1
|
Lee PW, Maerkl SJ. Regulatory Components for Bacterial Cell-Free Systems Engineering. ACS Synth Biol 2024; 13:3827-3841. [PMID: 39509282 DOI: 10.1021/acssynbio.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Cell-free systems are advancing synthetic biology through fast prototyping and modularity. Complex regulatory networks can now be implemented in cell-free systems enabling various applications, such as diagnostic tool development, gene circuit prototyping, and metabolic engineering. As functional complexity increases, the need for regulatory components also grows. This review provides a comprehensive overview of native as well as engineered regulatory components and their use in bacterial cell-free systems.
Collapse
Affiliation(s)
- Pao-Wan Lee
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Yurchenko A, Özkul G, van Riel NAW, van Hest JCM, de Greef TFA. Mechanism-based and data-driven modeling in cell-free synthetic biology. Chem Commun (Camb) 2024; 60:6466-6475. [PMID: 38847387 DOI: 10.1039/d4cc01289e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cell-free systems have emerged as a versatile platform in synthetic biology, finding applications in various areas such as prototyping synthetic circuits, biosensor development, and biomanufacturing. To streamline the prototyping process, cell-free systems often incorporate a modeling step that predicts the outcomes of various experimental scenarios, providing a deeper insight into the underlying mechanisms and functions. There are two recognized approaches for modeling these systems: mechanism-based modeling, which models the underlying reaction mechanisms; and data-driven modeling, which makes predictions based on data without preconceived interactions between system components. In this highlight, we focus on the latest advancements in both modeling approaches for cell-free systems, exploring their potential for the design and optimization of synthetic genetic circuits.
Collapse
Affiliation(s)
- Angelina Yurchenko
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Gökçe Özkul
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Natal A W van Riel
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eindhoven MedTech Innovation Center, 5612 AX Eindhoven, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
3
|
Gunter HM, Youlten SE, Reis ALM, McCubbin T, Madala BS, Wong T, Stevanovski I, Cipponi A, Deveson IW, Santini NS, Kummerfeld S, Croucher PI, Marcellin E, Mercer TR. A universal molecular control for DNA, mRNA and protein expression. Nat Commun 2024; 15:2480. [PMID: 38509097 PMCID: PMC10954659 DOI: 10.1038/s41467-024-46456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The expression of genes encompasses their transcription into mRNA followed by translation into protein. In recent years, next-generation sequencing and mass spectrometry methods have profiled DNA, RNA and protein abundance in cells. However, there are currently no reference standards that are compatible across these genomic, transcriptomic and proteomic methods, and provide an integrated measure of gene expression. Here, we use synthetic biology principles to engineer a multi-omics control, termed pREF, that can act as a universal molecular standard for next-generation sequencing and mass spectrometry methods. The pREF sequence encodes 21 synthetic genes that can be in vitro transcribed into spike-in mRNA controls, and in vitro translated to generate matched protein controls. The synthetic genes provide qualitative controls that can measure sensitivity and quantitative accuracy of DNA, RNA and peptide detection. We demonstrate the use of pREF in metagenome DNA sequencing and RNA sequencing experiments and evaluate the quantification of proteins using mass spectrometry. Unlike previous spike-in controls, pREF can be independently propagated and the synthetic mRNA and protein controls can be sustainably prepared by recipient laboratories using common molecular biology techniques. Together, this provides a universal synthetic standard able to integrate genomic, transcriptomic and proteomic methods.
Collapse
Affiliation(s)
- Helen M Gunter
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- BASE mRNA Facility, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott E Youlten
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Andre L M Reis
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, New South Wales, Australia
- School of Electrical and Information Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Tim McCubbin
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Brisbane, Queensland, Australia
| | - Bindu Swapna Madala
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, New South Wales, Australia
| | - Ted Wong
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Igor Stevanovski
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, New South Wales, Australia
| | - Arcadi Cipponi
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, New South Wales, Australia
- School of Electrical and Information Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Nadia S Santini
- Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, INIFAP, Ciudad de México, 04010, Mexico
| | - Sarah Kummerfeld
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Esteban Marcellin
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Brisbane, Queensland, Australia
| | - Tim R Mercer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
- BASE mRNA Facility, The University of Queensland, Brisbane, Queensland, Australia.
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Brisbane, Queensland, Australia.
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
| |
Collapse
|
4
|
Deich C, Gaut NJ, Sato W, Engelhart AE, Adamala KP. New Aequorea Fluorescent Proteins for Cell-Free Bioengineering. ACS Synth Biol 2023; 12:1371-1376. [PMID: 37018763 DOI: 10.1021/acssynbio.3c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Recently, a new subset of fluorescent proteins has been identified from the Aequorea species of jellyfish. These fluorescent proteins were characterized in vivo; however, there has not been validation of these proteins within cell-free systems. Cell-free systems and technology development is a rapidly expanding field, encompassing foundational research, synthetic cells, bioengineering, biomanufacturing, and drug development. Cell-free systems rely heavily on fluorescent proteins as reporters. Here we characterize and validate this new set of Aequorea proteins for use in a variety of cell-free and synthetic cell expression platforms.
