1
|
Stone A, Youssef A, Rijal S, Zhang R, Tian XJ. Context-dependent redesign of robust synthetic gene circuits. Trends Biotechnol 2024; 42:895-909. [PMID: 38320912 PMCID: PMC11223972 DOI: 10.1016/j.tibtech.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Cells provide dynamic platforms for executing exogenous genetic programs in synthetic biology, resulting in highly context-dependent circuit performance. Recent years have seen an increasing interest in understanding the intricacies of circuit-host relationships, their influence on the synthetic bioengineering workflow, and in devising strategies to alleviate undesired effects. We provide an overview of how emerging circuit-host interactions, such as growth feedback and resource competition, impact both deterministic and stochastic circuit behaviors. We also emphasize control strategies for mitigating these unwanted effects. This review summarizes the latest advances and the current state of host-aware and resource-aware design of synthetic gene circuits.
Collapse
Affiliation(s)
- Austin Stone
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Abdelrahaman Youssef
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Sadikshya Rijal
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Rong Zhang
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Xiao-Jun Tian
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
2
|
Rahman KMT, Butzin NC. Counter-on-chip for bacterial cell quantification, growth, and live-dead estimations. Sci Rep 2024; 14:782. [PMID: 38191788 PMCID: PMC10774380 DOI: 10.1038/s41598-023-51014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
Quantifying bacterial cell numbers is crucial for experimental assessment and reproducibility, but the current technologies have limitations. The commonly used colony forming units (CFU) method causes a time delay in determining the actual numbers. Manual microscope counts are often error-prone for submicron bacteria. Automated systems are costly, require specialized knowledge, and are erroneous when counting smaller bacteria. In this study, we took a different approach by constructing three sequential generations (G1, G2, and G3) of counter-on-chip that accurately and timely count small particles and/or bacterial cells. We employed 2-photon polymerization (2PP) fabrication technology; and optimized the printing and molding process to produce high-quality, reproducible, accurate, and efficient counters. Our straightforward and refined methodology has shown itself to be highly effective in fabricating structures, allowing for the rapid construction of polydimethylsiloxane (PDMS)-based microfluidic devices. The G1 comprises three counting chambers with a depth of 20 µm, which showed accurate counting of 1 µm and 5 µm microbeads. G2 and G3 have eight counting chambers with depths of 20 µm and 5 µm, respectively, and can quickly and precisely count Escherichia coli cells. These systems are reusable, accurate, and easy to use (compared to CFU/ml). The G3 device can give (1) accurate bacterial counts, (2) serve as a growth chamber for bacteria, and (3) allow for live/dead bacterial cell estimates using staining kits or growth assay activities (live imaging, cell tracking, and counting). We made these devices out of necessity; we know no device on the market that encompasses all these features.
Collapse
Affiliation(s)
- K M Taufiqur Rahman
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA.
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, 57006, USA.
| |
Collapse
|
3
|
Abstract
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues.
Collapse
Affiliation(s)
- Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| | - Arantxa Urchueguía
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.,Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| |
Collapse
|
4
|
Gyorgy A. Context-Dependent Stability and Robustness of Genetic Toggle Switches with Leaky Promoters. Life (Basel) 2021; 11:life11111150. [PMID: 34833026 PMCID: PMC8624834 DOI: 10.3390/life11111150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023] Open
Abstract
Multistable switches are ubiquitous building blocks in both systems and synthetic biology. Given their central role, it is thus imperative to understand how their fundamental properties depend not only on the tunable biophysical properties of the switches themselves, but also on their genetic context. To this end, we reveal in this article how these factors shape the essential characteristics of toggle switches implemented using leaky promoters such as their stability and robustness to noise, both at single-cell and population levels. In particular, our results expose the roles that competition for scarce transcriptional and translational resources, promoter leakiness, and cell-to-cell heterogeneity collectively play. For instance, the interplay between protein expression from leaky promoters and the associated cost of relying on shared cellular resources can give rise to tristable dynamics even in the absence of positive feedback. Similarly, we demonstrate that while promoter leakiness always acts against multistability, resource competition can be leveraged to counteract this undesirable phenomenon. Underpinned by a mechanistic model, our results thus enable the context-aware rational design of multistable genetic switches that are directly translatable to experimental considerations, and can be further leveraged during the synthesis of large-scale genetic systems using computer-aided biodesign automation platforms.
