1
|
Paulsel TQ, Williams GJ. Engineering of a Malonyl-CoA Ligase for Production of Fluorinated Polyketide Extender Units. Chembiochem 2024; 25:e202400532. [PMID: 39037570 PMCID: PMC11543508 DOI: 10.1002/cbic.202400532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Enzymatic platforms for producing malonyl-CoA-based extender units required for polyketide biosynthesis are often based on malonyl-CoA ligases such as MatB from Rhizobium trifolii and Rhodopseudomonas palustris. However, despite broad interest in the fluorination of polyketides and prior success with engineering MatB homologs, the suitability of MatB for accessing the tertiary substituted fluoromethylmalonyl-CoA needed to produce flurithromycin and solithromycin has not yet been reported. Herein, we report the structure-guided engineering of a MatB homolog to optimize the production of fluoromethylmalonyl-CoA, resulting in a variant with increased conversion and providing a platform to produce a suitable building block mixture for fluorinated macrolide production. Additionally, the mutant demonstrated broad utility for various substituted malonyl-CoAs. The MatB mutant sets the stage to access fluorinated macrolides by coupling it with altered PKS machinery to install fluorinated malonyl-CoA into macrolide scaffolds.
Collapse
Affiliation(s)
- Thaddeus Q Paulsel
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
- Comparative Medicine Institute, NC State University, 1001 William Moore Drive, Raleigh, NC 27606, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
- Comparative Medicine Institute, NC State University, 1001 William Moore Drive, Raleigh, NC 27606, USA
| |
Collapse
|
2
|
Buyachuihan L, Reiners S, Zhao Y, Grininger M. The malonyl/acetyl-transferase from murine fatty acid synthase is a promiscuous engineering tool for editing polyketide scaffolds. Commun Chem 2024; 7:187. [PMID: 39181936 PMCID: PMC11344766 DOI: 10.1038/s42004-024-01269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Modular polyketide synthases (PKSs) play a vital role in the biosynthesis of complex natural products with pharmaceutically relevant properties. Their modular architecture makes them an attractive target for engineering to produce platform chemicals and drugs. In this study, we demonstrate that the promiscuous malonyl/acetyl-transferase domain (MAT) from murine fatty acid synthase serves as a highly versatile tool for the production of polyketide analogs. We evaluate the relevance of the MAT domain using three modular PKSs; the short trimodular venemycin synthase (VEMS), as well as modules of the PKSs deoxyerythronolide B synthase (DEBS) and pikromycin synthase (PIKS) responsible for the production of the antibiotic precursors erythromycin and pikromycin. To assess the performance of the MAT-swapped PKSs, we analyze the protein quality and run engineered polyketide syntheses in vitro. Our experiments include the chemoenzymatic synthesis of fluorinated macrolactones. Our study showcases MAT-based reprogramming of polyketide biosynthesis as a facile option for the regioselective editing of substituents decorating the polyketide scaffold.
Collapse
Affiliation(s)
- Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Simon Reiners
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Yue Zhao
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Paulsel TQ, Williams GJ. Current State-of-the-Art Toward Chemoenzymatic Synthesis of Polyketide Natural Products. Chembiochem 2023; 24:e202300386. [PMID: 37615926 PMCID: PMC10964317 DOI: 10.1002/cbic.202300386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Polyketide natural products have significant promise as pharmaceutical targets for human health and as molecular tools to probe disease and complex biological systems. While the biosynthetic logic of polyketide synthases (PKS) is well-understood, biosynthesis of designer polyketides remains challenging due to several bottlenecks, including substrate specificity constraints, disrupted protein-protein interactions, and protein solubility and folding issues. Focusing on substrate specificity, PKSs are typically interrogated using synthetic thioesters. PKS assembly lines and their products offer a wealth of information when studied in a chemoenzymatic fashion. This review provides an overview of the past two decades of polyketide chemoenzymatic synthesis and their contributions to the field of chemical biology. These synthetic strategies have successfully yielded natural product derivatives while providing critical insights into enzymatic promiscuity and mechanistic activity.
Collapse
Affiliation(s)
- Thaddeus Q Paulsel
- Department of Chemistry, NC State University Dabney Hall, Room 208, Campus Box 8204, 2620 Yarbrough Dr., NC State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, NC State University, 1060 William Moore Dr., NC State University, Raleigh, NC 27607, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University Dabney Hall, Room 208, Campus Box 8204, 2620 Yarbrough Dr., NC State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, NC State University, 1060 William Moore Dr., NC State University, Raleigh, NC 27607, USA
| |
Collapse
|
4
|
Höger B, Peifer C, Beitz E. Cell-free production of fluorescent proteins for the discovery of novel ribosome-targeting antibiotics. J Microbiol Methods 2023; 213:106814. [PMID: 37652138 DOI: 10.1016/j.mimet.2023.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
Various issues including the overuse of antibiotics has led to the development of threatening multidrug-resistant bacterial strains urging development of novel anti-infectives. One quarter of current clinical phase III antibiotic drug candidates address ribosomal protein translation as a target. Here, we describe an effective cell-free in vitro screening system for inhibitors of bacterial ribosome activity with direct fluorescence read-out. Using ribosomal S30 extracts from Escherichia coli, Salmonella enterica, and Pseudomonas putida, the validity of this system is demonstrated by concentration-dependent inhibition of translation by a set of different classes of translation-targeting drugs. The single-compartment cell-free translation reaction is compatible with multi-well formats. Fluorophore formation of green fluorescent protein or monomeric NeonGreen occurs in an hour time frame without the need of adding reagents for secondary enzymatic detection saving handling time, and prohibiting false positives. As label-free readout, the dose response further allows for IC50 determination in the same setup. Together, we show that cell-free production of fluorescent proteins for the discovery of ribosome-targeting antibiotics is feasible and amenable to high-throughput applications.