Collapse
Affiliation(s)
- Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nathaniel J Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Cash B, Gaut NJ, Deich C, Johnson LL, Engelhart AE, Adamala KP. Parasites, Infections, and Inoculation in Synthetic Minimal Cells. ACS OMEGA 2023; 8:7045-7056. [PMID: 36844541 PMCID: PMC9948217 DOI: 10.1021/acsomega.2c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Synthetic minimal cells provide a controllable and engineerable model for biological processes. While much simpler than any live natural cell, synthetic cells offer a chassis for investigating the chemical foundations of key biological processes. Herein, we show a synthetic cell system with host cells, interacting with parasites and undergoing infections of varying severity. We demonstrate how the host can be engineered to resist infection, we investigate the metabolic cost of carrying resistance, and we show an inoculation that immunizes the host against pathogens. Our work expands the synthetic cell engineering toolbox by demonstrating host-pathogen interactions and mechanisms for acquiring immunity. This brings synthetic cell systems one step closer to providing a comprehensive model of complex, natural life.
Collapse
|
6
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
7
|
Patterson AT, Styczynski MP. Rapid and Finely-Tuned Expression for Deployable Sensing Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:141-161. [PMID: 37316621 DOI: 10.1007/10_2023_223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organisms from across the tree of life have evolved highly efficient mechanisms for sensing molecules of interest using biomolecular machinery that can in turn be quite valuable for the development of biosensors. However, purification of such machinery for use in in vitro biosensors is costly, while the use of whole cells as in vivo biosensors often leads to long sensor response times and unacceptable sensitivity to the chemical makeup of the sample. Cell-free expression systems overcome these weaknesses by removing the requirements associated with maintaining living sensor cells, allowing for increased function in toxic environments and rapid sensor readout at a production cost that is often more reasonable than purification. Here, we focus on the challenge of implementing cell-free protein expression systems that meet the stringent criteria required for them to serve as the basis for field-deployable biosensors. Fine-tuning expression to meet these requirements can be achieved through careful selection of the sensing and output elements, as well as through optimization of reaction conditions via tuning of DNA/RNA concentrations, lysate preparation methods, and buffer conditions. Through careful sensor engineering, cell-free systems can continue to be successfully used for the production of tightly regulated, rapidly expressing genetic circuits for biosensors.
Collapse
Affiliation(s)
- Alexandra T Patterson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
Oulton T, Obiero J, Rodriguez I, Ssewanyana I, Dabbs RA, Bachman CM, Greenhouse B, Drakeley C, Felgner PL, Stone W, Tetteh KKA. Plasmodium falciparum serology: A comparison of two protein production methods for analysis of antibody responses by protein microarray. PLoS One 2022; 17:e0273106. [PMID: 36037183 PMCID: PMC9423672 DOI: 10.1371/journal.pone.0273106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
The evaluation of protein antigens as putative serologic biomarkers of infection has increasingly shifted to high-throughput, multiplex approaches such as the protein microarray. In vitro transcription/translation (IVTT) systems-a similarly high-throughput protein expression method-are already widely utilised in the production of protein microarrays, though purified recombinant proteins derived from more traditional whole cell based expression systems also play an important role in biomarker characterisation. Here we have performed a side-by-side comparison of antigen-matched protein targets from an IVTT and purified recombinant system, on the same protein microarray. The magnitude and range of antibody responses to purified recombinants was found to be greater than that of IVTT proteins, and responses between targets from different expression systems did not clearly correlate. However, responses between amino acid sequence-matched targets from each expression system were more closely correlated. Despite the lack of a clear correlation between antigen-matched targets produced in each expression system, our data indicate that protein microarrays produced using either method can be used confidently, in a context dependent manner, though care should be taken when comparing data derived from contrasting approaches.
Collapse
Affiliation(s)
- Tate Oulton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joshua Obiero
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Rebecca A. Dabbs
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phil L. Felgner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Will Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
9
|
Romantseva E, Alperovich N, Ross D, Lund SP, Strychalski EA. Effects of DNA template preparation on variability in cell-free protein production. Synth Biol (Oxf) 2022; 7:ysac015. [PMID: 36046152 PMCID: PMC9425043 DOI: 10.1093/synbio/ysac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/01/2022] [Accepted: 08/12/2022] [Indexed: 08/08/2023] Open
Abstract
DNA templates for protein production remain an unexplored source of variability in the performance of cell-free expression (CFE) systems. To characterize this variability, we investigated the effects of two common DNA extraction methodologies, a postprocessing step and manual versus automated preparation on protein production using CFE. We assess the concentration of the DNA template, the quality of the DNA template in terms of physical damage and the quality of the DNA solution in terms of purity resulting from eight DNA preparation workflows. We measure the variance in protein titer and rate of protein production in CFE reactions associated with the biological replicate of the DNA template, the technical replicate DNA solution prepared with the same workflow and the measurement replicate of nominally identical CFE reactions. We offer practical guidance for preparing and characterizing DNA templates to achieve acceptable variability in CFE performance.
