanocyte-neighboring keratinocyte (HaCaT) cells. Our aim was to compare different endpoints of cytotoxicity (e.g., reactive oxygen species, intracellular glutathione content, cell cycle growth arrest, apoptosis and necrosis) descriptive of an anti-cancer response between non-metastatic and metastatic melanoma as well as non-melanoma epidermoid carcinoma and non-tumorigenic cells. Our results showed that exposure to isothiocyanates induced an increase in intracellular reactive oxygen species and glutathione contents between non-metastatic and metastatic melanoma cells. The distribution of cell cycle phases followed a similar pattern in a manner where non-metastatic and metastatic melanoma cells appeared to be growth arrested at the G2/M phase while elevated levels of metastatic melanoma cells were shown to be at sub G1 phase, an indicator of necrotic cell death. Finally, metastatic melanoma cells were more sensitive apoptosis and/or necrosis as higher levels were observed compared to non-melanoma epidermoid carcinoma and non-tumorigenic cells. In general, non-melanoma epidermoid carcinoma and non-tumorigenic cells were more resistant under any experimental exposure condition. Overall, our study provides further evidence for the potential development of isothiocyanates as promising anti-cancer agents against non-metastatic and metastatic melanoma cells, a property specific for these cells and not shared by non-melanoma epidermoid carcinoma or non-tumorigenic melanocyte cells.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
| | - Sotiris Kyriakou
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (I.A.)
- The Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
| | - Ioannis Anestopoulos
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (I.A.)
- The Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (I.A.)
- The Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
- Correspondence: ; Tel.: +357-223-92626
| |
Collapse
|
7
|
New frontiers: harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids. Curr Opin Biotechnol 2020; 65:88-93. [DOI: 10.1016/j.copbio.2020.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 01/01/2023]
|
8
|
Yang H, Qin J, Wang X, EI-Shora HM, Yu B. Production of plant-derived anticancer precursor glucoraphanin in chromosomally engineered Escherichia coli. Microbiol Res 2020; 238:126484. [DOI: 10.1016/j.micres.2020.126484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/14/2020] [Accepted: 03/28/2020] [Indexed: 01/07/2023]
|
9
|
Petersen A, Wang C, Crocoll C, Halkier BA. Biotechnological approaches in glucosinolate production. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1231-1248. [PMID: 30080309 PMCID: PMC6585788 DOI: 10.1111/jipb.12705] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GLSs) are sulfur-rich, amino acid-derived defense compounds characteristic of the Brassicales order. In the past, GLSs were mostly known as anti-nutritional factors in fodder, biopesticides in agriculture, and flavors in condiments such as mustard. However, in recent times, GLSs have received increased attention as promoters of human health. This has spurred intensive research towards generating rich sources of health-promoting GLSs. We provide a comprehensive overview of the biotechnological approaches applied to reach this goal. This includes optimization of GLS production and composition in native, GLS-producing plants, including hairy root and cell cultures thereof, as well as synthetic biology approaches in heterologous hosts, such as tobacco and the microbial organisms Escherichia coli and Saccharomyces cerevisiae. The progress using these different approaches is discussed.
Collapse
Affiliation(s)
- Annette Petersen
- DynaMo CenterCopenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 401871 Frederiksberg CDenmark
| | - Cuiwei Wang
- DynaMo CenterCopenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 401871 Frederiksberg CDenmark
| | - Christoph Crocoll
- DynaMo CenterCopenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 401871 Frederiksberg CDenmark
| | - Barbara Ann Halkier
- DynaMo CenterCopenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 401871 Frederiksberg CDenmark
| |
Collapse
|
10
|
Narbad A, Rossiter JT. Gut Glucosinolate Metabolism and Isothiocyanate Production. Mol Nutr Food Res 2018; 62:e1700991. [PMID: 29806736 PMCID: PMC6767122 DOI: 10.1002/mnfr.201700991] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/14/2018] [Indexed: 11/07/2022]
Abstract
The glucosinolate-myrosinase system in plants has been well studied over the years while relatively little research has been undertaken on the bacterial metabolism of glucosinolates. The products of myrosinase-based glucosinolate hydrolysis in the human gut are important to health, particularly the isothiocyanates, as they are shown to have anticancer properties as well as other beneficial roles in human health. This review is concerned with the bacterial metabolism of glucosinolates but is not restricted to the human gut. Isothiocyanate production and nitrile formation are discussed together with the mechanisms of the formation of these compounds. Side chain modification of the methylsulfinylalkyl glucosinolates is reviewed and the implications for bioactivity of the resultant products are also discussed.
Collapse
Affiliation(s)
- Arjan Narbad
- Quadram Institute Bioscience, Food Innovation and Health ISPNorwich Research ParkNorwichNorfolkNR4 7UAUK
| | | |
Collapse
|
11
|
Yang H, Liu F, Li Y, Yu B. Reconstructing Biosynthetic Pathway of the Plant-Derived Cancer Chemopreventive-Precursor Glucoraphanin in Escherichia coli. ACS Synth Biol 2018; 7:121-131. [PMID: 29149798 DOI: 10.1021/acssynbio.7b00256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological data confirmed a strong correlation between regular consumption of cruciferous vegetables and lower cancer risk. This cancer preventive property is mainly attributed to the glucosinolate products, such as glucoraphanin found in broccoli that is derived from methionine. Here we report the first successful reconstruction of the complete biosynthetic pathway of glucoraphanin from methionine in Escherichia coli via gene selection, pathway design, and protein engineering. We used branched-chain amino transferase 3 to catalyze two transamination steps to ensure the purity of precursor molecules and used cysteine as a sulfur donor to simplify the synthesis pathway. Two chimeric cytochrome P450 enzymes were engineered and expressed in E. coli functionally. The original plant C-S lyase was replaced by the Neurospora crassa hercynylcysteine sulfoxide lyase. Other pathway enzymes were successfully mined from Arabidopsis thaliana, Brassica rapa, and Brassica oleracea. Biosynthesis of glucoraphanin upon coexpression of the optimized enzymes in vivo was confirmed by liquid chromatography-tandem mass spectrometry analysis. No other glucosinolate analogues (except for glucoiberin) were identified that could facilitate the downstream purification processes. Production of glucoraphanin in this study laid the foundation for microbial production of such health-beneficial glucosinolates in a large-scale.
Collapse
Affiliation(s)
- Han Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feixia Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|