Collapse
Affiliation(s)
- Bastian Höger
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, Kiel, Germany
| | - Christian Peifer
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, Kiel, Germany.
| |
Collapse
|
5
|
Englund E, Schmidt M, Nava AA, Klass S, Keiser L, Dan Q, Katz L, Yuzawa S, Keasling JD. Biosensor Guided Polyketide Synthases Engineering for Optimization of Domain Exchange Boundaries. Nat Commun 2023; 14:4871. [PMID: 37573440 PMCID: PMC10423236 DOI: 10.1038/s41467-023-40464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Type I modular polyketide synthases (PKSs) are multi-domain enzymes functioning like assembly lines. Many engineering attempts have been made for the last three decades to replace, delete and insert new functional domains into PKSs to produce novel molecules. However, inserting heterologous domains often destabilize PKSs, causing loss of activity and protein misfolding. To address this challenge, here we develop a fluorescence-based solubility biosensor that can quickly identify engineered PKSs variants with minimal structural disruptions. Using this biosensor, we screen a library of acyltransferase (AT)-exchanged PKS hybrids with randomly assigned domain boundaries, and we identify variants that maintain wild type production levels. We then probe each position in the AT linker region to determine how domain boundaries influence structural integrity and identify a set of optimized domain boundaries. Overall, we have successfully developed an experimentally validated, high-throughput method for making hybrid PKSs that produce novel molecules.
Collapse
Affiliation(s)
- Elias Englund
- Joint BioEnergy Institute, Emeryville, CA, USA
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Matthias Schmidt
- Joint BioEnergy Institute, Emeryville, CA, USA
- Institute of Applied Microbiology, Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
- Biological Systems and Engineering Division, Lawrence Berkeley National laboratory, Berkeley, CA, USA
| | - Alberto A Nava
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Sarah Klass
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Leah Keiser
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Qingyun Dan
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National laboratory, Berkeley, CA, USA
| | - Leonard Katz
- Joint BioEnergy Institute, Emeryville, CA, USA
- QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Satoshi Yuzawa
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National laboratory, Berkeley, CA, USA
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate school of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National laboratory, Berkeley, CA, USA.
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- QB3, University of California, Berkeley, Berkeley, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark.
- Center for Synthetic biochemistry, Institute for Synthetic biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| |
Collapse
|
6
|
Laskova J, Serdyukov A, Kosenko I, Ananyev I, Titova E, Druzina A, Sivaev I, Antonets AA, Nazarov AA, Bregadze VI. New Azido Coumarins as Potential Agents for Fluorescent Labeling and Their "Click" Chemistry Reactions for the Conjugation with closo-Dodecaborate Anion. Molecules 2022; 27:molecules27238575. [PMID: 36500667 PMCID: PMC9738631 DOI: 10.3390/molecules27238575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Novel fluorescent 7-methoxy- and 7-(diethylamino)-coumarins modified with azido-group on the side chain have been synthesized. Their photophysical properties and single crystals structure characteristics have been studied. In order to demonstrate the possibilities of fluorescent labeling, obtained coumarins have been tested with closo-dodecaborate derivative bearing terminal alkynyl group. CuI catalyzed Huisgen 1,3-dipolar cycloaddition reaction has led to fluorescent conjugates formation. The absorption-emission spectra of the formed conjugates have been presented. The antiproliferative activity and uptake of compounds against several human cell lines were evaluated.
Collapse
Affiliation(s)
- Julia Laskova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
- Correspondence: ; Tel.: +41-78-243-1408
| | - Alexander Serdyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Irina Kosenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Ivan Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia
| | - Ekaterina Titova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Anna Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| | - Igor Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
- Basic Department of Chemistry of Innovative Materials and Technologies, G.V. Plekhanov Russian University of Economics, 36 Stremyannyi Line, 117997 Moscow, Russia
| | - Anastasia A. Antonets
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexey A. Nazarov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| |
Collapse
|
7
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Sirirungruang S, Ad O, Privalsky TM, Ramesh S, Sax JL, Dong H, Baidoo EEK, Amer B, Khosla C, Chang MCY. Engineering site-selective incorporation of fluorine into polyketides. Nat Chem Biol 2022; 18:886-893. [PMID: 35817967 PMCID: PMC10030150 DOI: 10.1038/s41589-022-01070-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/23/2022] [Indexed: 02/01/2023]
Abstract
Although natural products and synthetic small molecules both serve important medicinal functions, their structures and chemical properties are relatively distinct. To expand the molecular diversity available for drug discovery, one strategy is to blend the effective attributes of synthetic and natural molecules. A key feature found in synthetic compounds that is rare in nature is the use of fluorine to tune drug behavior. We now report a method to site-selectively incorporate fluorine into complex structures to produce regioselectively fluorinated full-length polyketides. We engineered a fluorine-selective trans-acyltransferase to produce site-selectively fluorinated erythromycin precursors in vitro. We further demonstrated that these analogs could be produced in vivo in Escherichia coli on engineering of the fluorinated extender unit pool. By using engineered microbes, elaborate fluorinated compounds can be produced by fermentation, offering the potential for expanding the identification and development of bioactive fluorinated small molecules.