Collapse
Affiliation(s)
| | - Nina Alperovich
- National Institute of Standards and Technology, Gaithersburg, MD USA
| | - David Ross
- National Institute of Standards and Technology, Gaithersburg, MD USA
| | - Steven P Lund
- National Institute of Standards and Technology, Gaithersburg, MD USA
| | | |
Collapse
|
10
|
Copeland CE, Kim J, Copeland PL, Heitmeier CJ, Kwon YC. Characterizing a New Fluorescent Protein for a Low Limit of Detection Sensing in the Cell-Free System. ACS Synth Biol 2022; 11:2800-2810. [PMID: 35850511 PMCID: PMC9396652 DOI: 10.1021/acssynbio.2c00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free protein synthesis-based biosensors have been developed as highly accurate, low-cost biosensors. However, since most biomarkers exist at low concentrations in various types of biopsies, the biosensor's dynamic range must be increased in the system to achieve low limits of detection necessary while deciphering from higher background signals. Many attempts to increase the dynamic range have relied on amplifying the input signal from the analyte, which can lead to complications of false positives. In this study, we aimed to increase the protein synthesis capability of the cell-free protein synthesis system and the output signal of the reporter protein to achieve a lower limit of detection. We utilized a new fluorescent protein, mNeonGreen, which produces a higher output than those commonly used in cell-free biosensors. Optimizations of DNA sequence and the subsequent cell-free protein synthesis reaction conditions allowed characterizing protein expression variability by given DNA template types, reaction environment, and storage additives that cause the greatest time constraint on designing the cell-free biosensor. Finally, we characterized the fluorescence kinetics of mNeonGreen compared to the commonly used reporter protein, superfolder green fluorescent protein. We expect that this finely tuned cell-free protein synthesis platform with the new reporter protein can be used with sophisticated synthetic gene circuitry networks to increase the dynamic range of a cell-free biosensor to reach lower detection limits and reduce the false-positive proportion.
Collapse
Affiliation(s)
- Caroline E Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jeehye Kim
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Pearce L Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Chloe J Heitmeier
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
11
|
Gonzales D, Yandrapalli N, Robinson T, Zechner C, Tang TYD. Cell-Free Gene Expression Dynamics in Synthetic Cell Populations. ACS Synth Biol 2022; 11:205-215. [PMID: 35057626 PMCID: PMC8787815 DOI: 10.1021/acssynbio.1c00376] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/29/2022]
Abstract
The ability to build synthetic cellular populations from the bottom-up provides the groundwork to realize minimal living tissues comprising single cells which can communicate and bridge scales into multicellular systems. Engineered systems made of synthetic micron-sized compartments and integrated reaction networks coupled with mathematical modeling can facilitate the design and construction of complex and multiscale chemical systems from the bottom-up. Toward this goal, we generated populations of monodisperse liposomes encapsulating cell-free expression systems (CFESs) using double-emulsion microfluidics and quantified transcription and translation dynamics within individual synthetic cells of the population using a fluorescent Broccoli RNA aptamer and mCherry protein reporter. CFE dynamics in bulk reactions were used to test different coarse-grained resource-limited gene expression models using model selection to obtain transcription and translation rate parameters by likelihood-based parameter estimation. The selected model was then applied to quantify cell-free gene expression dynamics in populations of synthetic cells. In combination, our experimental and theoretical approaches provide a statistically robust analysis of CFE dynamics in bulk and monodisperse synthetic cell populations. We demonstrate that compartmentalization of CFESs leads to different transcription and translation rates compared to bulk CFE and show that this is due to the semipermeable lipid membrane that allows the exchange of materials between the synthetic cells and the external environment.
Collapse
Affiliation(s)
- David
T. Gonzales
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
| | | | - Tom Robinson
- Max
Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Christoph Zechner
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
- Physics
of Life, Cluster of Excellence, TU Dresden, 01603 Dresden, Germany
| | - T-Y. Dora Tang
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
- Physics
of Life, Cluster of Excellence, TU Dresden, 01603 Dresden, Germany
| |
Collapse
|
12
|
Falgenhauer E, von Schönberg S, Meng C, Mückl A, Vogele K, Emslander Q, Ludwig C, Simmel FC. Evaluation of an E. coli Cell Extract Prepared by Lysozyme-Assisted Sonication via Gene Expression, Phage Assembly and Proteomics. Chembiochem 2021; 22:2805-2813. [PMID: 34240805 PMCID: PMC8518995 DOI: 10.1002/cbic.202100257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Indexed: 11/08/2022]
Abstract
Over the past decades, starting from crude cell extracts, a variety of successful preparation protocols and optimized reaction conditions have been established for the production of cell-free gene expression systems. One of the crucial steps during the preparation of cell extract-based expression systems is the cell lysis procedure itself, which largely determines the quality of the active components of the extract. Here we evaluate the utility of an E. coli cell extract, which was prepared using a combination of lysozyme incubation and a gentle sonication step. As quality measure, we demonstrate the cell-free expression of YFP at concentrations up to 0.6 mg/mL. In addition, we produced and assembled T7 bacteriophages up to a titer of 108 PFU/mL. State-of-the-art quantitative proteomics was used to compare the produced extracts with each other and with a commercial extract. The differences in protein composition were surprisingly small between lysozyme-assisted sonication (LAS) extracts, but we observed an increase in the release of DNA-binding proteins for increasing numbers of sonication cycles. Proteins taking part in carbohydrate metabolism, glycolysis, amino acid and nucleotide related pathways were found to be more abundant in the LAS extract, while proteins related to RNA modification and processing, DNA modification and replication, transcription regulation, initiation, termination and the TCA cycle were found enriched in the commercial extract.