Collapse
Affiliation(s)
- Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
5
|
Deter HS, Hossain T, Butzin NC. Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli. Sci Rep 2021; 11:6112. [PMID: 33731833 PMCID: PMC7969968 DOI: 10.1038/s41598-021-85509-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic treatment kills a large portion of a population, while a small, tolerant subpopulation survives. Tolerant bacteria disrupt antibiotic efficacy and increase the likelihood that a population gains antibiotic resistance, a growing health concern. We examined how E. coli transcriptional networks changed in response to lethal ampicillin concentrations. We are the first to apply transcriptional regulatory network (TRN) analysis to antibiotic tolerance by leveraging existing knowledge and our transcriptional data. TRN analysis shows that gene expression changes specific to ampicillin treatment are likely caused by specific sigma and transcription factors typically regulated by proteolysis. These results demonstrate that to survive lethal concentration of ampicillin specific regulatory proteins change activity and cause a coordinated transcriptional response that leverages multiple gene systems.
Collapse
Affiliation(s)
- Heather S Deter
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA.
| |
Collapse
|
6
|
Kuo J, Yuan R, Sánchez C, Paulsson J, Silver PA. Toward a translationally independent RNA-based synthetic oscillator using deactivated CRISPR-Cas. Nucleic Acids Res 2020; 48:8165-8177. [PMID: 32609820 PMCID: PMC7430638 DOI: 10.1093/nar/gkaa557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022] Open
Abstract
In synthetic circuits, CRISPR-Cas systems have been used effectively for endpoint changes from an initial state to a final state, such as in logic gates. Here, we use deactivated Cas9 (dCas9) and deactivated Cas12a (dCas12a) to construct dynamic RNA ring oscillators that cycle continuously between states over time in bacterial cells. While our dCas9 circuits using 103-nt guide RNAs showed irregular fluctuations with a wide distribution of peak-to-peak period lengths averaging approximately nine generations, a dCas12a oscillator design with 40-nt CRISPR RNAs performed much better, having a strongly repressed off-state, distinct autocorrelation function peaks, and an average peak-to-peak period length of ∼7.5 generations. Along with free-running oscillator circuits, we measure repression response times in open-loop systems with inducible RNA steps to compare with oscillator period times. We track thousands of cells for 24+ h at the single-cell level using a microfluidic device. In creating a circuit with nearly translationally independent behavior, as the RNAs control each others' transcription, we present the possibility for a synthetic oscillator generalizable across many organisms and readily linkable for transcriptional control.
Collapse
Affiliation(s)
- James Kuo
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ruoshi Yuan
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Carlos Sánchez
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Johan Paulsson
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
7
|
VanArsdale E, Hörnström D, Sjöberg G, Järbur I, Pitzer J, Payne GF, van Maris AJA, Bentley WE. A Coculture Based Tyrosine-Tyrosinase Electrochemical Gene Circuit for Connecting Cellular Communication with Electronic Networks. ACS Synth Biol 2020; 9:1117-1128. [PMID: 32208720 DOI: 10.1021/acssynbio.9b00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a growing interest in mediating information transfer between biology and electronics. By the addition of redox mediators to various samples and cells, one can both electronically obtain a redox "portrait" of a biological system and, conversely, program gene expression. Here, we have created a cell-based synthetic biology-electrochemical axis in which engineered cells process molecular cues, producing an output that can be directly recorded via electronics-but without the need for added redox mediators. The process is robust; two key components must act together to provide a valid signal. The system builds on the tyrosinase-mediated conversion of tyrosine to L-DOPA and L-DOPAquinone, which are both redox active. "Catalytic" transducer cells provide for signal-mediated surface expression of tyrosinase. Additionally, "reagent" transducer cells synthesize and export tyrosine, a substrate for tyrosinase. In cocultures, this system enables real-time electrochemical transduction of cell activating molecular cues. To demonstrate, we eavesdrop on quorum sensing signaling molecules that are secreted by Pseudomonas aeruginosa, N-(3-oxododecanoyl)-l-homoserine lactone and pyocyanin.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - David Hörnström
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Gustav Sjöberg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Ida Järbur
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Antonius J. A. van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Deter HS, Abualrahi AH, Jadhav P, Schweer EK, Ogle CT, Butzin NC. Proteolytic Queues at ClpXP Increase Antibiotic Tolerance. ACS Synth Biol 2020; 9:95-103. [PMID: 31860281 DOI: 10.1021/acssynbio.9b00358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibiotic tolerance is a widespread phenomenon that renders antibiotic treatments less effective and facilitates antibiotic resistance. Here we explore the role of proteases in antibiotic tolerance, short-term population survival of antibiotics, using queueing theory (i.e., the study of waiting lines), computational models, and a synthetic biology approach. Proteases are key cellular components that degrade proteins and play an important role in a multidrug tolerant subpopulation of cells, called persisters. We found that queueing at the protease ClpXP increases antibiotic tolerance ∼80 and ∼60 fold in an E. coli population treated with ampicillin and ciprofloxacin, respectively. There does not appear to be an effect on antibiotic persistence, which we distinguish from tolerance based on population decay. These results demonstrate that proteolytic queueing is a practical method to probe proteolytic activity in bacterial tolerance and related genes, while limiting the unintended consequences frequently caused by gene knockout and overexpression.