Collapse
Affiliation(s)
| | - Omer Ad
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Swetha Ramesh
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Joel L Sax
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hongjun Dong
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Edward E K Baidoo
- Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Bashar Amer
- Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Michelle C Y Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Handel F, Kulik A, Wex KW, Berscheid A, Saur J, Winkler A, Wibberg D, Kalinowski J, Brötz-Oesterhelt H, Mast Y. Ψ-Footprinting approach for the identification of protein synthesis inhibitor producers. NAR Genom Bioinform 2022; 4:lqac055. [PMID: 35855324 PMCID: PMC9290621 DOI: 10.1093/nargab/lqac055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Today, one of the biggest challenges in antibiotic research is a targeted prioritization of natural compound producer strains and an efficient dereplication process to avoid undesired rediscovery of already known substances. Thereby, genome sequence-driven mining strategies are often superior to wet-lab experiments because they are generally faster and less resource-intensive. In the current study, we report on the development of a novel in silico screening approach to evaluate the genetic potential of bacterial strains to produce protein synthesis inhibitors (PSI), which was termed the protein synthesis inhibitor ('psi’) target gene footprinting approach = Ψ-footprinting. The strategy is based on the occurrence of protein synthesis associated self-resistance genes in genome sequences of natural compound producers. The screening approach was applied to 406 genome sequences of actinomycetes strains from the DSMZ strain collection, resulting in the prioritization of 15 potential PSI producer strains. For twelve of them, extract samples showed protein synthesis inhibitory properties in in vitro transcription/translation assays. For four strains, namely Saccharopolyspora flava DSM 44771, Micromonospora aurantiaca DSM 43813, Nocardioides albertanoniae DSM 25218, and Geodermatophilus nigrescens DSM 45408, the protein synthesis inhibitory substance amicoumacin was identified by HPLC-MS analysis, which proved the functionality of the in silico screening approach.
Collapse
Affiliation(s)
- Franziska Handel
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen , Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
| | - Andreas Kulik
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen , Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
| | - Katharina W Wex
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
| | - Julian S Saur
- Biomolecular Chemistry, Institute of Organic Chemistry, University of Tübingen , Tübingen , Baden-Württemberg 72076 , Germany
| | - Anika Winkler
- Center for Biotechnology (CeBiTec), Bielefeld University , Universitätsstraße 27, 33615 Bielefeld , Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University , Universitätsstraße 27, 33615 Bielefeld , Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University , Universitätsstraße 27, 33615 Bielefeld , Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
- Cluster of Excellence Controlling Microbes to Fight Infection , Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen , Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
- Department Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures , Inhoffenstraße 7B, 38124 Braunschweig , Germany
- Technical University Braunschweig, Department of Microbiology , Rebenring 56, 38106 Braunschweig , Germany
| |
Collapse
|
10
|
Gu D, Zhang W. Engineered biosynthesis of alkyne-tagged polyketides. Methods Enzymol 2022; 665:347-373. [PMID: 35379442 PMCID: PMC9829517 DOI: 10.1016/bs.mie.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polyketides have demonstrated their significance as therapeutics, industrial products, pesticides, and biological probes following intense study over the past decades. Tagging polyketides with a bioorthogonal functionality enables various applications such as diversification, quantification, visualization and mode-of-action elucidation. The terminal alkyne moiety, as a small, stable and highly selective clickable functionality, is widely adopted in tagging natural products. De novo biosynthesis of alkyne-tagged polyketides offers the unique advantage of reducing the background from feeding the biorthogonal moiety itself, leading to the accomplishment of in situ generation of a clickable functionality for bioorthogonal reactions. Here, we introduce several engineering strategies to apply terminal alkyne biosynthetic machinery, represented by JamABC, which produces a short terminal alkyne-bearing fatty acyl chain on a carrier protein, to functions with different downstream polyketide synthases (PKSs). Successful results in engineering type III and type I PKSs provide engineering guidelines and strategies that are applicable to additional PKSs to produce targeted alkyne-tagged metabolites for chemical and biological applications.
Collapse
Affiliation(s)
- Di Gu
- Department of Chemistry, University of California, Berkeley, CA, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, United States,Chan Zuckerberg Biohub, San Francisco, CA, United States,Corresponding author:
| |
Collapse
|
11
|
Stunkard LM, Benjamin AB, Bower JB, Huth TJ, Lohman JR. Substrate Enolate Intermediate and Mimic Captured in the Active Site of Streptomyces coelicolor Methylmalonyl-CoA Epimerase*. Chembiochem 2021; 23:e202100487. [PMID: 34856049 DOI: 10.1002/cbic.202100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/02/2021] [Indexed: 11/05/2022]
Abstract
Methylmalonyl-CoA epimerase (MMCE) is proposed to use general acid-base catalysis, but the proposed catalytic glutamic acids are highly asymmetrical in the active site unlike many other racemases. To gain insight into the puzzling relationships between catalytic mechanism, structure, and substrate preference, we solved Streptomyces coelicolor MMCE structures with substrate or 2-nitropropionyl-CoA, an intermediate/transition state analogue. Both ligand bound structures have a planar methylmalonate/2-nitropropionyl moiety indicating a deprotonated C2 with ≥4 Å distances to either catalytic acid. Both glutamates interact with the carboxylate/nitro group, either directly or through other residues. This suggests the proposed catalytic acids sequentially catalyze proton shifts between C2 and carboxylate of the substrate with an enolate intermediate. In addition, our structures provide a platform to design mutations for expanding substrate scope to support combinatorial biosynthesis.