Collapse
Affiliation(s)
- Elisabeth Falgenhauer
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Sophie von Schönberg
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS)Technical University of MunichGregor-Mendel-Strasse 485354FreisingGermany
| | - Andrea Mückl
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Kilian Vogele
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Quirin Emslander
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS)Technical University of MunichGregor-Mendel-Strasse 485354FreisingGermany
| | - Friedrich C. Simmel
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| |
Collapse
|
13
|
Ryckelynck M. Development and Applications of Fluorogen/Light-Up RNA Aptamer Pairs for RNA Detection and More. Methods Mol Biol 2021; 2166:73-102. [PMID: 32710404 DOI: 10.1007/978-1-0716-0712-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The central role of RNA in living systems made it highly desirable to have noninvasive and sensitive technologies allowing for imaging the synthesis and the location of these molecules in living cells. This need motivated the development of small pro-fluorescent molecules called "fluorogens" that become fluorescent upon binding to genetically encodable RNAs called "light-up aptamers." Yet, the development of these fluorogen/light-up RNA pairs is a long and thorough process starting with the careful design of the fluorogen and pursued by the selection of a specific and efficient synthetic aptamer. This chapter summarizes the main design and the selection strategies used up to now prior to introducing the main pairs. Then, the vast application potential of these molecules for live-cell RNA imaging and other applications is presented and discussed.
Collapse
Affiliation(s)
- Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
14
|
Batista AC, Soudier P, Kushwaha M, Faulon J. Optimising protein synthesis in cell‐free systems, a review. ENGINEERING BIOLOGY 2021; 5:10-19. [PMID: 36968650 PMCID: PMC9996726 DOI: 10.1049/enb2.12004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
Over the last decades, cell-free systems have been extensively used for in vitro protein expression. A vast range of protocols and cellular sources varying from prokaryotes and eukaryotes are now available for cell-free technology. However, exploiting the maximum capacity of cell free systems is not achieved by using traditional protocols. Here, what are the strategies and choices one can apply to optimise cell-free protein synthesis have been reviewed. These strategies provide robust and informative improvements regarding transcription, translation and protein folding which can later be used for the establishment of individual best cell-free reactions per lysate batch.
Collapse
Affiliation(s)
- Angelo C. Batista
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Paul Soudier
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Manish Kushwaha
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Jean‐Loup Faulon
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
- SYNBIOCHEM Center School of Chemistry Manchester Institute of Biotechnology The University of Manchester Manchester UK
| |
Collapse
|
15
|
Cole SD, Miklos AE, Chiao AC, Sun ZZ, Lux MW. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synth Syst Biotechnol 2020; 5:252-267. [PMID: 32775710 PMCID: PMC7398980 DOI: 10.1016/j.synbio.2020.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-free systems that mimic essential cell functions, such as gene expression, have dramatically expanded in recent years, both in terms of applications and widespread adoption. Here we provide a review of cell-extract methods, with a specific focus on prokaryotic systems. Firstly, we describe the diversity of Escherichia coli genetic strains available and their corresponding utility. We then trace the history of cell-extract methodology over the past 20 years, showing key improvements that lower the entry level for new researchers. Next, we survey the rise of new prokaryotic cell-free systems, with associated methods, and the opportunities provided. Finally, we use this historical perspective to comment on the role of methodology improvements and highlight where further improvements may be possible.
Collapse
Affiliation(s)
- Stephanie D. Cole
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Aleksandr E. Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Abel C. Chiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Zachary Z. Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
16
|
Müller J, Siemann-Herzberg M, Takors R. Modeling Cell-Free Protein Synthesis Systems-Approaches and Applications. Front Bioeng Biotechnol 2020; 8:584178. [PMID: 33195146 PMCID: PMC7655533 DOI: 10.3389/fbioe.2020.584178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
In vitro systems are ideal setups to investigate the basic principles of biochemical reactions and subsequently the bricks of life. Cell-free protein synthesis (CFPS) systems mimic the transcription and translation processes of whole cells in a controlled environment and allow the detailed study of single components and reaction networks. In silico studies of CFPS systems help us to understand interactions and to identify limitations and bottlenecks in those systems. Black-box models laid the foundation for understanding the production and degradation dynamics of macromolecule components such as mRNA, ribosomes, and proteins. Subsequently, more sophisticated models revealed shortages in steps such as translation initiation and tRNA supply and helped to partially overcome these limitations. Currently, the scope of CFPS modeling has broadened to various applications, ranging from the screening of kinetic parameters to the stochastic analysis of liposome-encapsulated CFPS systems and the assessment of energy supply properties in combination with flux balance analysis (FBA).