Collapse
Affiliation(s)
- Heather S Deter
- Department of Biology and Microbiology , South Dakota State University , Brookings , South Dakota 57006 , United States
| | - Alawiah H Abualrahi
- Department of Biology and Microbiology , South Dakota State University , Brookings , South Dakota 57006 , United States
| | - Prajakta Jadhav
- Department of Biology and Microbiology , South Dakota State University , Brookings , South Dakota 57006 , United States
| | - Elise K Schweer
- Department of Biology and Microbiology , South Dakota State University , Brookings , South Dakota 57006 , United States
| | | | - Nicholas C Butzin
- Department of Biology and Microbiology , South Dakota State University , Brookings , South Dakota 57006 , United States
| |
Collapse
|
9
|
Abstract
The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. We emphasize that, in addition to well-studied effects of network architecture, network dynamics are shaped by global pleiotropic effects and cell physiology.
Collapse
Affiliation(s)
- David L Shis
- Department of Biosciences, Rice University, Houston, Texas 77005, USA;
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, Texas 77005, USA; .,Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Oleg A Igoshin
- Department of Biosciences, Rice University, Houston, Texas 77005, USA; .,Department of Bioengineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
10
|
Butzin NC, Mather WH. Crosstalk between Diverse Synthetic Protein Degradation Tags in Escherichia coli. ACS Synth Biol 2018; 7:54-62. [PMID: 29193958 DOI: 10.1021/acssynbio.7b00122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, a synthetic circuit in E. coli demonstrated that two proteins engineered with LAA tags targeted to the native protease ClpXP are susceptible to crosstalk due to competition for degradation between proteins. To understand proteolytic crosstalk beyond the single protease regime, we investigated in E. coli a set of synthetic circuits designed to probe the dynamics of existing and novel degradation tags fused to fluorescent proteins. These circuits were tested using both microplate reader and single-cell assays. We first quantified the degradation rates of each tag in isolation. We then tested if there was crosstalk between two distinguishable fluorescent proteins engineered with identical or different degradation tags. We demonstrated that proteolytic crosstalk was indeed not limited to the LAA degradation tag, but was also apparent between other diverse tags, supporting the complexity of the E. coli protein degradation system.
Collapse
Affiliation(s)
- Nicholas C. Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota 57007, United States
| | - William H. Mather
- Quantitative Biosciences, Inc., Solana Beach, California 92075, United States
| |
Collapse
|
11
|
The spatiotemporal system dynamics of acquired resistance in an engineered microecology. Sci Rep 2017; 7:16071. [PMID: 29167517 PMCID: PMC5700104 DOI: 10.1038/s41598-017-16176-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
Great strides have been made in the understanding of complex networks; however, our understanding of natural microecologies is limited. Modelling of complex natural ecological systems has allowed for new findings, but these models typically ignore the constant evolution of species. Due to the complexity of natural systems, unanticipated interactions may lead to erroneous conclusions concerning the role of specific molecular components. To address this, we use a synthetic system to understand the spatiotemporal dynamics of growth and to study acquired resistance in vivo. Our system differs from earlier synthetic systems in that it focuses on the evolution of a microecology from a killer-prey relationship to coexistence using two different non-motile Escherichia coli strains. Using empirical data, we developed the first ecological model emphasising the concept of the constant evolution of species, where the survival of the prey species is dependent on location (distance from the killer) or the evolution of resistance. Our simple model, when expanded to complex microecological association studies under varied spatial and nutrient backgrounds may help to understand the complex relationships between multiple species in intricate natural ecological networks. This type of microecological study has become increasingly important, especially with the emergence of antibiotic-resistant pathogens.
Collapse
|