Collapse
Affiliation(s)
- Lee M Stunkard
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, USA
| | - Aaron B Benjamin
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, USA
| | - James B Bower
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, USA
| | - Tyler J Huth
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, USA
| | - Jeremy R Lohman
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
|
13
|
Beck C, Blin K, Gren T, Jiang X, Mohite OS, Palazzotto E, Tong Y, Charusanti P, Weber T. Metabolic Engineering of Filamentous Actinomycetes. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Kalkreuter E, Bingham KS, Keeler AM, Lowell AN, Schmidt JJ, Sherman DH, Williams GJ. Computationally-guided exchange of substrate selectivity motifs in a modular polyketide synthase acyltransferase. Nat Commun 2021; 12:2193. [PMID: 33850151 PMCID: PMC8044089 DOI: 10.1038/s41467-021-22497-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
Polyketides, one of the largest classes of natural products, are often clinically relevant. The ability to engineer polyketide biosynthesis to produce analogs is critically important. Acyltransferases (ATs) of modular polyketide synthases (PKSs) catalyze the installation of malonyl-CoA extenders into polyketide scaffolds. ATs have been targeted extensively to site-selectively introduce various extenders into polyketides. Yet, a complete inventory of AT residues responsible for substrate selection has not been established, limiting the scope of AT engineering. Here, molecular dynamics simulations are used to prioritize ~50 mutations within the active site of EryAT6 from erythromycin biosynthesis, leading to identification of two previously unexplored structural motifs. Exchanging both motifs with those from ATs with alternative extender specificities provides chimeric PKS modules with expanded and inverted substrate specificity. Our enhanced understanding of AT substrate selectivity and application of this motif-swapping strategy are expected to advance our ability to engineer PKSs towards designer polyketides.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, NC State University, Raleigh, NC, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Kyle S Bingham
- Department of Chemistry, NC State University, Raleigh, NC, USA
- UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Aaron M Keeler
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Andrew N Lowell
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Jennifer J Schmidt
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA.
| |
Collapse
|
15
|
Calzini MA, Malico AA, Mitchler MM, Williams GJ. Protein engineering for natural product biosynthesis and synthetic biology applications. Protein Eng Des Sel 2021; 34:gzab015. [PMID: 34137436 PMCID: PMC8209613 DOI: 10.1093/protein/gzab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
As protein engineering grows more salient, many strategies have emerged to alter protein structure and function, with the goal of redesigning and optimizing natural product biosynthesis. Computational tools, including machine learning and molecular dynamics simulations, have enabled the rational mutagenesis of key catalytic residues for enhanced or altered biocatalysis. Semi-rational, directed evolution and microenvironment engineering strategies have optimized catalysis for native substrates and increased enzyme promiscuity beyond the scope of traditional rational approaches. These advances are made possible using novel high-throughput screens, including designer protein-based biosensors with engineered ligand specificity. Herein, we detail the most recent of these advances, focusing on polyketides, non-ribosomal peptides and isoprenoids, including their native biosynthetic logic to provide clarity for future applications of these technologies for natural product synthetic biology.
Collapse
Affiliation(s)
- Miles A Calzini
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Alexandra A Malico
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Melissa M Mitchler
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
- Comparative Medicine Institute, NC State University Raleigh, Raleigh, NC 27695-8204, USA
| |
Collapse
|
16
|
|
17
|
Musiol-Kroll EM, Wohlleben W. Maßgeschneiderte Polyketidsynthasen zur Herstellung von Polyketid-Derivaten. BIOSPEKTRUM 2020; 26:437-439. [PMID: 32834540 PMCID: PMC7318727 DOI: 10.1007/s12268-020-1416-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Ewa M. Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT), Mikrobiologie/Biotechnologie Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Deutschland
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT), Mikrobiologie/Biotechnologie Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Deutschland
| |
Collapse
|
18
|
Drufva EE, Hix EG, Bailey CB. Site directed mutagenesis as a precision tool to enable synthetic biology with engineered modular polyketide synthases. Synth Syst Biotechnol 2020; 5:62-80. [PMID: 32637664 PMCID: PMC7327777 DOI: 10.1016/j.synbio.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Modular polyketide synthases (PKSs) are a multidomain megasynthase class of biosynthetic enzymes that have great promise for the development of new compounds, from new pharmaceuticals to high value commodity and specialty chemicals. Their colinear biosynthetic logic has been viewed as a promising platform for synthetic biology for decades. Due to this colinearity, domain swapping has long been used as a strategy to introduce molecular diversity. However, domain swapping often fails because it perturbs critical protein-protein interactions within the PKS. With our increased level of structural elucidation of PKSs, using judicious targeted mutations of individual residues is a more precise way to introduce molecular diversity with less potential for global disruption of the protein architecture. Here we review examples of targeted point mutagenesis to one or a few residues harbored within the PKS that alter domain specificity or selectivity, affect protein stability and interdomain communication, and promote more complex catalytic reactivity.