Collapse
Affiliation(s)
| | | | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
17
|
Colant N, Melinek B, Teneb J, Goldrick S, Rosenberg W, Frank S, Bracewell DG. A rational approach to improving titer in Escherichia coli-based cell-free protein synthesis reactions. Biotechnol Prog 2020; 37:e3062. [PMID: 32761750 DOI: 10.1002/btpr.3062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Cell-free protein synthesis (CFPS) is an established method for rapid recombinant protein production. Advantages like short synthesis times and an open reaction environment make CFPS a desirable platform for new and difficult-to-express products. Most recently, interest has grown in using the technology to make larger amounts of material. This has been driven through a variety of reasons from making site specific antibody drug conjugates, to emergency response, to the safe manufacture of toxic biological products. We therefore need robust methods to determine the appropriate reaction conditions for product expression in CFPS. Here we propose a process development strategy for Escherichia coli lysate-based CFPS reactions that can be completed in as little as 48 hr. We observed the most dramatic increases in titer were due to the E. coli strain for the cell extract. Therefore, we recommend identifying a high-producing cell extract for the product of interest as a first step. Next, we manipulated the plasmid concentration, amount of extract, temperature, concentrated reaction mix pH levels, and length of reaction. The influence of these process parameters on titer was evaluated through multivariate data analysis. The process parameters with the highest impact on titer were subsequently included in a design of experiments to determine the conditions that increased titer the most in the design space. This proposed process development strategy resulted in superfolder green fluorescent protein titers of 0.686 g/L, a 38% improvement on the standard operating conditions, and hepatitis B core antigen titers of 0.386 g/L, a 190% improvement.
Collapse
Affiliation(s)
- Noelle Colant
- Department of Biochemical Engineering, University College London, London, UK
| | - Beatrice Melinek
- Department of Biochemical Engineering, University College London, London, UK
| | - Jaime Teneb
- Department of Biochemical Engineering, University College London, London, UK
| | - Stephen Goldrick
- Department of Biochemical Engineering, University College London, London, UK
| | - William Rosenberg
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, UK
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, London, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
18
|
Abstract
Synthetic biology is a field of scientific research that applies engineering principles to living organisms and living systems. It is a field that is increasing in scope with respect to organisms engineered, practical outcomes, and systems integration. There is a commercial dimension as well, where living organisms are engineered as green technologies that could offer alternatives to industrial standards in the pharmaceutical and petroleum-based chemical industries. This review attempts to provide an introduction to this field as well as a consideration of important contributions that exemplify how synthetic biology may be commensurate or even disproportionate with the complexity of living systems. The engineerability of living systems remains a difficult task, yet advancements are reported at an ever-increasing pace.
Collapse
Affiliation(s)
- Martin M Hanczyc
- University of Trento, Department of Cellular, Computational, and Integrative Biology (CIBIO)
- University of New Mexico, Chemical and Biological Engineering.
| |
Collapse
|
19
|
Dopp JL, Jo YR, Reuel NF. Methods to reduce variability in E. Coli-based cell-free protein expression experiments. Synth Syst Biotechnol 2019; 4:204-211. [PMID: 31750411 PMCID: PMC6849339 DOI: 10.1016/j.synbio.2019.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) is an established biotechnology tool that has shown great utility in many applications such as prototyping proteins, building genetic circuits, designing biosensors, and expressing cytotoxic proteins. Although CFPS has been widely deployed, the many, varied methods presented in the literature can be challenging for new users to adopt. From our experience and others who newly enter the field, one of the most frustrating aspects of applying CFPS as a laboratory can be the large levels of variability that are present within experimental replicates. Herein we provide a retrospective summary of CFPS methods that reduce variability significantly. These methods include optimized extract preparation, fully solubilizing the master mix components, and careful mixing of the reaction. These have reduced our coefficient of variation from 97.3% to 1.2%. Moreover, these methods allow complete novices (e.g. semester rotation undergraduate students) to provide data that is comparable to experienced users, thus allowing broader participation in this exciting research area.
Collapse
|
20
|
Weise LI, Heymann M, Mayr V, Mutschler H. Cell-free expression of RNA encoded genes using MS2 replicase. Nucleic Acids Res 2019; 47:10956-10967. [PMID: 31566241 PMCID: PMC6847885 DOI: 10.1093/nar/gkz817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
RNA replicases catalyse transcription and replication of viral RNA genomes. Of particular interest for in vitro studies are phage replicases due to their small number of host factors required for activity and their ability to initiate replication in the absence of any primers. However, the requirements for template recognition by most phage replicases are still only poorly understood. Here, we show that the active replicase of the archetypical RNA phage MS2 can be produced in a recombinant cell-free expression system. We find that the 3' terminal fusion of antisense RNAs with a domain derived from the reverse complement of the wild type MS2 genome generates efficient templates for transcription by the MS2 replicase. The new system enables DNA-independent gene expression both in batch reactions and in microcompartments. Finally, we demonstrate that MS2-based RNA-dependent transcription-translation reactions can be used to control DNA-dependent gene expression by encoding a viral DNA-dependent RNA polymerase on a MS2 RNA template. Our study sheds light on the template requirements of the MS2 replicase and paves the way for new in vitro applications including the design of genetic circuits combining both DNA- and RNA-encoded systems.
Collapse
Affiliation(s)
- Laura I Weise
- Biomimetic Systems, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Michael Heymann
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Viktoria Mayr
- Biomimetic Systems, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Hannes Mutschler
- Biomimetic Systems, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
21
|
Lehr FX, Hanst M, Vogel M, Kremer J, Göringer HU, Suess B, Koeppl H. Cell-Free Prototyping of AND-Logic Gates Based on Heterogeneous RNA Activators. ACS Synth Biol 2019; 8:2163-2173. [PMID: 31393707 DOI: 10.1021/acssynbio.9b00238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNA-based devices controlling gene expression bear great promise for synthetic biology, as they offer many advantages such as short response times and light metabolic burden compared to protein-circuits. However, little work has been done regarding their integration to multilevel regulated circuits. In this work, we combined a variety of small transcriptional activator RNAs (STARs) and toehold switches to build highly effective AND-gates. To characterize the components and their dynamic range, we used an Escherichia coli (E. coli) cell-free transcription-translation (TX-TL) system dispensed via nanoliter droplets. We analyzed a prototype gate in vitro as well as in silico, employing parametrized ordinary differential equations (ODEs), for which parameters were inferred via parallel tempering, a Markov chain Monte Carlo (MCMC) method. On the basis of this analysis, we created nine additional AND-gates and tested them in vitro. The functionality of the gates was found to be highly dependent on the concentration of the activating RNA for either the STAR or the toehold switch. All gates were successfully implemented in vivo, offering a dynamic range comparable to the level of protein circuits. This study shows the potential of a rapid prototyping approach for RNA circuit design, using cell-free systems in combination with a model prediction.
Collapse
Affiliation(s)
- François-Xavier Lehr
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Maleen Hanst
- Department of Electrical Engineering, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| | - Marc Vogel
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Jennifer Kremer
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - H. Ulrich Göringer
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Heinz Koeppl
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Department of Electrical Engineering, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|
22
|
Yeoh JW, Ng KBI, Teh AY, Zhang J, Chee WKD, Poh CL. An Automated Biomodel Selection System (BMSS) for Gene Circuit Designs. ACS Synth Biol 2019; 8:1484-1497. [PMID: 31035759 DOI: 10.1021/acssynbio.8b00523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Constructing a complex functional gene circuit composed of different modular biological parts to achieve the desired performance remains challenging without a proper understanding of how the individual module behaves. To address this, mathematical models serve as an important tool toward better interpretation by quantifying the performance of the overall gene circuit, providing insights, and guiding the experimental designs. As different gene circuits might require exclusively different mathematical representations in the form of ordinary differential equations to capture their transient dynamic behaviors, a recurring challenge in model development is the selection of the appropriate model. Here, we developed an automated biomodel selection system (BMSS) which includes a library of pre-established models with intuitive or unintuitive features derived from a vast array of expression profiles. Selection of models is built upon the Akaike information criteria (AIC). We tested the automated platform using characterization data of routinely used inducible systems, constitutive expression systems, and several different logic gate systems (NOT, AND, and OR gates). The BMSS achieved a good agreement for all the different characterization data sets and managed to select the most appropriate model accordingly. To enable exchange and reproducibility of gene circuit design models, the BMSS platform also generates Synthetic Biology Open Language (SBOL)-compliant gene circuit diagrams and Systems Biology Markup Language (SBML) output files. All aspects of the algorithm were programmed in a modular manner to ease the efforts on model extensions or customizations by users. Taken together, the BMSS which is implemented in Python supports users in deriving the best mathematical model candidate in a fast, efficient, and automated way using part/circuit characterization data.