Collapse
Key Words
- ACP, acyl carrier protein
- AT, acyltransferase
- DEBS, 6-deoxyerthronolide B synthase
- DH, dehydratase
- EI, enoylisomerase
- ER, enoylreductase
- KR, ketoreductase
- KS, ketosynthase
- LM, loading module
- MT, methyltransferase
- Mod, module
- PKS, polyketide synthase
- PS, pyran synthase
- Polyketide synthase
- Protein engineering
- Rational design
- SNAC, N-acetyl cysteamine
- Saturation mutagenesis
- Site directed mutagenesis
- Synthetic biology
Collapse
Affiliation(s)
- Erin E. Drufva
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Elijah G. Hix
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Constance B. Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| |
Collapse
|
19
|
Porterfield WB, Poenateetai N, Zhang W. Engineered Biosynthesis of Alkyne-Tagged Polyketides by Type I PKSs. iScience 2020; 23:100938. [PMID: 32146323 PMCID: PMC7063234 DOI: 10.1016/j.isci.2020.100938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 01/20/2023] Open
Abstract
Polyketides produced by modular polyketide synthases (PKSs) are important small molecules widely used as drugs, pesticides, and biological probes. Tagging these polyketides with a clickable functionality enables the visualization, diversification, and mode of action study through bio-orthogonal chemistry. We report the de novo biosynthesis of alkyne-tagged polyketides by modular type I PKSs through starter unit engineering. Specifically, we use JamABC, a terminal alkyne biosynthetic machinery from the jamaicamide B biosynthetic pathway, in combination with representative modular PKSs. We demonstrate that JamABC works as a trans loading system for engineered type I PKSs to produce alkyne-tagged polyketides. In addition, the production efficiency can be improved by enhancing the interactions between the carrier protein (JamC) and PKSs using docking domains and site-directed mutagenesis of JamC. This work thus provides engineering guidelines and strategies that are applicable to additional modular type I PKSs to produce targeted alkyne-tagged metabolites for chemical and biological applications. Alkyne-tagged polyketides are de novo biosynthesized using type I PKSs Docking domains and ACP mutagenesis improve alkyne starter unit translocation Docking domains, but not ACP mutagenesis, perturb alkyne biosynthetic machinery
Collapse
Affiliation(s)
- William B Porterfield
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94709, USA
| | - Nannalin Poenateetai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94709, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94709, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc Natl Acad Sci U S A 2019; 116:20366-20375. [PMID: 31548381 PMCID: PMC6789908 DOI: 10.1073/pnas.1913493116] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although CRISPR-Cas9 tools dramatically simplified the genetic manipulation of actinomycetes, significant concerns of genome instability caused by the DNA double-strand breaks (DSBs) and common off-target effects remain. To address these concerns, we developed CRISPR-BEST, a DSB-free and high-fidelity single-nucleotide–resolution base editing system for streptomycetes and validated its use by determining editing properties and genome-wide off-target effects. Furthermore, our CRISPR-BEST toolkit supports Csy4-based multiplexing to target multiple genes of interest in parallel. We believe that our CRISPR-BEST approach is a significant improvement over existing genetic manipulation methods to engineer streptomycetes, especially for those strains that cannot be genome-edited using normal DSB-based genome editing systems, such as CRISPR-Cas9. Streptomycetes serve as major producers of various pharmacologically and industrially important natural products. Although CRISPR-Cas9 systems have been developed for more robust genetic manipulations, concerns of genome instability caused by the DNA double-strand breaks (DSBs) and the toxicity of Cas9 remain. To overcome these limitations, here we report development of the DSB-free, single-nucleotide–resolution genome editing system CRISPR-BEST (CRISPR-Base Editing SysTem), which comprises a cytidine (CRISPR-cBEST) and an adenosine (CRISPR-aBEST) deaminase-based base editor. Specifically targeted by an sgRNA, CRISPR-cBEST can efficiently convert a C:G base pair to a T:A base pair and CRISPR-aBEST can convert an A:T base pair to a G:C base pair within a window of approximately 7 and 6 nucleotides, respectively. CRISPR-BEST was validated and successfully used in different Streptomyces species. Particularly in nonmodel actinomycete Streptomyces collinus Tü365, CRISPR-cBEST efficiently inactivated the 2 copies of kirN gene that are in the duplicated kirromycin biosynthetic pathways simultaneously by STOP codon introduction. Generating such a knockout mutant repeatedly failed using the conventional DSB-based CRISPR-Cas9. An unbiased, genome-wide off-target evaluation indicates the high fidelity and applicability of CRISPR-BEST. Furthermore, the system supports multiplexed editing with a single plasmid by providing a Csy4-based sgRNA processing machinery. To simplify the protospacer identification process, we also updated the CRISPy-web (https://crispy.secondarymetabolites.org), and now it allows designing sgRNAs specifically for CRISPR-BEST applications.
Collapse
|
21
|
Kornfuehrer T, Eustáquio AS. Diversification of polyketide structures via synthase engineering. MEDCHEMCOMM 2019; 10:1256-1272. [PMID: 32180918 PMCID: PMC7053703 DOI: 10.1039/c9md00141g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
Polyketide natural products possess diverse biological activities including antibiotic, anticancer, and immunosuppressive. Their equally varied and complex structures arise from head-to-tail condensation of simple carboxyacyl monomers. Since the seminal discovery that biosynthesis of polyketides such as the macrolide erythromycin is catalyzed by uncharacteristically large, multifunctional enzymes, termed modular type I polyketide synthases, chemists and biologists alike have been inspired to harness the apparent modularity of the synthases to further diversify polyketide structures. Yet, initial attempts to perform "combinatorial biosynthesis" failed due to challenges associated with maintaining the structural and catalytic integrity of large, chimeric synthases. Fast forward nearly 30 years, and advancements in our understanding of polyketide synthase structure and function have allowed the field to make significant progress toward effecting desired modifications to polyketide scaffolds in addition to engineering small, chiral fragments. This review highlights selected examples of polyketide diversification via control of monomer selection, oxidation state, stereochemistry, and cyclization. We conclude with a perspective on the present and future of polyketide structure diversification and hope that the examples presented here will encourage medicinal chemists to embrace polyketide synthetic biology as a means to revitalize polyketide drug discovery.