Collapse
Affiliation(s)
- Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 119077
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore 119077
| | - Kai Boon Ivan Ng
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 119077
| | - Ai Ying Teh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 119077
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore 119077
| | - JingYun Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 119077
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore 119077
| | - Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 119077
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore 119077
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 119077
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore 119077
| |
Collapse
|
23
|
Yue K, Zhu Y, Kai L. Cell-Free Protein Synthesis: Chassis toward the Minimal Cell. Cells 2019; 8:cells8040315. [PMID: 30959805 PMCID: PMC6523147 DOI: 10.3390/cells8040315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
The quest for a minimal cell not only sheds light on the fundamental principles of life but also brings great advances in related applied fields such as general biotechnology. Minimal cell projects came from the study of a plausible route to the origin of life. Later on, research extended and also referred to the construction of artificial cells, or even more broadly, as in vitro synthetic biology. The cell-free protein synthesis (CFPS) techniques harness the central cellular activity of transcription/translation in an open environment, providing the framework for multiple cellular processes assembling. Therefore, CFPS systems have become the first choice in the construction of the minimal cell. In this review, we focus on the recent advances in the quantitative analysis of CFPS and on its advantage for addressing the bottom-up assembly of a minimal cell and illustrate the importance of systemic chassis behavior, such as stochasticity under a compartmentalized micro-environment.
Collapse
Affiliation(s)
- Ke Yue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
| | - Yiyong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| |
Collapse
|
24
|
Kai L, Schwille P. Cell-Free Protein Synthesis and Its Perspectives for Assembling Cells from the Bottom-Up. ACTA ACUST UNITED AC 2019; 3:e1800322. [PMID: 32648712 DOI: 10.1002/adbi.201800322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The underlying idea of synthetic biology is that biological reactions/modules/systems can be precisely engineered and controlled toward desired products. Numerous efforts in the past decades in deciphering the complexity of biological systems in vivo have led to a variety of tools for synthetic biology, especially based on recombinant DNA. However, one generic limitation of all living systems is that the vast majority of energy input is dedicated to maintain the system as a whole, rather than the small part of interest. Cell-free synthetic biology is aiming at exactly this fundamental limitation, providing the next level of flexibility for engineering and designing biological systems in vitro. New technology has continuously inspired cell-free biology and extended its applications, including gene circuits, spatiotemporally controlled pathways, coactivated catalysts systems, and rationally designed multienzyme pathways, in particular, minimal cell construction. In the context of this special issue, discussing work being carried out in the "MaxSynBio" consortium, the advances in characterizing stochasticity and dynamics of cell-free protein synthesis within cell-sized compartments, as well as the molecular crowding effect, are discussed. The organization of spatial heterogeneity is the key prerequisite for achieving hierarchy and stepwise assembly of minimal cells from the bottom-up.
Collapse
Affiliation(s)
- Lei Kai
- School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, 221116, Xuzhou, P. R. China.,Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| |
Collapse
|
25
|
Doerr A, de Reus E, van Nies P, van der Haar M, Wei K, Kattan J, Wahl A, Danelon C. Modelling cell-free RNA and protein synthesis with minimal systems. Phys Biol 2019; 16:025001. [DOI: 10.1088/1478-3975/aaf33d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
27
|
Atitey K, Loskot P, Rees P. Inferring distributions from observed mRNA and protein copy counts in genetic circuits. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaef5c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Norred SE, Caveney PM, Chauhan G, Collier LK, Collier CP, Abel SM, Simpson ML. Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns. ACS Synth Biol 2018; 7:1251-1258. [PMID: 29687993 DOI: 10.1021/acssynbio.8b00139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting-the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increase in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA ("spatial noise") that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. These results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.
Collapse
Affiliation(s)
- S Elizabeth Norred
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee Knoxville and Oak Ridge National Laboratory , Knoxville , Tennessee 37996 , United States
| | - Patrick M Caveney
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee Knoxville and Oak Ridge National Laboratory , Knoxville , Tennessee 37996 , United States
| | - Gaurav Chauhan
- Chemical and Biomolecular Engineering Department , University of Tennessee Knoxville , Knoxville , Tennessee 37996 , United States
| | - Lauren K Collier
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Steven M Abel
- Chemical and Biomolecular Engineering Department , University of Tennessee Knoxville , Knoxville , Tennessee 37996 , United States
| | - Michael L Simpson
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee Knoxville and Oak Ridge National Laboratory , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
29
|
Schwarz-Schilling M, Dupin A, Chizzolini F, Krishnan S, Mansy SS, Simmel FC. Optimized Assembly of a Multifunctional RNA-Protein Nanostructure in a Cell-Free Gene Expression System. NANO LETTERS 2018; 18:2650-2657. [PMID: 29564885 DOI: 10.1021/acs.nanolett.8b00526] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular complexes composed of RNA molecules and proteins are promising multifunctional nanostructures for a wide variety of applications in biological cells or in artificial cellular systems. In this study, we systematically address some of the challenges associated with the expression and assembly of such hybrid structures using cell-free gene expression systems. As a model structure, we investigated a pRNA-derived RNA scaffold functionalized with four distinct aptamers, three of which bind to proteins, streptavidin and two fluorescent proteins, while one binds the small molecule dye malachite green (MG). Using MG fluorescence and Förster resonance energy transfer (FRET) between the RNA-scaffolded proteins, we assess critical assembly parameters such as chemical stability, binding efficiency, and also resource sharing effects within the reaction compartment. We then optimize simultaneous expression and coassembly of the RNA-protein nanostructure within a single-compartment cell-free gene expression system. We demonstrate expression and assembly of the multicomponent nanostructures inside of emulsion droplets and their aptamer-mediated localization onto streptavidin-coated substrates, plus the successful assembly of the hybrid structures inside of bacterial cells.