Collapse
Affiliation(s)
- Taylor Kornfuehrer
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences , College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . ; Tel: +1 3124137082
| | - Alessandra S Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences , College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . ; Tel: +1 3124137082
| |
Collapse
|
22
|
Palazzotto E, Tong Y, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 2019; 37:107366. [PMID: 30853630 DOI: 10.1016/j.biotechadv.2019.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
23
|
Grote M, Schulz F. Exploring the Promiscuous Enzymatic Activation of Unnatural Polyketide Extender Units in Vitro and in Vivo for Monensin Biosynthesis. Chembiochem 2019; 20:1183-1189. [DOI: 10.1002/cbic.201800734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Marius Grote
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstrassee 150 44780 Bochum Germany
| | - Frank Schulz
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstrassee 150 44780 Bochum Germany
| |
Collapse
|
24
|
Kalkreuter E, CroweTipton JM, Lowell AN, Sherman DH, Williams GJ. Engineering the Substrate Specificity of a Modular Polyketide Synthase for Installation of Consecutive Non-Natural Extender Units. J Am Chem Soc 2019; 141:1961-1969. [PMID: 30676722 DOI: 10.1021/jacs.8b10521] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is significant interest in diversifying the structures of polyketides to create new analogues of these bioactive molecules. This has traditionally been done by focusing on engineering the acyltransferase (AT) domains of polyketide synthases (PKSs) responsible for the incorporation of malonyl-CoA extender units. Non-natural extender units have been utilized by engineered PKSs previously; however, most of the work to date has been accomplished with ATs that are either naturally promiscuous and/or located in terminal modules lacking downstream bottlenecks. These limitations have prevented the engineering of ATs with low native promiscuity and the study of any potential gatekeeping effects by domains downstream of an engineered AT. In an effort to address this gap in PKS engineering knowledge, the substrate preferences of the final two modules of the pikromycin PKS were compared for several non-natural extender units and through active site mutagenesis. This led to engineering of the methylmalonyl-CoA specificity of both modules and inversion of their selectivity to prefer consecutive non-natural derivatives. Analysis of the product distributions of these bimodular reactions revealed unexpected metabolites resulting from gatekeeping by the downstream ketoreductase and ketosynthase domains. Despite these new bottlenecks, AT engineering provided the first full-length polyketide products incorporating two non-natural extender units. Together, this combination of tandem AT engineering and the identification of previously poorly characterized bottlenecks provides a platform for future advancements in the field.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States.,Comparative Medicine Institute , NC State University , Raleigh , North Carolina 27695 , United States
| | - Jared M CroweTipton
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States
| | - Andrew N Lowell
- Life Sciences Institute, Department of Medicinal Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Department of Chemistry and Department of Microbiology & Immunology , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Gavin J Williams
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States.,Comparative Medicine Institute , NC State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
25
|
Zhang W, Zhou L, Li C, Deng Z, Qu X. Rational engineering acyltransferase domain of modular polyketide synthase for expanding substrate specificity. Methods Enzymol 2019; 622:271-292. [DOI: 10.1016/bs.mie.2019.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Grote M, Kushnir S, Pryk N, Möller D, Erver J, Ismail-Ali A, Schulz F. Identification of crucial bottlenecks in engineered polyketide biosynthesis. Org Biomol Chem 2019; 17:6374-6385. [DOI: 10.1039/c9ob00831d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Quo vadis combinatorial biosynthesis: STOP signs through substrate scope limitations lower the yields in engineered polyketide biosynthesis using cis-AT polyketide synthases.
Collapse
Affiliation(s)
- Marius Grote
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Susanna Kushnir
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Niclas Pryk
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - David Möller
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Julian Erver
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Ahmed Ismail-Ali
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Frank Schulz
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| |
Collapse
|
27
|
Carpenter SM, Williams GJ. Extender Unit Promiscuity and Orthogonal Protein Interactions of an Aminomalonyl-ACP Utilizing Trans-Acyltransferase from Zwittermicin Biosynthesis. ACS Chem Biol 2018; 13:3361-3373. [PMID: 30484625 DOI: 10.1021/acschembio.8b00867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Trans-acting acyltransferases (trans-ATs) are standalone enzymes that select and deliver extender units to polyketide synthase assembly lines. Accordingly, there is interest in leveraging trans-ATs as tools to regioselectively diversify polyketide structures. Yet, little is known regarding the extender unit and acyl carrier protein (ACP) specificity of trans-ATs, particularly those that utilize unusual ACP-linked extender units. For example, the biosynthesis of the antibiotic zwittermicin involves the trans-AT ZmaF, which is responsible for installing a rare ACP-linked aminomalonyl extender unit. Here, we developed a method to access a panel of non-natural and non-native ACP-linked extender units and used it to probe the promiscuity of ZmaF, revealing one of the most promiscuous ATs characterized to date. Furthermore, we demonstrated that ZmaF is highly orthogonal with respect to its ACP specificity, and the ability of ZmaF to trans-complement noncognate PKS modules was also explored. Together, these results set the stage for further engineering ZmaF as a tool for polyketide diversification.
Collapse
Affiliation(s)
- Samantha M. Carpenter
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Gavin J. Williams
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
28
|
Möller D, Kushnir S, Grote M, Ismail-Ali A, Koopmans KRM, Calo F, Heinrich S, Diehl B, Schulz F. Flexible enzymatic activation of artificial polyketide extender units by Streptomyces cinnamonensis into the monensin biosynthetic pathway. Lett Appl Microbiol 2018; 67:226-234. [PMID: 29927502 DOI: 10.1111/lam.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Streptomyces cinnamonensis A495 is a variant of the monensin producer which instead of the native polyether antibiotic gives rise to antibiotic and anti-tumour shunt-product premonensin. Through the supplementation of the fermentation medium with suitable precursors, premonensin can be derivatized via the incorporation of new-to-nature extender units into the biosynthetic machinery. Polyketide extender units require activation, typically in form of coenzyme A-thioesters. These are membrane impermeable and thus in the past an artificial mimic was employed. Here, we show the use and preliminary characterization of a highly substrate promiscuous new enzyme for the endogenous thioester formation in a Streptomyces strain. These intracellularly activated alternative extender units are significantly better incorporated into premonensin than the synthetically activated counterparts. SIGNIFICANCE AND IMPACT OF THE STUDY Polyketide natural products are of enormous relevance in medicine. The hit-rate in finding active compounds for the potential treatment of various diseases among this substance family of microbial origin is high. However, most polyketides require derivatization to render them suitable for the application. Of relevance in this field is the incorporation of artificial substances into the biogenesis of polyketides, hampered by both the microbial metabolism and the complexity of the enzymes involved. This manuscript describes the straightforward and selective biosynthetic incorporation of synthetic substances into a reduced polyketide and showcases a promising new enzyme to aid this purpose.
Collapse
Affiliation(s)
- D Möller
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - S Kushnir
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - M Grote
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - A Ismail-Ali
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - K R M Koopmans
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - F Calo
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - S Heinrich
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - B Diehl
- Spectral Service, Köln, Germany
| | - F Schulz
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
29
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
30
|
Zhang Q, Zhang J, Gavathiotis E. ICBS 2017 in Shanghai-Illuminating Life with Chemical Innovation. ACS Chem Biol 2018; 13:1111-1122. [PMID: 29677443 PMCID: PMC6855916 DOI: 10.1021/acschembio.8b00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein College of Medicine, New York 10461, United States
| |
Collapse
|
31
|
Kalkreuter E, Williams GJ. Engineering enzymatic assembly lines for the production of new antimicrobials. Curr Opin Microbiol 2018; 45:140-148. [PMID: 29733997 DOI: 10.1016/j.mib.2018.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 01/06/2023]
Abstract
A large portion of natural products are biosynthesized by the polyketide synthase and non-ribosomal peptide synthetase enzymatic assembly lines. Recent advancements in the study of these megasynthases has led to many new examples that demonstrate the production of non-natural natural products. The field is likely nearing the ability to design and build new biosynthetic pathways de novo. We discuss the various recent approaches taken towards this goal, focusing on the installation of new substrates, the swapping of enzymatic domains and modules, and the impact of metabolic engineering and synthetic biology. We also address the challenges remaining alongside the many successes in this area.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, NC State University, Raleigh, NC 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, United States.
| |
Collapse
|
32
|
Li Y, Zhang W, Zhang H, Tian W, Wu L, Wang S, Zheng M, Zhang J, Sun C, Deng Z, Sun Y, Qu X, Zhou J. Structural Basis of a Broadly Selective Acyltransferase from the Polyketide Synthase of Splenocin. Angew Chem Int Ed Engl 2018. [PMID: 29536601 DOI: 10.1002/anie.201802805] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polyketides are a large family of pharmaceutically important natural products, and the structural modification of their scaffolds is significant for drug development. Herein, we report high-resolution X-ray crystal structures of the broadly selective acyltransferase (AT) from the splenocin polyketide synthase (SpnD-AT) in the apo form and in complex with benzylmalonyl and pentynylmalonyl extender unit mimics. These structures revealed the molecular basis for the stereoselectivity and substrate specificity of SpnD-AT, and enabled the engineering of the industrially important Ery-AT6 to broaden its substrate scope to include three new types of extender units.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road., Wuhan, 430071, China
| | - Wan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road., Wuhan, 430071, China
| | - Hui Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road., Wuhan, 430071, China
| | - Wenya Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road., Wuhan, 430071, China
| | - Lian Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Shuwen Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road., Wuhan, 430071, China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road., Wuhan, 430071, China
| | - Jinru Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Chenghai Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road., Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road., Wuhan, 430071, China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road., Wuhan, 430071, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road., Wuhan, 430071, China
| | - Jiahai Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| |
Collapse
|
33
|