Collapse
Affiliation(s)
| | - Aurore Dupin
- Physics Department E14 , Technical University Munich , 85748 Garching , Germany
| | - Fabio Chizzolini
- CIBIO , University of Trento , Via Sommarive 9 , 38123 Povo , Italy
| | - Swati Krishnan
- Physics Department E14 , Technical University Munich , 85748 Garching , Germany
| | - Sheref S Mansy
- CIBIO , University of Trento , Via Sommarive 9 , 38123 Povo , Italy
| | - Friedrich C Simmel
- Physics Department E14 , Technical University Munich , 85748 Garching , Germany
- Nanosystems Initiative Munich , 80539 Munich , Germany
| |
Collapse
|
30
|
Bouhedda F, Autour A, Ryckelynck M. Light-Up RNA Aptamers and Their Cognate Fluorogens: From Their Development to Their Applications. Int J Mol Sci 2017; 19:ijms19010044. [PMID: 29295531 PMCID: PMC5795994 DOI: 10.3390/ijms19010044] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022] Open
Abstract
An RNA-based fluorogenic module consists of a light-up RNA aptamer able to specifically interact with a fluorogen to form a fluorescent complex. Over the past decade, significant efforts have been devoted to the development of such modules, which now cover the whole visible spectrum, as well as to their engineering to serve in a wide range of applications. In this review, we summarize the different strategies used to develop each partner (the fluorogen and the light-up RNA aptamer) prior to giving an overview of their applications that range from live-cell RNA imaging to the set-up of high-throughput drug screening pipelines. We then conclude with a critical discussion on the current limitations of these modules and how combining in vitro selection with screening approaches may help develop even better molecules.
Collapse
Affiliation(s)
- Farah Bouhedda
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, UPR 9002, F-67000 Strasbourg, France.
| | - Alexis Autour
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, UPR 9002, F-67000 Strasbourg, France.
| | - Michael Ryckelynck
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, UPR 9002, F-67000 Strasbourg, France.
| |
Collapse
|
31
|
Nieß A, Failmezger J, Kuschel M, Siemann-Herzberg M, Takors R. Experimentally Validated Model Enables Debottlenecking of in Vitro Protein Synthesis and Identifies a Control Shift under in Vivo Conditions. ACS Synth Biol 2017. [PMID: 28627886 DOI: 10.1021/acssynbio.7b00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free (in vitro) protein synthesis (CFPS) systems provide a versatile tool that can be used to investigate different aspects of the transcription-translation machinery by reducing cells to the basic functions of protein formation. Recent improvements in reaction stability and lysate preparation offer the potential to expand the scope of in vitro biosynthesis from a research tool to a multifunctional and versatile platform for protein production and synthetic biology. To date, even the best-performing CFPS systems are drastically slower than in vivo references. Major limitations are imposed by ribosomal activities that progress in an order of magnitude slower on the mRNA template. Owing to the complex nature of the ribosomal machinery, conventional "trial and error" experiments only provide little insight into how the desired performance could be improved. By applying a DNA-sequence-oriented mechanistic model, we analyzed the major differences between cell-free in vitro and in vivo protein synthesis. We successfully identified major limiting elements of in vitro translation, namely the supply of ternary complexes consisting of EFTu and tRNA. Additionally, we showed that diluted in vitro systems suffer from reduced ribosome numbers. On the basis of our model, we propose a new experimental design predicting 90% increased translation rates, which were well achieved in experiments. Furthermore, we identified a shifting control in the translation rate, which is characterized by availability of the ternary complex under in vitro conditions and the initiation of translation in a living cell. Accordingly, the model can successfully be applied to sensitivity analyses and experimental design.
Collapse
Affiliation(s)
- Alexander Nieß
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Jurek Failmezger
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Maike Kuschel
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | | | - Ralf Takors
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| |
Collapse
|
32
|
Moore SJ, MacDonald JT, Freemont PS. Cell-free synthetic biology for in vitro prototype engineering. Biochem Soc Trans 2017; 45:785-791. [PMID: 28620040 PMCID: PMC5473021 DOI: 10.1042/bst20170011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells.
Collapse
Affiliation(s)
- Simon J Moore
- Department of Medicine, Centre for Synthetic Biology and Innovation, South Kensington Campus, London, U.K
| | - James T MacDonald
- Department of Medicine, Centre for Synthetic Biology and Innovation, South Kensington Campus, London, U.K
| | - Paul S Freemont
- Department of Medicine, Centre for Synthetic Biology and Innovation, South Kensington Campus, London, U.K.
| |
Collapse
|