Li Y, Zhang W, Zhang H, Tian W, Wu L, Wang S, Zheng M, Zhang J, Sun C, Deng Z, Sun Y, Qu X, Zhou J. Structural Basis of a Broadly Selective Acyltransferase from the Polyketide Synthase of Splenocin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education; Wuhan University School of Pharmaceutical Sciences; 185 Donghu Road. Wuhan 430071 China
| | - Wan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education; Wuhan University School of Pharmaceutical Sciences; 185 Donghu Road. Wuhan 430071 China
| | - Hui Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education; Wuhan University School of Pharmaceutical Sciences; 185 Donghu Road. Wuhan 430071 China
| | - Wenya Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education; Wuhan University School of Pharmaceutical Sciences; 185 Donghu Road. Wuhan 430071 China
| | - Lian Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Chemistry and Pharmacy; Northwest A&F University; 3 Taicheng Road, Yangling 712100 Shaanxi China
| | - Shuwen Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education; Wuhan University School of Pharmaceutical Sciences; 185 Donghu Road. Wuhan 430071 China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education; Wuhan University School of Pharmaceutical Sciences; 185 Donghu Road. Wuhan 430071 China
| | - Jinru Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Chemistry and Pharmacy; Northwest A&F University; 3 Taicheng Road, Yangling 712100 Shaanxi China
| | - Chenghai Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education; Wuhan University School of Pharmaceutical Sciences; 185 Donghu Road. Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education; Wuhan University School of Pharmaceutical Sciences; 185 Donghu Road. Wuhan 430071 China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education; Wuhan University School of Pharmaceutical Sciences; 185 Donghu Road. Wuhan 430071 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University); Ministry of Education; Wuhan University School of Pharmaceutical Sciences; 185 Donghu Road. Wuhan 430071 China
| | - Jiahai Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Chemistry and Pharmacy; Northwest A&F University; 3 Taicheng Road, Yangling 712100 Shaanxi China
| |
Collapse
|
34
|
Filling the Gaps in the Kirromycin Biosynthesis: Deciphering the Role of Genes Involved in Ethylmalonyl-CoA Supply and Tailoring Reactions. Sci Rep 2018; 8:3230. [PMID: 29459765 PMCID: PMC5818483 DOI: 10.1038/s41598-018-21507-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 11/08/2022] Open
Abstract
Kirromycin is the main product of the soil-dwelling Streptomyces collinus Tü 365. The elucidation of the biosynthetic pathway revealed that the antibiotic is synthesised via a unique combination of trans-/cis-AT type I polyketide synthases and non-ribosomal peptide synthetases (PKS I/NRPS). This was the first example of an assembly line integrating the three biosynthetic principles in one pathway. However, information about other enzymes involved in kirromycin biosynthesis remained scarce. In this study, genes encoding tailoring enzymes KirM, KirHVI, KirOI, and KirOII, and the putative crotonyl-CoA reductase/carboxylase KirN were deleted, complemented, and the emerged products analysed by HPLC-HRMS and MS/MS. Derivatives were identified in mutants ΔkirM, ΔkirHVI, ΔkirOI, and ΔkirOII. The products of ΔkirOI, ΔkirOII, and kirHVI were subjected to 2D-NMR for structure elucidation. Our results enabled functional assignment of those enzymes, demonstrating their involvement in kirromycin tailoring. In the ΔkirN mutant, the production of kirromycin was significantly decreased. The obtained data enabled us to clarify the putative roles of the studied enzymes, ultimately allowing us to fill many of the missing gaps in the biosynthesis of the complex antibiotic. Furthermore, this collection of mutants can serve as a toolbox for generation of new kirromycins.
Collapse
|
35
|
Hillman ET, Readnour LR, Solomon KV. Exploiting the natural product potential of fungi with integrated -omics and synthetic biology approaches. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Cai W, Zhang W. Engineering modular polyketide synthases for production of biofuels and industrial chemicals. Curr Opin Biotechnol 2017; 50:32-38. [PMID: 28946011 DOI: 10.1016/j.copbio.2017.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs.
Collapse
Affiliation(s)
- Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States; Chan Zuckerberg Biohub, San Francisco, CA 94158, United States.
| |
Collapse
|
37
|
Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD. Engineered polyketides: Synergy between protein and host level engineering. Synth Syst Biotechnol 2017; 2:147-166. [PMID: 29318196 PMCID: PMC5655351 DOI: 10.1016/j.synbio.2017.08.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/26/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often require the utilization of non-native enzymatic machinery that is capable of producing a broad range of chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particularly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs could open access to the deliberate production of both existing and novel compounds. In this review, we discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a diverse range of chemical structures, and we examine future applications of PKSs in the production of medicines, fuels and other industrially relevant chemicals.
Collapse
Key Words
- ACP, Acyl carrier protein
- AT, Acyltransferase
- CoL, CoA-Ligase
- Commodity chemical
- DE, Dimerization element
- DEBS, 6-deoxyerythronolide B synthase
- DH, Dehydratase
- ER, Enoylreductase
- FAS, Fatty acid synthases
- KR, Ketoreductase
- KS, Ketosynthase
- LM, Loading module
- LTTR, LysR-type transcriptional regulator
- Metabolic engineering
- Natural products
- PCC, Propionyl-CoA carboxylase
- PDB, Precursor directed biosynthesis
- PK, Polyketide
- PKS, Polyketide synthase
- Polyketide
- Polyketide synthase
- R, Reductase domain
- SARP, Streptomyces antibiotic regulatory protein
- SNAC, N-acetylcysteamine
- Synthetic biology
- TE, Thioesterase
- TKL, Triketide lactone
Collapse
Affiliation(s)
| | | | - Constance B. Bailey
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Samuel Curran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay. D. Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- QB3 Institute, University of California, Berkeley, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK2970 Horsholm, Denmark
| |
Collapse
|